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1 Introduction

The work presented in this thesis is primarily concerned with the observation and analysis

of a pre-main sequence eclipsing binary star system in the southern sky named MML 48.

While discussing the components of this project, it is necessary to have an understanding of

the concepts, motivations, and terminology behind each element of the research conducted.

This introduction serves to provide a basic background on the formation of stars, the study

of how they evolve over time, a physical analysis of eclipsing binaries, an overview of the

the computational modeling program PHOEBE 2.1 and its role in this research, and an

overview of the subject of this paper, the star system MML 48.

1.1 Stellar Birth

Most stars function following a familiar process: a big ball of gas has a core that is so

hot and dense that fusion between light elements occurs, generating extraordinary amounts

of energy. The energy produced from the fusion in the core balances out the gravitational

forces pulling the gas inward, resulting in a star. Stars that fuse elements together to remain

stable are considered fully formed, ‘adult’ stars [2]. At some point in its life, a star will

either evolve into a red giant or supergiant before collapsing into itself, or slowly fade into

a white dwarf, where its life as a star ends [2, 4].

The process that leads from a star being born to it becoming fully formed requires more

investigation. While the specifics of stellar evolution remain uncertain, there is a generally

agreed upon pattern of development that is presented here [4]. All stars begin as an enor-

mous cloud of interstellar gas and dust with a makeup of approximately 70% hydrogen,

28% helium, and 2% heavier elements [2]. These clouds typically maintain an equilibrium,

referred to as hydrostatic equilibrium, between the weak gravitational attraction between

each particle that pulls the cloud together and the thermal energy of each particle that

pushes back out. This thermal energy resisting the collapse of the cloud is referred to as
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the thermal pressure. Through the study of small deviations to the hydrostatic equilibrium

present in these clouds, early researchers were able to make some insights into some of the

conditions required for these interstellar clouds to collapse into stars [13]. This research

resulted in the description of Jean’s Criterion, which provides a strict mathematical limit

on which clouds will or will not collapse. If a cloud happens to be particularly cold and

dense, then simple molecules are able to form. These molecules cause the density of the

clouds to get much greater than would be possible for hotter interstellar clouds, which in

turn gives the clouds the mass needed to overcome the Jean’s Criterion and collapse under

its own gravity, and form a star [2, 4]. This collapse is by no means a smooth process:

because each molecule of gas in the cloud has its own angular momentum with respect to

the center of the cloud, the formed star will be spinning extremely quickly. Additionally,

collisions between those molecules before they hit the star cause the cloud’s contents to

form into an accretion disk, which is a hot, dense disk of dust and gas that forms around

the star as the material falls in [4].

Once the cloud starts to contract, the gravitational potential energy of the particles is

converted into thermal pressure that opposes the contraction. Here again, the properties

of molecular clouds (as opposed to primarily elemental clouds) help in star formation.

The molecules present in the clouds, such as carbon monoxide, can absorb the energy and

release it in the form of photons of a much lower energy than those emitted by H2 [4]. This

radiation of energy is a requirement for stellar formation: without it, the thermal pressure

would build up until the cloud’s gravitational potential found a new equilibrium point.

Incidentally, this radiation emission is also what enables astronomers to study these clouds

directly, as this light from the molecules (usually carbon monoxide) can be observed from

the Earth [2].

Eventually, an interstellar cloud will get dense and hot enough that those photons cannot

easily penetrate out of the cloud, which leads to a rapid increase in the temperature and

pressure in the cloud [2]. The surface temperature of the core of the clouds reach levels
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Figure 1: False color image of the Carina Nebula (also called the Key-Hole Nebula) taken by the
Hubble Space Telescope in 1999. The dark knots and wisps throughout the image are
dense clouds of interstellar dust and gas. Although the clouds in this image are much
denser than the clouds that form protostars, it is expected that nearby stars in the same
nebula will disperse this gas before any of it can form into a protostar. Image Source:
NASA, Hubble Heritage, AURA/STScI.

comparable to those of a fully formed star, which produces similar luminosities. Molecular

clouds that reach this phase have now become protostars [2].

These stars, while extremely hot, are not yet dense or hot enough to reliably fuse hy-

drogen into heavier elements through the proton-proton chain, so they need another source

of energy [4]. This energy comes in the form of material falling onto the core from the

rest of the cloud. As the free falling material from the cloud collides with the hydrostat-

ically stable core, it rapidly decelerates and releases large amounts of thermal energy [4].

This provides the energy needed to maintain stability, as the temperature of the core slowly

rises. Through various processes, the core undergoes several further contractions, but relies

primarily on material collapsing into the core from the accretion disk for energy [4]. It is

at this point in protostellar development that there are a lot of unanswered questions about
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how stellar development progresses. More attention will be given to the properties that

govern the transition from protostar to pre-main sequence in Section 1.3.1.

During this phase of contraction, all pre-main sequence stars undergo a set of changes

that were first theorized by Chushiro Hayashi in 1961. In his model, which implemented

one of the first analysis of both hydrostatics and convective currents in protostars, Hayashi

demonstrated that there is a phase in protostellar evolution in which the effective tempera-

ture of a star increases slightly, while the luminosity decreases significantly [4]. In Figure

2, several protostars of varying masses are shown as they evolve over time.

Figure 2: Various pre-main sequence stellar evolution paths. Each track begins at the Hayashi Track
(the long dashed line), and moves left until the star is deposited on the main sequence.
The mass of each star is given at the end of each track. On the right side of the Hayashi
Track, stellar formation cannot occur [4]. Image Source: Fundamental Astronomy [15].

If we plot the observable quantities of luminosity (the brightness of the star) and tem-
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perature, this takes the form of a vertical line [4]. This kind of plot is referred to as a

Hertzsprung-Russell diagram, and is explained in full in Section 1.2.1. This model was

later determined to be insufficient for fully predicting the behavior of real-life observed

targets later in their evolution, but it provided some useful information about young pre-

main sequence stars [7]. Specifically, Hayashi demonstrated that there were ‘allowed’ and

‘disallowed’ regions on the H-R diagram in which stability can or can not occur. If the

effective temperature of a star is low enough for a given luminosity, there is no way that

a protostar could emit the amount of light that it does. In Figure 2, the limit between the

allowed and disallowed region is displayed as the Hayashi Track [4].

Eventually, the temperature gets high enough for deuterium to begin fusing, which pro-

vides additional energy to the star, enough to slow but not stop the collapse of the cloud

[4]. Once all of the deuterium (which fuses at much lower temperatures than the H2 that

fuels the proton-proton chain present in fully-formed stars) is exhausted, the star reaches

a somewhat stable state [4]. The temperature inside the protostar slowly rises until early

steps in the proton-proton fusion chain are made, and heavier elements begin to form. Once

a star is fusing hydrogen into helium in its core, the star’s luminosity and temperature will

line up with the main sequence, and the star’s birth is considered complete [4].

1.2 Stellar Evolution

With an understanding of how stars form, we can move on to trying to describe how ob-

servable quantities of stars change over time. Just as there is a general pattern that stars

follow during their formation, there is a well-accepted set of changes that most stars un-

dergo throughout their lives [4]. In the mid-to-late 1800’s and early 1900’s advancements

in photography and spectroscopy enabled astronomers to collect vast sums of new data

about stars, which spurred progress into our understanding how they function [3].
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1.2.1 The Hertzsprung-Russell Diagram

Between 1910 and 1915, a crucial jump forward in understanding the general behavior of

stars in the sky was made in the form of the so-called Hertzsprung-Russell (H-R) Diagram,

pictured in Figure 3 [11, 25]. This diagram, enabled by the extensive research and cat-

aloguing of Annie Jump Cannon and then Antonia Maury, demonstrates the relationship

between the color (and by extension the surface temperature) of a star, and its luminosity

[18, 2]. In turn, the luminosity of a star is determined by the Stefan-Boltzmann Equation,

which states that the luminosity of a spherical star can be expressed as:

L = 4πR2σT 4, (1)

where L is the luminosity, R is the radius of the star, σ is the Stefan-Boltzmann constant,

and T is the effective temperature (essentially the surface temperature) of the star. In other

words, the luminosity of a star is directly tied to its radius and surface temperature, which

means an H-R diagram also provides a relationship between the radius and temperature of

a star [2].

