Physics 150-01: Introductory Physics I

URLs in the PDF version of this syllabus are clickable links

Fall 2024
Version 20240824.1

Prof. Ted Allen Eaton 108 tjallen@hws.edu (315) 781-3623 (Office)

Mr. Dan Dumitriu Eaton 118 Idumitriu@hws.edu (315) 781-4827 (Office)

	Room	Time
Lecture	Eaton 111	9:50-10:50 MWF
Laboratory Sec. 11	Eaton B13	1:10-4:10 M
Laboratory Sec. 12	Eaton B13	1:10-4:10 T

http://people.hws.edu/tjallen

Texts & Materials

- Hugh Young, Roger Freedman, and A. Lewis Ford, University Physics, 15th Edition
- S.J. Ling, et al., OpenStax University Physics Vol. 3, a free, open text
- Physics 150 Laboratory Manual
- 5 × 5 Quad Ruled Laboratory Notebook Available in the College Store
- Homework Solutions, on reserve in the library
- Simple scientific calculator with one-variable statistics such as the CASIO fx-260 II or TI-30XIIS

Course Objectives

Physics is the fundamental study of the behavior of matter, energy, space, and time. It is a quantitative and mathematical science. By the end of the course, students should have a working knowledge of the elementary principles of mechanics and waves and their expression in mathematical form. Students should be able to apply these principles to simple problems stated in plain English.

About Your Professor

Prof. Allen is a theoretical physicist working on particle physics and gravitation. He received his Ph.D. from Caltech in 1988 for work in string theory. He has been teaching—at the University of Wisconsin, the California Institute of Technology, SUNY Utica/Rome, and now HWS—since 1980. Besides physics, some of his other interests are calligraphy, computers, electronics, herbology & natural health, watchmaking, yoga, and the martial art Aikido.

About Physics 150

The subjects covered in this class relate to phenomena that are common and objects that are visible. Most of what we'll study was well understood before the 20th century; this is perhaps the last "common sense" physics course, though we will study a little relativity and quantum mechanics, some of the more exciting developments of the 20th century.

This course is primarily a problem-solving course. There are only a few principles a week that we will study, however there are many ways to use the principles. Learning to use the principles is best accomplished through solving lots of problems. Working together in groups is a good way to learn this material. Just having a numerical answer is usually not very useful for understanding; it is much better to spend time first trying figure out how to get to the answer from what you know and then calculating the answer. To do well in this course, most students will need to study at least ten hours per week outside of class. Going to office hours, at least occasionally, is also necessary for most students and strongly recommended.

Syllabus Revisions

This syllabus is subject to revision. Any revisions of the grading policy will not result in a lower numerical grade nor a lower letter grade for any numerical grade. Any revised versions will be distributed on my website and notice of revision will be given in class or by email.

Office Hours

Office hours initially are Monday 3:00 - 4:00, Tuesday 11:00 - 12:00, and Friday 2:30 - 4:00, as well as by appointment. Participation credit is given for office hour visits. Be sure to sign in.

Course Requirements

Laboratory

Recitation

• Daily reading assignments in text

• Class attendance and involvement

• Homework

Quizzes

• 2 Hour Exams

• Final Exam

Grading Policy

A score of 60% or greater in the laboratory is required to pass the class. Assuming a satisfactory laboratory grade, the class grade will be based on a straight percentage with the following breakdown:

A: 88% – 100%

B: 75% – 87%

C: 60% - 74%

D: 50% – 59%

F: < 50%

The exams are not graded on a "curve," unless there is evidence that the exams were inappropriately difficult. In that case, extra points will be added to each exam to bring the average up to the appropriate level. In other words, an exam score of 80% is guaranteed to be at least a "B—." The final grade will be composed of five elements, three of which are the quizzes and exams. The other two elements are the laboratory and participation. The numerical grade will be computed using two schemes and the course grade will determined by the higher of the two.

