The complete document is divided into five sections:
[C-M] H. S. M. Coxeter and W. O. J. Moser. Generators and Relations for Discrete Groups. Springer-Verlag. New York. 1980. Pages 52--61.
[Co] H. S. M. Coxeter. "The non-Euclidean symmetry of Escher's picture 'Circle Limit III.'" Leonardo, Vol. 12 . 1979. Pages 19--25.
[D-H] A.W.M.Dress and D.H.Huson. "On tilings of the plane." Geometrae Dedicata, Vol. 24 . 1987 Pages 269--296.
[D1] D. J. Dunham. "Creating hyperbolic Escher patterns." M.C.Escher: Art and Science. H.S.M. Coxeter et al. (Editors). North-Holland. Amsterdam. 1986 Pages 241--248.
[D2] D. J. Dunham. "Hyperbolic symmetry." Computers and Mathematics with Applications, Vol. 12B. Pages 139--153.
[FT] L. Fejes Toth Regular Figures. Pergamon Press. Oxford. 1964.
[G] M. J. Greenberg. Euclidean and Non-Euclidean Geometries: History and Development (3rd Ed). W. H. Freeman. New York. 1994.
[G-S 1979] B. Grunbaum and G. C. Shephard. "Incidence symbols and their applications" Proceedings of Symposia in Pure Mathematics, Vol. XXXIV: Relations Between Combinatorics and Other Parts of Mathematics. American Math. Soc. Providence, RI. 1979.
[G-S 1987] B. Grunbaum and G. C. Shephard. Tilings and Patterns. W. H. Freeman. New York. 1987.
[G-S 1989] B. Grunbaum and G. C. Shephard. Tilings and Patterns: An Introduction. W. H. Freeman. New York. 1989.
[G-V] J. Gerretsen and P. Verdendium. "Polygons and theory." Fundamentals of Mathematics, Vol.II: Geometry. H. Behnke et al. (Editors). MIT Press. Cambridge, MA. 1974. Pages 265--290.
[H-CV] D.Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea. New York. 1952. Pages 98--114.
[H] D. H. Huson. "The generation and classification of tile-k-transitive tilings on the Euclidean plane, sphere, and hyperbolic plane." Geometrae Dedicata, Vol. 47. 1993. Pages 295--310.
[K-F] F. Klein and R. Fricke. Theorie der Ellitischen Modulfunctionen, Vol. 1. B. G. Teubner. Leipzig. 1890. Pages 98--114.
[L] J. Lehner. A Short Course in Automorphic Functions. Holt, Rinehardt and Winston. New York. 1966.
[Mag] W. Magnus. Noneuclidean Tesselations and Their Groups. Academic Press. New York. 1974. Pages 81--85.
[Mar] G. E. Martin. Transformation Geometry: An Introduction to Symmetry. Springer-Verlag. New York. 1982. Page 199.
[P] A. Pugh. Polyhedra: A Visual Approach. Univ. of California Press. Berkeley, CA. 1976. Pages 177--182.
[R] J. F. Rigby. "Butterflies and snakes." M.C.Escher: Art and Science. H.S.M. Coxeter et al. (Editors). North-Holland. Amsterdam. 1986. Pages 211--220.
[W] T. R. S. Walsh. "Characterizing the vertex neighbourhoods of semi-regular polyhedra." Geometriae Dededicata, Vol. 1. 1972. Pages 117--123.
[We] J. Weeks. KaleidoTile. Tiling software. From Weeks' description of the program: "Use KaleidoTile to create tesselations of the sphere, Euclidean plane and hyperbolic plane. The tesselations are dynamic: the user moves a "basepoint" to smoothly transform, say, a dodecahedron into an icosahedron (or a rhombicosadodecahedron or a . . .). All tesselations may be freely rotated or translated, giving a sense of realism and fluidity."
[Z] J. Zaks. "Semi-regular polyhedra and maps." Geometriae Dededicata, Vol. 7. 1978. Pages 465--478.