This diagram provided a much needed framework for both modeling and observational

efforts: as new data was acquired about the age and mass of stars, more trends became

apparent in the diagram, which in turn gave theorists more structure to seek out [4]. For

example, astronomers initially theorized that because hotter stars had been observed to be

brighter (a relationship that holds for the main sequence), they might all start as extremely

hot blue stars, and then gradually burn off their mass, cooling off into red stars [4]. The

H-R diagram provided the organization needed to see that the presence of White Dwarfs

and Giants demonstrated that there wasn’t a universal transition from hot to cool stars with

relation to radius. These inquiries formed the first real studies of stellar evolution, and by

extension the first modern investigations into stellar evolution [4].

Another leap forward was made when astronomers discovered that the primary deter-
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Figure 3: Two Hertzsprung-Russel Diagrams. Each point on the left diagram denotes the location
of a real observed star on the H-R diagram. The purple lines outline the different paths
that observed stars tend to lie on, most notable of which is the heavily-populated main
sequence. The graphic on the right displays a stylized version of this data, with a few
added elements. Since the luminosity of a star is determined by its temperature and radius,
an H-R diagram can also be used to examine stellar radii, shown as grey diagonal lines.
On both of the diagrams, the x-axis represents the surface temperature of a star (moving
from hot to cool) and the y-axis represents the luminosity. Left Image Source: Richard
Powell [22]. Right Image Source: NASA/JPL [2].

mination of a star’s temperature was directly tied to that star’s mass [2]. This relationship

is presented in the purple text of the right graphic in Fig. 3. With this, astronomers had

a framework for understanding how the radius and mass of stars were connected. Ar-

guably the most significant discovery associated with the H-R diagram was that of the

main-sequence, or the line of stars stretching from the upper-left to lower-right of the H-R

diagram. Anywhere from 80-90 % of all stars lie on this line, and modeling how stars

find their way onto that line, and eventually slip off it, forms the primary focus of stellar

evolution modeling up to the current day [4].

It is important to recognize explicitly that the H-R diagram does not provide any direct

information about how a star changes over time, it merely is a way to organize the stars that

we observe. In order to do that, one needs to develop a model stellar evolution.
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1.2.2 Contemporary Stellar Evolution Models

By the early 1960’s, significant improvements were made to the simplest models that had

emerged to explain the trends seen in the H-R diagram [4]. Physical phenomena ranging

in scale from the very method of fusion at the heart of stars, to the convection currents that

carried energy away from the cores, to the ionization state of hydrogen in the atmosphere

of stars were integrated into models, yielding more complicated and reliable predictions

for stellar behavior. Over the ensuing decades, more phenomena were identified as being

important to the evolution of stars, including magnetic fields, angular momentum, and mass

ejections, among many others [4].

Contemporary models typically take the form of large lookup tables. An astronomer can

input a set of initial parameters (such as effective temperature, mass, radius, and age), and

then look up the corresponding values for a later stage in that stars life. These evolution

tables differ from H-R diagrams in many ways, but most crucially, they give researchers a

model for a single star over time, while an H-R diagram displays information about many

stars at one single time. Of course, stellar evolution models must agree with the H-R

diagram where applicable, but one must not conflate one as the other.

1.2.3 Importance of Stellar Evolution Models to Astronomy

Stellar evolution models are present in almost every field in the astronomy community. As

an example, an exoplanet researcher would need to know the mass of a target star in order to

determine the mass of an exoplanet around it, which cannot typically be directly measured.

Instead, the mass can be determined by comparing the star’s luminosity and temperature to

stellar evolution models. Another example can be found in someone researching galactic

structure, who might need to have accurate measurements of the density of mass in a given

region. This can be estimated with stellar evolution models [26, 7].

There are several properties of stars beyond the mass and radius that are determined

through the use of stellar evolution models. For example, age determinations of most young
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stars rest almost entirely on the use of modeling [7]. These age determinations are essential

to research about how the clouds that form stars dissipate over time, how long it takes gas

giant planets like Jupiter to form around stars, and other age-determined properties of stars

[26]. Additionally, prediction of magnetic activity (primarily in the form of star spots) is

important to account for while observing pre-main sequence targets. The ubiquity of the

use of stellar evolution models is the reason that they attract so much attention in the astro-

nomical research community. Adding functionality to these models, in terms of integrating

additional physical phenomena or increasing their precision, has significant ramifications

for the astronomy community as a whole.

1.2.4 Shortcomings of Stellar Evolution Models

While stellar evolution models have and continue to develop over the course of the last

century, they still require improvement. This becomes apparent with both advances in the

theory behind stellar structure and the discovery of inconsistencies between observations

and predictions from models.

There are many different physical processes that have yet to be integrated into stellar

evolution models than can be counted. However, there are a few specific areas that are

attracting special attention in contemporary research. As stated in D’Antona’s 2017 pa-

per From protostellar to pre-main-sequence evolution, these include “deuterium burning,

disk accretion/mass loss..., [and] realistic surface boundary conditions” [7]. Additionally,

“convection..., magnetohydrodynamics..., refining nuclear reaction rates..., dynamic atmo-

spheric opacities..., and the effects of rotation” are important factors that need further in-

vestigation [8, 4]. While modern models do implement some of these phenomena into

their calculations, we can tell that they are insufficient to fully predict pre-main sequence

stellar behavior by comparing the outputs of these models to observations. For example,

models do not yet fully explain the strong convection-inhibiting magnetic fields that might

be present in pre-main sequence stars. D’Antona points out that if these magnetic fields
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are important to pre-main sequence stars, then there are likely no accurate models for these

types of stars [7].

In 2014, Stassun et. al conducted such a comparison using several well-accepted stellar

evolution models. This review concluded that the existing models were severely lacking:

for stars (both main sequence and pre-main sequence) below 1 M�, the error rate for the

models ranged from 50-100% [26]. Furthermore, the errors associated with the modeling of

low mass stars were compounded when low mass pre-main sequence stars were considered

[26]. A more detailed treatment of pre-main sequence stellar evolution models is given in

the following section.

1.3 Pre-Main Sequence Stars

Up to this point, I have discussed the life cycle of pre-main sequence stars and models that

allow for the prediction of stellar behaviors over time. The intersection of these two topics,

the study of how pre-main sequence stars evolve over time, is the focus of a lot of research,

as an understanding of how young stars become fully formed is essential to forming a full

picture of stellar evolution.

1.3.1 Stellar Evolution Models and Pre-Main Sequence Stars

One common approach to modeling young stars is to take stellar evolution models for less

exotic main sequence stars, and examine what outputs they produce for very young ages.

This approach would appear to make sense: the widely accepted models mostly agree for

main-sequence stars, so they should agree going backwards. However, as mentioned earlier

in Section 1.2.4, a review of stellar evolution models in 2014 found that when it comes

to modeling low mass pre-main sequence stars, existing models leave a lot to improve

on. In Figure 4, the effectiveness of 6 different models is displayed. While some of the

models (Pisa, Dartmouth 2008, and Dartmouth 2014) do a decent job of modeling observed

behaviors, demonstrated by the closeness of each point to 0 on the y-axis, all of the models
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have significant room for improvement [26]. Of all of the models used, Pisa would be

expected to perform the best, as it was specifically designed for use with pre-main sequence

stars [26].

Figure 4: Various low-mass pre-main sequence eclipsing binaries with mass measurements were
modeled using 6 different stellar evolution models. This plot shows the mass of each
star on the x-axis, and a measurement of the agreement between 6 different models with
that mass on the y-axis. A negative value on the y-axis indicates an over-estimation of
mass. Image Source: Empirical Tests of Pre-Main-Sequence Stellar Evolution Models
with Eclipsing Binaries, Stassun et. al.