<u> </u>		
α	β	Element
10%	10%	participation
20%	20%	laboratory
30%	15%	hour exams
10%	5%	quizzes
30%	50%	final exam

Early & Late Policy

A student who misses a quiz and has a valid excuse may take a quiz the next day for 80% credit. A student who misses an hour exam and has a valid excuse (a note from your physician or an acceptable alternative), will be allowed to count the other hour exam for twice the weight. Any students must check with me **before** missing an exam unless they fall ill suddenly before the exam, in which case they should contact me as soon as they are well. **There will be no makeups for the hour or final exams and neither will exams be given early.** Athletes engaged in post-season play may take the final exam on the road **at the time set by the Registrar** if it will be closely proctored by a coach.

Homework

It is very important to do the homework. Doing the homework thoroughly and correctly is the most important and valuable part of the course, at least insofar as learning the material is concerned. It is also helpful to do additional problems of your own choosing from the course text or any other source. Your grade is more a reflection of how much useful work you did outside of class than of how "mentally quick" you are. You should expect to spend two to three hours outside of class on reading and homework for every hour of class time.

Exams

There will be two hour exams and a final exam. The hour exams will be during the lecture period on October 2nd and November 6th. The final exam will be during the period set by the Registrar's office, which should be Tuesday, December 10, 2024 at 7:00 PM. The hour exams will each be at least three problem pages. Students are allowed to bring one **handwritten (not xeroxed)** 8.5" × 11" page (one side) of notes in their own hand to each hour exam and two **handwritten (not xeroxed)** 8.5" × 11" pages (two sides total) in their own hand to the final exam. Note sheets will be handed in with the exams. Bringing note sheets that do not conform to these specifications is academic dishonesty and will result in a lower grade in the course. **Smartphone calculator apps are not allowed on exams.**

Quizzes

There will be short quizzes in lecture or discussion labs every so often, announced in advance in lecture. They will usually be a single problem, sometimes two or three very short problems. Students are allowed to bring a **handwritten** (**not xeroxed**) $3'' \times 5''$ card (one side) of notes in their own hand to each quiz.

Laboratory Policies and Procedures

Students must bring their laboratory manual to each lab, along with a lab notebook, a pen, a pencil, and a scientific calculator. Smartphone calculator apps are not acceptable. A laptop computer with a spreadsheet program is also required. A lab notebook should be a bound notebook that has graph ruled (quadrille) lines. Keeping a neat lab notebook is important, especially as a concise, neat notebook is very helpful for writing a lab report. Students must study the relevant sections in lab manual before coming to each laboratory.

Students are allowed no more than one make-up lab, and only when a lab is missed because of illness or other involuntary event. It is the student's responsibility to inform their lab instructor of their intention to make up a lab, and this request must be made by the Friday of the week in which the lab was missed. The time and date of the make-up will be coordinated between the student and their lab instructor. Each missed lab that is not made-up will be entered as zero in the grade book.

As with exams and quizzes, all laboratory reports are subject to HWS community standards of academic integrity on plagiarism. In particular, any report submissions closely resembling those of other students or the lab manual **without attribution** will be subject to investigation and possible disciplinary action.

Physics Teaching Fellows Program

Assistance with course concepts and problem-solving is available through the Teaching Fellows Program. Time spent working with a fellow is time well spent. Note that the Fellows are not meant to replace the one-on-one tutoring offered through CTL, which remains available, nor to replace faculty-student interaction.

The Physics Teaching Fellows hold sessions in Eaton 111. Their hours will be posted outside the door. The physics department encourages you to take full advantage of this program. Visits to the Teaching Fellows earn participation credit. Please be sure to sign in.

Disability Accommodations

Students with a documented disability for which they may need accommodations that they have not yet obtained should self-identify by logging into the Accommodate Portal and complete the Accommodation Request Intake Form. Accommodations and services will only be provided once the registration and documentation process is complete. See the guidelines for documenting disabilities. Returning students may log in to the Accommodate Portal and request semester accommodation letters. Students who need to meet to add or discuss accommodations should schedule an appointment in the Accommodate Portal.