One element of the review that is of particular relevance to this research project is the

small number of available pre-main sequence stars with known masses and radii: there were

only 13 suitable candidates for this study in 2014. While there have been more mass and

radius measurements for pre-main sequence stars since the publication of that document,

there is a pressing need for additional stars to be analyzed [7].
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1.3.2 Difficulties in Observing Pre-Main Sequence Stars

Many of the very processes that make pre-main sequence stars so difficult to model also

make them difficult to observe scientifically. Firstly, astronomers know that accretion disks

play a large role in the formation of pre-main sequence stars [4, 25]. These accretion disks

can be difficult to tell apart from magnetic activity on the star’s surface, which can make

painting a clear picture of what is going on inside the star very difficult [26]. Additionally,

the clouds that form stars take a long time to fully collapse or dissipate, which means that

any observation from the Earth has the potential to be obstructed by an unknown quantity of

matter. This can throw off spectroscopic research into the makeup of the outer atmosphere

of pre-main sequence stars, as well as impact photometric luminosity measurements [7, 26].

Finally, stars do not typically form in isolation as I described earlier. Rather, they form in

groups from large fragmenting gas clouds in what are referred to as star forming regions

[4]. The remnants of these clouds can introduce a large amount of uncertainty as to how

much light emitted from those stars is mutated by the gas it has to pass through on its way

to the Earth [26]. All of these factors contribute to a general lack of certainty about the

behavior of pre-main sequence stars as a whole.

1.4 Eclipsing Binaries

In order to develop a detailed understanding of the physical structure and evolution of stars,

we need to know some of their physical characteristics. Using observables like spectra,

pass-band luminosities, and parallax, we can determine extremely useful characteristics

of a star, such as its effective temperature, luminosity, radius, elemental composition, and

distance from Earth [4]. However, in order to get a direct measurement of mass, we need

to observe the star interacting with some other gravitationally bound object [14].

When two or more stars orbit a common center of mass, the whole arrangement is re-

ferred to as a multiple system. While most of the stars in the night sky might appear to

be single stars, at least half are actually one of these systems [4]. Out of this massive se-
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Figure 5: Cartoon representation of a two binary star systems as seen from the Earth. The system on
the left would display visible eclipses, as the blue secondary star passes behind and then
in front of the red primary star along its orbit. The system on the right would not produce
eclipses.

lection of multiple systems, some have orbits that are angled such that component stars

periodically pass in front of each other relative to the Earth, creating visible eclipses like

the systems pictured in the left hand graphic of Figure 5. If such a system has only two

components, this is referred to as an eclipsing binary system. The mathematical simplicity

of the orbits involved, combined with the information that can be obtained by observing the

eclipses make these systems perfect for making absolute mass and radius measurements of

stars [4]. In order to make these measurements, I will define the structure and relevant vari-

ables of the system. Since all gravitational orbits take the shape of an ellipse, this requires

developing a mathematical understanding of ellipses, and what observables astronomers

can draw from their real-world analogs.

Once I present the language used to describe the elliptical orbits of stars in an eclipsing

binary, I will derive the mathematical framework needed to derive the masses and radii of

the component stars from observables that we can collect on Earth. By observing the shape

and depth of the eclipses, we can draw conclusions about the inclinations of the orbit and

the temperatures of the component stars. Then, by examining how the two stars affect each
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other’s orbits, we can use Kepler’s Laws to determine the mass of each component [4].

1.4.1 Fundamental Variables of Elliptical Orbits

In order to describe an ellipse, we need to define two sets of parameters. Firstly, we need

to know the location of the focii of the ellipse (labeled F1 and F2 in Figure 6), and then the

semimajor and semiminor axes (labeled a and b). The focii of an ellipse are the points for

which the perimeter of a triangle connecting any point on the ellipse and two other points

is constant, regardless of what point is chosen on the ellipse. In Figure 6, such a triangle

is shown in purple. Next, we need to know the size of the ellipse, which we describe with

the semimajor and semiminor axes. These distances are measured from the center of the

ellipse, to the top or edge of the ellipse respectively. In the case of a binary system, the

semimajor axis is always equal to the orbital separation between the two component stars.

Figure 6: Diagram of an ellipse. The semimajor and minor axes are labeled as a and b respectively,
and the eccentricity is given as e. The two black dots are the focii of this ellipse. The two
purple lines will, for any point on the ellipse, always sum to the same length.

The semimajor axis allows us to calculate the eccentricity of an ellipse, which is loosely a

measurement of how squished the ellipse is. Specifically, the eccentricity (typically denoted

with e) is a measurement of how far the focii are from the center of the ellipse, as seen in

Figure 6. An ellipse with an eccentricity of 0 is a circle, and an ellipse with an eccentricity

of 1 is a parabolic orbit.
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The last piece to defining an ellipse is describing how tilted it is, or its inclination (de-

noted with i). The systems shown in Figure 5 differ only in inclination: the system on the

left has an inclination close to 90◦, while the system on the right has an inclination of 0◦.

The inclination is measured as the angle between the semiminor axis and the plane of the

sky, and is displayed graphically in Figure 7.

With these parameters to describe an ellipse, we can calculate other useful properties,

like the area of an ellipse, which is given as

A = πab, (2)

where a and b are the semimajor and minor axes, and A is the area.

Figure 7: Side view (left) and three-dimensional visualization (right) of the relationship between
orbital inclination and radial velocity. The circular orbit, shown in gray in the right image,
is inclined by i degrees from the plane of the sky.

1.4.2 Radii and Temperatures From Eclipses

With this structure for understanding ellipses, we can begin to investigate how elliptical

orbits can form eclipsing binary systems, and then describe what we can learn from various

observables. First of all, we can parameterize what binary systems will exhibit eclipses, and

which will not. Whether a binary system produces eclipses that are visible from the Earth

is dependent on three factors: the inclination of the orbit (i, the orbital separation (a), and
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the radii of the primary (R1) and secondary stars (R2). Specifically, if

R1 +R2

a
< cos i, (3)

then the eclipse will be visible from the Earth. In other words, the inclination of the orbit

needs to be sufficiently close to 90◦ to cause the radii of the stars to overlap when observed

from Earth. If the inclination of the orbit is 0◦, then an astronomer looking through a

telescope with perfect resolving power would be able to see the entirety of both stars at all

times, and would never be able to see the stars cross.

Another key factor to consider is the orbital period of the eclipsing system. This is

the amount of time that is elapsed between two identical points in a cyclical orbit, usually

referred to as P . The period is extremely important to making an eclipsing system observ-

able as such: if the period is very long, then astronomers would need to spend a lot of time

observing that star to collect any useful data [4]. While there are an increasing number

of surveys dedicated to finding these long-period variabilities in stars, generally speaking,

the longer the period, the less likely it is for an astronomer to recognize a system as an

eclipsing binary [4].

While directly watching two stars pass in front of each other would make determinations

of the masses and radii of those stars fairly straightforward, this is generally not possi-

ble. Eclipsing systems are generally far enough away that a telescope would need to be

prohibitively large in order to resolve the independent stars, hence the importance of the

eclipses. These events take the form of periodic changes in the brightness of the target star

system.

Measuring the change in brightness of a star over time, also called a light curve, is par-

ticularly important to making determinations of the radii of the stars. Figure 8 shows a

simulated light curve from an eclipsing binary, with the two characteristic dips in bright-

ness. The deeper dip occurs when the dimmer, cooler secondary star passes in front of
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Figure 8: Simulated light curve (made with PHOEBE 2.1) for an eclipsing binary (the same system
as in Figure 11). Note the deep primary eclipse (left) and shallow secondary eclipse
(right). The y-axis is a unit-less measurement of the relative brightness of the star over
time, referred to as relative flux.

the brighter, hotter primary star, and is called the primary eclipse. The secondary eclipse

occurs when the primary star passes in front of the secondary star. The primary eclipse is

deeper than the secondary eclipse because of the difference in radiance of the two stars: the

primary star emits more light per unit of surface area, so when a circle the size of the sec-

ondary star is eclipsed, the amount of light blocked out is greater than the amount of light is

blocked during the secondary eclipses [4]. There is no scientific distinction between which

star in a binary system is designated as the primary or secondary. Rather, by convention,

the brighter star is referred to as the primary star [4].

The eclipses offer astronomers a few pieces of information about the binary system,

including the inclination of the orbit, the ratio of the temperatures of the component stars

[4], and their radii relative to the orbital separation. The estimation of the inclination is the

most straightforward: by carefully examining the shape and depth of eclipses, astronomers

can determine the inclination i of an orbit [4]. If the bottom of the eclipses are flat, that

implies that the inclination is very close to 90◦, as the secondary star must be completely
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eclipsed for some portion of the eclipse. If the eclipses are V-shaped, then the inclination

is likely further away from 90◦.

Figure 9: Diagram of important times during eclipses of a binary star. The picture on the left offers
a visualization of what is happening at each time. Image Source: Introduction to Modern
Astrophysics, Carroll and Ostlie.

The most useful piece of information that can be drawn from eclipses is the radii of both

stars. If we know the radial velocities of the stars, then there is a simple kinematic solu-

tion to determining the radii. By measuring the time between the smaller star disappearing

behind the larger one (times ta and tb in Figure 9), and multiplying that by the relative ve-

locity of the two stars (that is, how fast the stars are moving in parallel to the observational

plane), we get twice the radius of the smaller star. Expressed mathematically,

rs =
1

2
v (tb − ta), (4)

where rs is the radius of the smaller star, v = v1 + v2 is the velocity of the stars relative

to each other, and the times are the ones shown in Figure 9. We can also easily determine

the radius of the larger star by measuring how long the edge of the smaller star is obscured

behind the larger one. This is expressed mathematically as

rl =
1

2
v (tc − ta). (5)
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Using Equations 4 and 5, along with spectra, astronomers can measure the radius of both

stars in an eclipsing binary [4].

The final piece of information that can be determined from the eclipses is the effective

temperature of both stars. Through an analysis of the areas of both stars and the Stefan-

Boltzmann law, it can be determined that

B0 −Bp

B0 −Bs
=

(
Ts
Tp

)4

, (6)

where B0 is the bolometric luminosity out-of-eclipse, and Bp and Bs are the bolometric lu-

minosities of the primary and secondary eclipses respectively (this equation is derived from

first principles in An Introduction to Modern Astrophysics). In other words, this equation

relates the relative depth of the primary and secondary eclipses to the ratio of the effective

temperatures of the two stars. If this information is calculated across several passbands, an

exact temperature determination can be made [14].

These three properties (inclination, radius, and temperature) are the main measurements

that we can take away from just the eclipses. However, with the addition of some other

types of data, we can derive more properties of the stars, like each of their masses.

1.4.3 Masses from Spectra and Radial Velocities

In addition to the eclipses themselves, eclipsing binaries provide information about the

radial velocity of each component star by way of their spectra. Radial velocity refers to the

velocity of an object towards or away from an observer, as seen in Figure 10 [4]. As the

stars move around their orbit, their velocity relative to the Earth (the radial velocity, in this

case) will change. Based off of the diagram in Figure 7, we can see that the radial velocity

for a circular orbit is a projection of the true velocity through the angle i:

v =
vr

sin i
, (7)
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Figure 10: Example of a binary star system with circular orbits. The heavier primary star (red) has
a smaller orbital radius (r1), and a smaller radial velocity (rr1) than the less massive
secondary star.

where v is the total velocity and vr is the radial velocity with respect to the observer [4].

Since the stars are moving in an orbit, the radial velocities will take the form of a ellipse

projected onto one axis over time: a sinusoidal curve, like the example seen in Figure 11.

As the inclination approaches 0◦, we can see that the radial velocities approach 0. How-

ever, if we are observing eclipses, then we are already guaranteed to have an inclination

sufficiently large to give us meaningful radial velocities.

While perhaps there is a visual binary in the sky that moves quickly enough for as-

tronomers to measure velocity by imaging the stars directly, the far more common (and

efficient) method is to use spectra from the stars. By collecting spectra from the binary at

various points throughout its period and determining their Doppler shift, astronomers can

determine the velocity of the stars. The Doppler shift is defined as,

∆λ

λ0
=
vr
c
, (8)

where ∆λ is the difference in wavelength between some spectral feature in a target spec-

trum, λ0 is the wavelength of that spectral feature at rest, c is the speed of light, and vr is
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Figure 11: Simulated radial velocity curves for an eclipsing binary, made with PHOEBE 2.1. The
blue dashed line represents the radial velocity of the lighter secondary star (v2r), which
will move faster than the heavier primary star, whose radial velocity (v1r) is shown in
black.

the radial velocity. This equation can be rearranged to give us the radial velocity:

vr =
∆λ c

λ0
. (9)

In order to determine the Doppler shift of a given spectra, astronomers must have some

reference point (λ0 in Equations 8 and 9) to compare to [4]. These reference points can

come from a variety of sources.

The simplest reference points take the form of specific absorption lines from stellar spec-

tra. Each absorption line is created by atomic energy transitions for specific elements in

specific energy levels. For example, hydrogen emits strongly at 6562 Å, forming a spec-

tral line referred to as the Hα line. These absorption lines can be created in a laboratory

environment, which allows researchers to get very precise measurements for each line’s

wavelength. By comparing the wavelength that a specific stellar spectral feature, such as

the Hα line, to what is measured in a lab, a radial velocity can be calculated [3]. How-
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ever, this method fails to utilize the entire range and resolution of spectra that astronomers

can collect. A more comprehensive approach is to compare spectra of a target to an entire

theoretical spectrum for a star of that temperature. Using this method, every piece of the

spectrum contributes to the signal-to-noise ratio, instead of just the region around specific

spectral lines.

Notably, this method relies on the thoroughness and accuracy of the theoretical spectrum

being used. Instead, astronomers sometimes use so-called spectral standards. These are

stars of various spectral types that have had their radial velocities carefully determined

through a theoretical comparison. By using a convolution function to compare the spectra

of both a target and a standard, researchers can determine how shifted a new spectrum

is. The upside of using a real-life star for comparison is that there won’t be any incorrect

theoretical assumptions, which increases the signal that can be gained during convolution.

However, the downside is that there is now noise from both the new target’s spectrum and

the standard’s, which can negatively impact the signal-to-noise ratio. It is up to a researcher

to determine which of these methods is ideal for a given situation.

Once the radial velocities of a binary system have been measured, it is a compara-

tively simple task to determine the masses of the component stars using Kepler’s Laws

[4]. Specifically, Kepler’s Third Law is an invaluable tool for astronomers to determine the

masses of celestial objects. Stated mathematically, the third law states

P 2 =
4π2a3

G(m1 +m2)
, (10)

where P is the orbital period, a is the semimajor axis, m1 and m2 are the masses of the

orbiting objects, and G is Newton’s Gravitation Constants. This equation provides two

crucial insights: there is a directly calculable relationship between the orbital period and the

semimajor axis, and perhaps more importantly, there is an inverse relationship between the

square of the orbital period and the total mass of the system. This mathematical relationship
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is critical to the analysis of eclipsing binaries [14, 4].

In order to derive Kepler’s Third Law, we must start with his first, which states that all

bound orbits follow the path of an ellipse [27]. Through a Lagrangian analysis of two

objects in bound orbits subject only to a gravitational potential, it is possible for one to

derive the angular momentum, L, of such a system:

L =

(
m1m2

m1 +m2

)√
Ga(1− e2)(m1 +m2), (11)

where G is Newton’s Gravity Constant, a is the sum of the semimajor axes of the two

masses, and e is the eccentricity of the orbit, as derived in John Taylor’s Classical Mechan-

ics [27].

Consider a system with two point masses subject to no external forces. Both masses will

experience a gravitational attraction towards each other in the form a central force, or one

that always points towards the center of mass of the system. The center of mass can be

thought of the weighted average of the positions of all the masses in a system. In the case

of several point masses, it can be defined as

O =

∑
imiri∑
imi

, (12)

where O is the location of the center of mass relative to an arbitrary origin, ri is the location

of the ith mass to the origin, andmi is the mass of the ith mass. In the case of a binary system,

this takes the form

Obinary =
m1r1 +m2r2
m1 +m2

, (13)

where, as indicated before, m1 refers to the mass of the primary star, m2 refers to the mass

of the secondary star, and r1 and r2 are their locations. We can define the vector r to be

r1− r2, or the vector that connects the two masses. We can now define the location of both
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masses in terms of the location of the center of mass (O), r, and the masses of the particle:

r1 = O +
m2

m1 +m2

r (14)

and

r2 = O− m1

m1 +m2

r. (15)

We can see that, because both angular momentum and energy are conserved, there is

an inertial reference frame in which the center of mass does not move. We know this be-

cause if there wasn’t such a frame, then the center of mass would need to be accelerating.