Direct questions about this process or Disability Services at HWS to Shanelle France or Thom Mascia (x3351) at CTL. Should you need to meet to add or discuss accommodations, please schedule an appointment in the Accommodate Portal.

Academic Integrity

Students should familiarize themselves with the principles of academic integrity in the handbook of community standards. Work on an exam or quiz that is clearly not one's own will receive zero credit. All future recommendation letters will mention any relevant academic dishonesty. Deceit in the form of academic dishonesty is indicative of untrustworthiness and low moral character in general and therefore ought to disqualify a student from any future position of responsibility. Exams sometimes have several versions with subtle differences that are hard to discern at a glance but make it very easy to spot who received help, and often who gave that help.

Syllabus: Lecture Topics

This is the schedule of the subjects to be discussed in lecture. Following this table, there are tables of homework assignments and reading, keyed by lecture number. Your first reading assignment in any course should be the syllabus. Accordingly, you must email me before 5:00 pm Friday August 30 and tell me that you have read the whole syllabus. Reading the syllabus in a timely fashion will count toward your participation grade.

Date	#	Lecture Topics
¹ Mon 26 Aug	1	Space, Time, Mass · Units · Prefixes · Dimensional Analysis
Wed 28 Aug	2	Newtonian World View · Displacement · Velocity · Acceleration
Fri 30 Aug	3	Motion with Constant Acceleration · Free Fall
² Mon 2 Sep	4	Vectors · Components · Algebra · Geometry
Wed 4 Sep	5	Vector Multiplication · Scalar & Vector Products
Fri 6 Sep	6	2D & 3D Motion \cdot $(\vec{\mathbf{v}} \cdot \vec{\mathbf{a}})$ · Projectiles
³ Mon 9 Sep	7	Circular Motion \cdot Relative Motion \cdot Frames of Reference
Wed 11 Sep	8	Einsteinian Revolution \cdot Simultaneity \cdot Time Dilation
Fri 13 Sep	9	Forces · Newton's Laws · Weight · Free Body Diagrams
⁴ Mon 16 Sep	10	Using Newton's Laws
Wed 18 Sep	11	Friction
Fri 20 Sep	12	Dynamics of Circular Motion · Fundamental Forces
⁵ Mon 23 Sep	13	Work \cdot Kinetic Energy \cdot Work-Energy Theorem
Wed 25 Sep	14	Work & Energy in General · Power
Fri 27 Sep	15	Gravitational Potential Energy · Elastic Potential Energy
⁶ Mon 30 Sep	16	Conservative Forces \cdot Force & Potential Energy \cdot Energy Diagrams
Wed 2 Oct	Exam 1	
Fri 4 Oct	17	${\bf Momentum\cdot Momentum\ Conservation\cdot Collisions}$
⁷ Mon 7 Oct	18	Inelastic & Elastic Collisions · Center of Mass
Wed 9 Oct	19	Relativistic Energy & Momentum · Correspondence Principle
Fri 11 Oct	20	Rigid Bodies · Angular Motion · Angular Kinematics