This would in turn mean that either both masses were accelerating in some direction away

from the center of mass (which in turn would mean this is not a system with only a cen-

tral force), or one of the masses was applying an unbalanced force to the center of mass,

which would violate Newton’s Third Law of Motion. This inertial frame is like any other:

angular momentum and total energy are both conserved. This makes the center of mass an

obvious choice for the origin of a new reference frame. When viewed in this frame, one

can demonstrate that both masses will orbit around the center of mass in an ellipse, which

is demonstrated in Kepler’s First Law (this derivation is done most simply by solving the

Euler-Lagrange Equations of Motion, which is shown in full in John R. Taylor’s Classical

Mechanics [27]).

With our origin selected to be the center of mass, we can begin to work towards Kepler’s

Third Law. Consider the simple orbit shown in Figure 12, which shows the orbit of a point

mass around a center of mass, O. We can define r, or OP , to be the distance of the mass

from the origin, and v to be the mass’s velocity. If r starts at point P and moves to Q, then

it will sweep over the shaded area labeled dA. We can approximate the arc between P and

Q to be the straight path

PQ = dr = v · dt, (16)

since over the infinitesimal time t, this is the case. Recalling that the area, A, of a triangle
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Figure 12: Diagram of the orbit of a point mass around the origin O. Image adapted from Figure
3.7 in Classical Mechanics by John Taylor [27].

defined by adjacent vectors r and b is

A =
1

2
|a× b| = 1

2
|OP × PQ|, (17)

we can see that
dA

dt
=

1

2
|r× vdt|. (18)

We know that the momentum of our mass is p = m · v, which we can plug into the above

to arrive at
dA

dt
=

1

2m
|r× p|. (19)

Next, we can see that we have r× p, which is the definition of the angular momentum, l of

our particle. This allows us to make our equation into

dA

dt
=
|l|
2m

=
L

2m
,

(20)

where L is the magnitude of the angular momentum. This tells us that the area swept over
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by r over time t (dA
dt

) is equal to a constant, since L is, by the conservation of angular

momentum, by definition constant. This is Kepler’s Second Law, which states that as an

object orbits around a fixed origin, it sweeps over equal areas in equal times. We can

generalize this equation to two masses orbiting about a fixed center of mass by replacing

the mass of our particle, m, with the reduced mass of the system,

µ =
m1m2

m1 +m2

, (21)

where m1 and m2 are the masses of the two point masses. The reduced mass comes from

using Equations 14 and 15 to define the kinetic energy, T , of the system:

T =
1

2
m1

(
dr1
dt

)2

+
1

2
m2

(
dr2
dt

)2

=
1

2

[
m1

(
m2

m1 +m2

dr
dt

)2

+m2

(
− m1

m1 +m2

dr
dt

)2
]

=
1

2

(
m1m2

m1 +m2

)
dr
dt

2

=
1

2
µ
dr
dt

2

.

(22)

Here, we can see that in a frame where the center of mass is stationary, the total kinetic

energy of the system can be phrased as the kinetic of a fictitious particle with location r

and mass µ. This is important, because it allows us to treat the two stars and their orbits as

one single particle with one orbit, greatly simplifying the math involved.

Using the reduced mass gives us Kepler’s Second Law, as it applies to binary systems,

dA

dt
=

L

2µ
. (23)

In order to derive Kepler’s Third law, we need to first integrate over an entire period of

one our mass’s orbits, in order to get the total area within the ellipse. Mathematically, this

30



becomes

A =

∫ P

0

L

2µ
dt

=
L

2µ
P.

(24)

Next, we can substitute in the equation for the area of an ellipse from Equation 2 to get

πab =
L

2µ
P

P =
2π a b µ

L
.

(25)

P 2 =
4π2 a2 b2 µ2

L2
(26)

We know the total angular momentum of the system from Equation 11, which we can

substitute into Equation 26 to give us our result, Equation 10:

P 2 =
4π2a3

G(m1 +m2)
. (27)

In addition to Kepler’s laws, there are more useful mathematical relations that fall out of

the equations of motion for orbits that are useful to astronomers. Let us consider a binary

orbit in which both point masses have circular orbits (not an unreasonable assumption for

binary systems1). In this case, the velocity of each mass is constant in magnitude over time.

Specifically, the velocities can be expressed as

v1 =
2πr1
P

(28)

and

v2 =
2πr2
P

, (29)

1All stars in binary orbits exert small forces on each other, referred to as tidal forces. Over a relatively short
time, these forces circularize the orbits, and cause the stars to become tidally locked, where the same side
of each star always face each other, much like the Earth and the Moon [4].

31



where r1 and r2 are the radii of the circular orbits, and P is the orbital period. Note that,

although the radii can differ, the period is always the same for both orbits. We can rearrange

these expressions to give us an expression for the radius of each orbit in terms of orbital

period and velocity:

r1 =
v1P

2π
(30)

and

r2 =
v2P

2π
. (31)

Next, we can observe that, given our definition of the center of mass,

m1

m2

=
r2
r1
, (32)

which is fully derived in Carroll and Ostlie [4]. We can plug in our findings from Equations

30 and 31 to get the following:
m1

m2

=
v2

v1

. (33)

This relates ratio of the masses of each object in the binary system to the inverse ratio of

their velocities. If we instead want to solve for the radial velocities of an inclined orbit with

respect to an observer on Earth, we need only add in a sin i term (as seen in the previous

section), which gets cancelled out, giving us

m1

m2

=
vr2 sin i

vr1 sin i
=

vr2

vr1

, (34)

where vr1 and vr2 are the radial velocities of the primary and secondary stars respectively.

In other words, the ratio of the radial velocities is constant, and is always inversely propor-

tional to the mass ratio of the system at any time and location in the orbit.

In order to determine masses (as opposed to the mass ratio) from the radial velocities

and period, a few more pieces are needed. If we define a as the sum of the semi-major axes
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of both orbits (i.e. a = r1 + r2), we see that

a = r1 + r2 =
v1P

2π
+

v2P

2π
, (35)

from Equations 30 and 31. We can plug this into Equation 10 and solve for the sum of the

masses, which gives us

m1 +m2 =
P

2 π G

(
(v1r + v2r)

sin i

)3

, (36)

where v1r and v2r are the radial velocities, and i is the inclination. This equation tells us

that, if we know the radial velocities of both stars and the inclination, we can calculate

exactly the total mass of the binary system. By combining this with Equation 33, we can

exactly calculate the masses of both stars. This result is precisely why eclipsing binaries

(as opposed to simple visual binaries) are so important to astronomy: the inclination can

be measured along with the radial velocity, giving exact mass measurements.

However, it is not always guaranteed that both radial velocities can be determined, as is

the case with the subject of this report, MML 48. This can occur because the secondary

star is dim enough that its spectra is overwhelmed by the noise from the primary’s spectra.

In the case where only one radial velocity is measurable, we can replace the radial velocity

of one of the stars with the ratio of the masses, giving us

m1 +m2 =
P

2π G

(
v1r
sin i

)3(
1 +

m1

m2

)3

, (37)

which can be rewritten as the so called mass-function:

m3
2 sin3 i

(m1 +m2)2
=
Pv31r
2 π G

. (38)

Note that the right side of the equation contains only easily measured values (the radial
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velocity of one star and the period). While this equation cannot give definite values of

mass (as we cannot utilize Equation 33), it does provide limits on the values for the masses

and inclination that can be used to conduct statistical analyses.

1.5 Modeling of Eclipsing Binaries with PHOEBE 2.1

While determining the mass and radii of component stars in eclipsing binaries is extremely

useful, modern computing allows astronomers to determine far more properties of stars

through the use of advanced modeling [4]. Using a model-driven approach, researchers

construct a simulated model of a system and iterate it to match observed data, rather than try

to conduct measurements directly on data. There are several different programs that enable

the creation of these simulated systems, but this project focused on the use of PHOEBE 2.1,

a python library that enables its users to generate artificial light curves and radial velocities

for arbitrary eclipsing binary systems.

Fundamentally, all versions of PHOEBE are libraries of code that solve Kepler’s laws for

an arbitrary system [24]. PHOEBE adds to this simple functionality by computing theo-

retical observables like radial velocities and light curves that an astronomer could measure

from the Earth. These theoretical observables also include distortions from Kepler’s laws

caused by a large number of background factors. The benefit of using PHOEBE is that it

handles both the orbital mechanics, and the minutia of the observables, all in one place.

1.5.1 Background on PHOEBE

PHOEBE 2.1 is the second generation of the PHOEBE modeling program. PHOEBE 1.0,

now referred to as the legacy version of PHOEBE, was published in 2005 as an extension

of the existing Wilson and Devinney eclipsing binary modeling program [24]. In 2016, to

meet the demands for high precision modeling, PHOEBE 2.1 was released, resting on a

rewrite of the Wilson-Devinney code-base. Specifically, the level of detail available from

the numerous space telescopes and large telescopes on the ground were detecting levels of
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detail that revealed phenomena that had previously been hidden in noise, such as surface

reflectively, gravity darkening, and limb darkening [23].

Modeling with PHOEBE 2.1 begins with a default eclipsing binary, which when com-

puted, simulates a binary system with two solar mass stars orbiting each other. The user

can input new stellar parameters, ranging from obvious parameters such as mass ratio, radii,

orbital period, or effective temperature, to more obscured parameters such as atmosphere

models, limb darkening functions, and surface reflectively. Once a desired set of stellar

parameters has been selected, PHOEBE 2.1 can generate simulated light curves, radial ve-

locities, and line profiles of the system as it would be seen from Earth, in addition to other

useful visualizations of the system [23]. Researchers can compare the model’s output with

their own data, and then use the residuals to tweak the model until they agree. The method

by which a model is iterated is entirely up the the user: PHOEBE 2.1 does not have a built

in optimizer.

1.5.2 Effect of Different Parameters on Observables

PHOEBE 2.1, while primarily designed for modeling specific eclipsing binary systems,

can also be used to generate models of systems for visualization purposes. In this section,

I will demonstrate the impacts of certain stellar parameters on the light curves that would

be collected from such a system.

First, we can examine the impact of various inclinations on the light curves that one

might observe. In Section As shown in Figure 13, as the inclination gets lower, there are

two key effects: the depth of the eclipse goes down (which makes sense: less of the smaller

star is blocked out by the larger one), and the shape of the eclipses gets less flat and more

U shaped. Additionally, the relative depth of the eclipses is independent of the inclination,

and the width of the eclipses does not vary significantly.

Next, we can examine the impact of the ratio of radii on the light curves. Figure 14

shows the impact of the secondary star being made smaller. As we can see, both the width
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Figure 13: Simulated light curves for an eclipsing binary system with varying inclinations. The
simulated system has a primary star that is twice as large (in both mass and radius) as the
secondary, and the orbits are both circular.

and depth of the eclipses changes noticeably with radius. However, the general shape (e.g.

the flatness of the transit) remains roughly the same, as this is primarily determined by the

inclination.

There are dozens of parameters beyond eccentricity and radii that impact the shape of

the light and radial velocity curves that PHOEBE 2.1 can produce. For example, PHOEBE

incorporates the masses, effective temperatures, eccentricity, and many other properties

into its model. There are parameters beyond the physical properties of the stars that also

need to be set. Below, I provide a list and brief summary of the parameters that have

noticeable impacts on the outcome of simulations:

1. Limb Darkening Function: This parameter determines how PHOEBE 2.1 calculates

the radiance of each section of a star. Since light from the edge of the star has to pass
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Figure 14: Simulated light curves for an eclipsing binary system with varying radii. This system has
the same parameters as in Figure 13, except with varying radii and an inclination of 90◦.

through more stellar atmosphere to reach the Earth, the edges appear darker. This

effect can be seen in Figure 15.

2. Surface Reflectively: This parameters tells PHOEBE 2.1 how to simulate the light

and heat transfer between the two stars in the binary. As light radiates from one star,

some of it will hit the other and cause some combination of localized heating and

reflection. This parameter controls how much incoming light is reflected.

3. Stellar Atmosphere Models: The light that is emitted from a star has to pass through

that star’s atmosphere. The exact way that light interacts with different layers of the

atmosphere is not known, but several different models provide ways to calculate how

it might happen. PHOEBE 2.1 supports several different pre-computed stellar atmo-

sphere tables, which can impact how the simulated light curves appear. PHOEBE
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2.1 can also treat stars as an ideal blackbody radiator instead of using an atmosphere

model.

4. Passbands: When PHOEBE 2.1 computes light curves, it defaults to calculating bolo-

metric flux, or the brightness in all wavelengths. However, astronomers collect data

in specific wavelength ranges, which PHOEBE needs to replicate. PHOEBE sup-

ports several dozen different passbands, including the generic Johnson/Cousin’s fil-

ters, along with several different filters from space telescopes.

While this list of parameters is by no means exhaustive, it does highlight the range of

different features that PHOEBE 2.1 can simulate.

Figure 15: Image of the sun. Note that the brightness decreases around the edge. This effect is the
result of limb darkening. Image Source: NASA Earth Observatory.

1.6 Background on MML 48

MML 48, the topic of this research paper, is a southern-sky object in the Upper-Centaurus

Lupus subgroup of the approximately 16± 2 Myr old Scorpius-Centaurus OB association

(RA 14:41:35.0, DEC -47:00:28.7), as seen in Figure 18 [17, 29]. MML 48’s young age

38



was initially determined through observations of its X-ray emissions, with confirmation

coming from an analysis of the quantity of lithium in its atmosphere [10].

MML 48’s eclipsing nature was determined through observations from the All Sky Au-

tomated Survey (ASAS) which are presented in Figures 16 and 17. MML 48 was then

observed as part of the SuperWASP survey (a wide-field photometric variability survey

aiming to detect transiting exoplanets around main-sequence stars). SuperWASP cam-

eras image bright stars (with magnitudes of around 9-13) using a broad V and R-band

filter, with approximately 1% accuracy. MML 48 was observed with the WASP-South tele-

scope and instrumentation [21] in the spring observing season from 2006-2008 and again

from 2011-2014 [10]. An analysis of the SuperWASP data determined the Heliocentric

Julian Date for a primary eclipse to be 2454945.0394± 1× 10−4, with an orbital period of

2.0171078± 2× 10−7 days.

Filter Magnitude Error

B 10.79 0.04
V 9.986 0.067
I 8.959 0.041
G 9.7787 0.0020
J 8.465 0.024
H 8.005 0.040
K 7.901 0.020

Table 1: Magnitudes for MML 48 in various filters. The data collected for this project
utilized the B, V, I, and R (not listed above) filters. (Sources: B [12], VI [16], G
[9], JHK [6]).

MML 48 has been measured to be 373± 4 ly away from Earth via GAIA parallax mea-

surements [19]. Fluxes for MML 48 were collected in 2012, are are presented in Table

1.

The data collected above demonstrates why MML 48 presents an enticing observational

target for researchers. As an eclipsing binary, it provides researchers a direct way of cal-

culating the masses and radii of each component star, and evidence from the star’s makeup
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Figure 16: Light curve collected by ASAS-3. This figure was generated directly from the ASAS
web portal (http://www.astrouw.edu.pl/asas/?page=aasc). The eclipsing nature of MML
48 is not readily apparent, but once phase folded (as shown in Figure 17), it is much
clearer. Phase-folding refers to the process of plotting data from an eclipsing binary
with the orbital phase on the x-axis instead of the absolute date, which allows repeated
behaviors to be seen.

and locality indicate that the system is a young, pre-main sequence star. This combination

of features is rare amongst observed stars: as of 2019, only 14 other pre-main sequence

eclipsing binaries have been fully analyzed. The list of these binaries is given in Chew et.

al and the references therein [10]. Additionally, MML 48’s period is close to exactly two

days, so eclipses can be readily observed on consecutive nights [16]. All of these factors

explain why we chose to observe MML 48.