Date	#	Lecture Topics
8 Mon 14 Oct	Fall Recess	
Wed 16 Oct	21	Relating Linear & Angular Motion · Kinetic Energy · Moment of Inertia
Fri 18 Oct	22	Torque · Newton's 2nd Law for Rotation
⁹ Mon 21 Oct	23	Rotation about a moving axis · Angular Work & Power
Wed 23 Oct	24	Angular Momentum · Gyroscopes & Precession
Fri 25 Oct	25	Equilibrium · Center of Gravity
10 Mon 28 Oct	26	Deformations · Stress · Strain · Elasticity
Wed 30 Oct	27	Fluids · Density & Pressure · Hydrostatic Pressure
Fri 1 Nov	28	Buoyancy · Describing Fluid Flow
¹¹ Mon 4 Nov	29	Bernoulli's Equation
Wed 6 Nov	Exam 2	
Fri 8 Nov	30	Universal Gravitation \cdot Potential Energy \cdot Spherical Mass Distributions
¹² Mon 11 Nov	31	Kepler's Laws · Satellites · Black Holes
Wed 13 Nov	32	Simple Harmonic Motion \cdot Governing Differential Equation \cdot Energy
Fri 15 Nov	33	Pendula · Damped Oscillations · Resonance
¹³ Mon 18 Nov	34	Waves \cdot Wave Equation & Solutions \cdot Sinusoidal Waves
Wed 20 Nov	35	Waves on a String · Energy & Power in Waves
Fri 22 Nov	36	Superposition \cdot Interference \cdot Boundary Conditions
¹³ Mon 25 Nov	37	Standing Waves · Normal Modes
Happy Thanksgiving!		
¹⁴ Mon 2 Dec	38	Quantum Revolution \cdot Einstein \cdot de Broglie \cdot Energy Quantization
Wed 4 Dec	39	Sound Waves \cdot Sound Speed \cdot Sound Intensity \cdot Normal Modes of Pipes
Fri 6 Dec	40	Resonance · Interference · Beats · Doppler Effect
Tue 10 Dec Final Exam in Eaton 111 7:00 PM		

Reading and Homework Problems

Your reading and homework assignments are from Young and Freedman 15th Edition, except for Lectures 8, 19, and 38, which are in Ling et al., OpenStax Physics Vol. 3, denoted "OS" below. The reading assignments are to be done before lecture on the day in which they are assigned.

Homework assignments are to be *done* by the lecture following the one in the table in which they are assigned. Homework assignments should be *attempted* by the lecture before they are to be done. Problems that are daggered \dagger require integral calculus, which is not a requirement of the course.

Prof. Walter Lewin's MIT lectures, while not required, are strongly recommended. Hearing his excellent explanation of the material is very helpful. These web-accessible resources are linked into the PDF version of this syllabus. Note that they are only available to those on the internal HWS network and they will not play until they are completely downloaded, so be patient.

If the webserver is down, or if you are not on the campus network, you can also find the lectures on YouTube or Archive.org.

Lec#	Reading & Suggested Viewing	Homework Assigned
1	Ch 1; §1-6; Lewin's Lec 1	Q1.1, Q1.6, Q1.8, Q1.9; 1.1, 1.6, 1.11, 1.16, 1.19
2	Ch 2: §1-3; Lewin's Lec 2	Q2.3, Q2.5; 2.1, 2.3, 2.8, 2.9, 2.15, 2.53
3	Ch 2: §4,5	Q2.15, Q2.18; 2.19, 2.23, 2.29, 2.39, 2.80
4	Ch 1: §7-9; Lewin's Lec 3	Q1.15, Q1.22; 1.25, 1.29, 1.33, 1.39
5	Ch 1: §10	1.41, 1.43, 1.46, 1.74, 1.86
6	Ch 3: §1-3; Lewin's Lec 4	Q3.5, Q3.6; 3.4, 3.13, 3.19, 3.45, 3.61
7	Ch 3: §4,5	Q3.10, Q3.11, Q3.12; 3.31, 3.34, 3.38, 3.41, 3.53 [†] , 3.65
8	OS Ch 5: §1-4	OS 1, 5, 23, 28, 31
9	Ch 4: §1-6; Lewin's Lec 7	Q4.4, Q4.13, Q4.25, Q4.28, Q4.37, Q4.38; 4.1, 4.4, 4.6, 4.24, 4.35, 4.37
10	Ch 5: §1,2; Lewin's Lec 6	Q5.1, Q5.3; 4.46, 5.6, 5.15, 5.60, 5.91
11	Ch 5: §3; Lewin's Lec 8	Q5.14; 5.23, 5.34, 5.37, 5.87, 5.95
12	Ch 5: §4,5; Lewin's Lec 5	Q5.19; 5.45, 5.48, 5.49, 5.51, 5.107
13	Ch 6: §1,2; Lewin's Lec 11	Q6.1, Q6.4, Q6.12; 6.3, 6.8, 6.19, 6.20, 6.24
14	Ch 6: §3,4	Q6.16, Q6.20, Q6.22; 6.34, 6.35, 6.37, 6.56, 6.71, 6.81
15	Ch 7: §1-3	Q7.1, Q7.5, Q7.16; 7.5, 7.9, 7.12, 7.15, 7.28 [†] , 7.51
16	Ch 7: §4,5; Lewin's Lecs 12 & 13	Q7.15, Q7.20; 7.32, 7.35, 7.36, 7.41, 7.55
17	Ch 8: §1-3; Lewin's Lec 15	Q8.2, Q8.9, Q8.10; 8.3, 8.7, 8.24, 8.30, 8.41
18	Ch 8: §4,5; Lewin's Lec 16	Q8.22, Q8.24; 8.46, 8.49, 8.82, 8.92, 8.99
19	OS Ch 5: § <i>8-9</i>	OS 55, 57, 67
20	Ch 9: §1,2	Q9.4, Q9.6, Q9.7; 9.5, 9.10, 9.14, 9.15