Figure 17: Phase folded light curve generated from the raw ASAS data. Outlying points (magnitude
greater than 10.3 and less than 9.8) were not plotted to make the primary eclipse (phase
0.65) visible. The data was not well enough resolved to observe the secondary eclipses.
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Figure 18: Location of MML 48 in the Upper-Centaurus Lupus Star Forming Region. MML 48 is
the partially obscured F/G/K/M Pre-MS star in the center of the black circle. The axes
are given in galactic coordinates. Figure adapted from Pecaut and Mamajek, 2016 [20].

2 Data Collection

While the observations confirming the age and eclipsing properties of MML 48 are interest-

ing, they do not provide the most useful pieces of information that an eclipsing binary can

provide: the masses, radii, and temperatures of the component stars. As explained in the

introduction, high resolution spectrography is required to measure the radial velocities that

yield mass, and multi-band photometry is required to measure the effective temperature

and radius of the stars. The ASAS and SuperWASP photometry were both insufficiently

resolved to observe the secondary eclipses, and both were collected in only one filter (as is

typical in all-sky surveys).

This lack of sufficient data was the driving purpose behind my observing run in March.

In order to collect the time-series photometry, I utilized a 0.9 meter telescope at the Cerro-

Tololo Inter-American Observatory (CTIO) 50 miles east of La Serena, Chile. This tele-

scope suited my needs very well. Firstly, MML 48 is in the southern sky, so I needed a
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telescope in the southern hemisphere. Secondly, since MML 48 is a bright target, I did not

need to use an extremely large telescope in order to make meaningful observations. Next,

this telescope has a fairly wide field of view (13’x13’, or roughly 46% of the full moon),

which meant that my science images would have a large number of bright reference stars

[1]. Thirdly, the 0.9 meter telescope is cryogenically cooled, which enables high precision

measurements (this is explained further in the following section). Finally, the dates were

selected to allow for several consecutive nights of observable eclipses. By a stroke of luck,

those nights also overlapped with spring break at HWS, which facilitated my ability to

collect my data.

The only downside of using the 0.9m CTIO telescope was the age of the CCD. The

telescope is primarily used in a long-term sky survey, and so its detector has not been

updated since 2000 [1]. While the quality of the images is not impacted by this, the readout

time for the detector (which is the bulk of the time between each exposure) was around 30

seconds. While this might not seem that bad, over the course of the night, this added up

to more than a full hour of readout time. However, this downside was easily outweighed

by the upsides. For these reasons, we applied for and were awarded observing time at this

telescope for the observation of MML 48.

2.1 Images and Calibrations Needed for Astronomical

Photometry

In order to make meaningful measurements from images taken with a telescope and de-

tector, we needed a few types of images: the images of the target, and images to calibrate

those scientific images. All images from a CCD detector (such as the one we used) take

the form of a 2D array, where each value stores a number that is directly correlated to the

number of photons that struck the detector in that pixel during an exposure.

The main source of data is from science images, or the images of the target being studied.

An example science image can be seen in the right picture in Figure 19. The number of
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Figure 19: Science image before (left) and after (right) flat-fielding. The image on the left has
noticeable dark spots from dust in the telescope/detector. After the flat field image is
used to calibrate the image, the dark spots disappear. The gradient present in the right
image is an artifact of the scaling of the image: the lighter-left side is only around 20
counts brighter than the right side, which is insignificant compared to the roughly 30,000
counts of our target.

counts in the region covered by a target can be compared to other stars in the region to give

some quantitative measurement of the brightness of the target, which is the primary goal of

time series photometry. The other images are all taken in order to calibrate these science

images. Specifically, there are three main sources of irregularity that need to be accounted

for [3].

Firstly, the CCD used to collect each image is able pick up its own latent heat as noise

[3]. This means that every pixel in an image will have measured an amount of random

noise correlated to how long the exposure time was. This noise can be accounted for in two

ways. Smaller telescopes will typically collect dark images, which are exposures of the

same length as the science images, but with the aperture completely closed. This causes

each pixel to measure only noise for however long it was exposed for in the science image.

By subtracting the average of several dark images, the latent heat noise can be effectively

mitigated [3]. The other method for handling the heat of the detector is simply to cool the

detector enough that the latent heat does not induce noise in the detector [3]. Since the 0.9
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meter CTIO telescope is cooled with LN2, I did not need to collect dark images.

Secondly, every CCD will artificially inflate the number of counts in each pixel as the

image reads out, which is done purposefully to prevent any pixel from ever measuring a

negative value [3]. This readout error can be mitigated with a bias image. These images are

instantaneous exposures, so each pixel value will measure only the noise from the readout

process [3]. A median of several bias images need to be subtracted from every other image

collected with the detector in order to fully account for the readout noise.

The final source of irregularities stems from dust and debris on the mirrors and detector,

and physical defects in the silicon wafer that comprise the CCD [3]. Any particle will

reduce the brightness of the image at that location, which will obviously interfere with

measurements of a star’s brightness. Similarly, any defect in the silicon can selectively

increase or decrease the brightness of any given pixel [3]. These irregularities are accounted

for with flat field images. These images are exposures taken of a uniformly bright field,

such as the sky just after sunset, or a uniform light source. Since in theory any image of

such a source should be completely uniform, and deviation from the norm can be identified

[3]. By subtracting a bias image from a flat field, and then normalizing each flat field, a

map of the amount of error in each pixel can be produced. By dividing each science image

by this normalized flat field, those defects will disappear [3]. This can be seen clearly in

Figure 19.

Collecting these images (science, bias, and flat) occupied the bulk of my time while

observing.

2.2 Observation Plan

The first step in collecting data is coming up with a plan. Specifically, leading up to the

observing run at the CTIO 0.9m telescope in march, we created a document that com-

piled all of the information an observer might need in order to effectively observe into one

place. This includes basic information such as finding charts, RA/DEC, and the apparent
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magnitudes of the target in various bands, along with a list of nearby reference stars. Ad-

ditionally, observatory-specific information is important to include, such as astronomical

twilight times, target rise/set time, angular lunar separation, and other location/time specific

parameters.

The table of important times is presented in Table 2. The first column gives the date at the

beginning of each night observing (that is, the date of the preceding midnight). The second

column gives the Local Mean Sidereal Time, which is one measurement of time used by

astronomers that is based on the location of stars in the sky. The other commonly used

time is Universal Coordinated Time (UTC, also called Greenwich Mean Time), which is

close to the mean solar time at 0◦ longitude. The third column has the time of each sunset.

This time is important, because the time between the sun setting and the sky becoming

fully dark is the optimal time to collect flat field images. The next two columns display

the evening and morning twilight, respectively. For this table, I used astronomical twilight,

which refers to when the sun is 18◦ below the horizon, which is the time at which the sun no

longer illuminates the sky [3]. Finally, the last column displays the time of the deepest part

of the eclipse for each night. The secondary eclipses occurred on the nights with shaded

rows.

Date LMST at Midnight Sunset E. Twilight M. Twilight Eclipse Time

2019-03-16 06:49:55 19:56:41 21:20:46 06:23:44 01:30:40
2019-03-17 06:53:56 19:55:29 21:19:29 06:24:28 01:42:59
2019-03-18 06:57:48 19:54:17 21:18:11 06:25:11 01:55:18
2019-03-19 07:01:45 19:53:04 21:16:54 06:25:53 02:07:37
2019-03-20 07:05:41 19:51:51 21:15:37 06:26:35 02:19:56
2019-03-21 07:09:38 19:50:38 21:14:20 06:27:16 02:32:15
2019-03-22 07:13:34 19:49:25 21:13:03 06:27:56 02:44:34

Table 2: Table from the observing plan. All of the times are given in Chilean Local Time
on March 11th (UTC - 4).

Next, the plan included altitude plots of MML 48. These are graphs that display the

altitude of a target over time, and they provide an easy way to tell at a glace when a target
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is observable, or susceptible to lunar interference. There is one altitude plot for each night

of observing, since each night was slightly different.