Lec#	Reading & Suggested Viewing	Homework Assigned
21	Ch 9: §3,4; Lewin's Lec 19	Q9.9, Q9.10, Q9.14; 9.25, 9.45, 9.67, 9.77
22	Ch 10: §1,2	Q10.2, Q10.7, Q10.8; 10.1, 10.5, 10.7, 10.9, 10.59, 10.69
23	Ch 10: §3,4	Q10.14, Q10.25; 10.21, 10.22, 10.34, 10.79
24	Ch 10: §5-7; Lewin's Lec 20	Q10.16, Q10.22; 10.42, 10.45, 10.63
25	Ch 11: §1-3; Lewin's Lec 25	Q11.4, Q11.5, Q11.7; 11.7, 11.13, 11.16, 11.74
26	Ch 11: §4,5; Lewin's Lec 26	Q11.14, Q11.17; 11.27, 11.36, 11.44, 11.80, 11.89
27	Ch 12: §1,2	Q12.4, Q12.5, Q12.16; 12.5, 12.10, 12.54, 12.63
28	Ch 12: §3,4; Lewin's Lec 27	Q12.13, Q12.18, Q12.20; 12.33, 12.41, 12.72
29	Ch 12: §5,6; Lewin's Lec 28	Q12.23, Q12.25, Q12.29; 12.45, 12.48, 12.81, 12.83
30	Ch 13: §1-4; Lewin's Lec 14	Q13.1, Q13.6, Q13.9, Q13.18; 13.4, 13.5, 13.25, 13.64
31	Ch 13: §5,6,8; Lewin's Lecs 22 & 24	Q13.14, Q13.17, Q13.20; 13.26, 13.30, 13.43, 13.61, 13.74 [†]
32	Ch 14: §1-4; Lewin's Lec 10	Q14.1, Q14.3; 14.4, 14.11, 14.18, 14.21, 14.27
33	Ch 14: §5-8; Lewin's Lecs 24 & 21	Q14.12; 14.41, 14.53, 14.66, 14.87
34	Ch 15: §1-3	Q15.1, Q15.6; 15.3, 15.5, 15.8, 15.9. 15.12, 15.47
35	Ch 15: §4,5	Q15.4; 15.15, 15.22, 15.23, 15.24
36	Ch 15: §6,7	Q15.12; 15.35, X.1, X.2
37	Ch 15: §8; Lewin's Lec 31	15.36, 15.39, 15.72
38	OS Ch 6: §5, OS Ch 7: §4	OS 6.41, 6.43, 6.108, 6.110; OS 7.47, 7.48
39	Ch 16: §1-4	Q16.1, Q16.5, Q16.6; 16.3, 16.8, 16.18, 16.24, 16.28
40	Ch 16: §5-8	Q16.11, Q16.18; 16.33, 16.36, 16.39, 16.40, 16.59, 16.61