Figure 20: Sample altitude plot from the observation plan. The altitude of MML 48 is shown with
the solid line, and the Moon’s altitude is shown with the dotted line. Altitudes are given
in degrees above the horizon. Improvements to this plot would include marking eclipse
ingress/egress times, and labeling the minimum lunar angular separation.

The next section of the plan was intended to be dedicated to outlining the day-to-day

plan for the observing run. Specifically, it was supposed to lay out a timeline for taking

bias images and dome flats in the afternoon, setting up the telescope for observing in the

evening, collecting sky flats, and then a list of science images to be obtained. However,

since I hadn’t been on an observing trip like this, I didn’t know what to put in those sections.

A more careful look at what should have been there is presented in the following section.

The final pieces of the plan I made was information about MML 48 itself: its right ascen-

sion and declination (the coordinates used to locate stars in the night sky by astronomers),

fluxes in various filters, finding charts, and nearby photometric standards. This section en-

abled us to have ready access to the basic information we would need once we arrived at

the telescope.

The plan was partially generated by a python script, and partially hand written. I wrote

a script using the Python package astroplan, which provides tools for planning observing
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runs. My script automatically generated the table of times and altitude plots, and inserted

them into a formatted LaTeX document, with empty headers for the sections to be filled in

manually.

2.3 Review of March CTIO Observation Plan

This observing plan, while sufficient to get by, needs a lot of improvements. Notably,

the times presented in Table 2 were not in UTC, the altitude plots were missing some

useful information such as the angular separation between MML 48 and the moon, and the

sections that actually constituted a daily plan were essentially empty.

First and foremost, the times presented in the graphs and tables were presented in local

time. While this seems like a convenient feature, it raised a few issues. Firstly, local time is

not particularly useful to locating potential targets in the sky. During our observing run, we

had a few hours before our target rose to observe various targets, either for scientific or aes-

thetic value. We did not plan out what targets we would observe before we arrived at CTIO,

and finding targets based off of local time involved more scratch-work than was ideal, and

having information about the target in UTC would have enabled smoother determination

of new targets. Furthermore, Daylight Savings Time occurred between the creation of the

plan and the observing run. This meant that all of the local times were off by one hour. If

those times were initially presented in UTC time, then no effort would have been needed

to convert the times back and forth every night. Even though the conversion involving only

offsetting by an hour, the whole point of the plan is to remove as much thinking from the

process as possible. More to the point, basically every scientific observatory has a clock

display UTC time, so presenting times in the plan in UTC would be easily deciphered by

the reader anyway.

Next, the table in the plan needed more information. Based off of conditions at the

observatory, astronomical twilight was probably too extreme of a cutoff for observations:

because our target was bright, nautical twilight would have been a perfectly acceptable time
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to begin and end observing. Information about the eclipse ingress and egress times were

both critical to observing and missing from the table, along with the target’s rise and set

times. This information is important to have with respect to selecting other targets for the

night, as well as timing calibrations.

In addition to the table being incomplete, the graphs had a few flaws. Firstly, while

knowing the altitude of the moon is helpful, adding information about the minimum an-

gular separation, as well as the moon’s phase, to the graphs would have been helpful for

determining when that might become a problem. Secondly, the graphs should have had

vertical lines with specific times labeled, such as target rise/set, eclipse ingress/egress, and

moon-rise/set times. Having these values be graphically available would have been help-

ful. Thirdly, the graphs should simply have been larger, to enable easier and more accurate

reading.

The set-up and calibrations section was also completely devoid of useful information.

Retrospectively, it is easy to see what information would have been useful, but at the time

of writing, I did not know where to find the information needed to fill in this section.

This includes specifically what types of calibrations will be taken and at what time, rough

estimates about exposure times in different filters, and a plan for what to do with the time

before target rise.

Were this plan remade, I would make some fundamental changes. Firstly, I would split

it into one page per night. Each page would have the relevant information for that night

only: the times presented in the table (this time in UTC), along with eclipse ingress and

egress times, the altitude plots, and any relevant calibration information. Even if there were

elements repeated on each page, having all of the information for a night in one spot would

have been helpful.
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2.4 Overview of Data Collected

The observing run at the 0.9m CTIO telescope in March lasted for 8 nights. However, due

to technical problems, data from the first two nights were discarded, which resulted in only

collecting six nights of data. This produced a dataset of 3 primary eclipses, and 3 secondary

eclipses. This section outlines the data and calibrations that were collected on these nights.

A summary of the number of images of each type is presented in Table 4.

In addition to the time series photometry that we collected at the 0.9m CTIO telescope,

simultaneous spectra was collected at the adjacent 1.5m CTIO telescope (connected to the

CHIRON spectrograph) by Fred Walter. The spectra produced by CHIRON cover a range

of 410-870nm, and take the form of several orders: small sections of whole spectra that are

stacked vertically on a CCD detector by a grating in the instrument [28]. The spectra used

are presented in Table 3, along with the results of the radial velocity extraction explained in

Section 3.3. The combination of the photometry and spectra collected of MML 48 formed

the data that was processed as part of this project.

Filename Date (HJD) Phase Radial Velocity (km/s) Error (km/s)

mml48 190315.1154.fits 2458558.71818 0.19 11.699 0.403
mml48 190316.1184.fits 2458559.72500 0.68 1.784 0.290
mml48 190317.1150.fits 2458560.70492 0.17 8.322 0.433
mml48 190317.1188.fits 2458560.91069 0.27 26.879 0.267
mml48 190318.1157.fits 2458561.67556 0.65 12.461 0.422
mml48 190318.1190.fits 2458561.88088 0.75 -8.636 0.346
mml48 190319.1150.fits 2458562.65931 0.14 2.734 0.500
mml48 190319.1185.fits 2458562.87245 0.24 22.9002 0.4504
mml48 190320.1168.fits 2458563.72811 0.67 6.241 0.375
mml48 190320.1196.fits 2458563.89865 0.75 -8.893 0.341
mml48 190527.1137.fits 2458631.68671 0.36 37.731 0.398

Table 3: A list of the spectral files used in this project. All spectra were collected at the
1.5m CTIO telescope by Fred Walters. The data is available from Walter’s website:
http://www.astro.sunysb.edu/fwalter/.
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2.4.1 Calibration Images

Between 11 and 30 bias images were collected the afternoon before each night of observing.

Additionally, dome flat field images were collected most days before sunset in all four

filters that were used for observations. After sunset, sky flats were collected, again in all

four filters used for observations. As is typical for sky flats, their exposure length varied

not only with filter, but also with time, since the sky was gradually darkening as the flats

were collected.

Generally, sky flats do a better job of calibrating images than dome flats do [3]. How-

ever, dome flats are helpful because they can be collected regardless of cloud cover. Since

observations of bright targets can be made through thin cloud cover but flat fields cannot,

it is good to have a weather-independent backup calibration image should it be needed.

Night Flat Fields (Dome) Flat Fields (Sky) Science Images Bias Images
B V R I B V R I B V R I

1 0 0 0 0 0 0 0 0 0 0 0 0 12
2 11 11 11 11 5 5 4 0 0 0 0 0 23
3 0 0 0 0 6 5 5 5 0 0 151 150 29
4 11 11 11 11 2 0 3 5 66 66 66 65 15
5 11 11 11 11 3 5 3 3 0 0 146 146 26
6 11 11 11 11 5 4 3 4 70 70 70 70 15
7 11 11 11 11 4 4 4 6 0 0 89 88 20
8 11 11 11 11 4 4 4 4 68 67 67 67 15

Total: 66 66 66 66 29 27 26 27 204 203 589 586 155

Table 4: Number of images (flat field, bias, or science) collected in each filter each night.
Anywhere there is a 0, there was either no data collected, or the data were dis-
carded.

2.4.2 Science Images

As mention in the Introduction, observing the eclipses of an eclipsing binary in multiple

pass bands is essential to making a direct measurement of the stellar properties of a star. In

order to satisfy this need, we collected new multi-band photometry of MML 48 at CTIO
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in March of 2019. We used the .9 meter SMARTS Consortium telescope to make our

observations, using the Johnson B and V and Cousins R and I filters. Since the period of

MML 48 is close exactly 2 days, each night offered us an opportunity to observe a primary

or secondary eclipse. Since the secondary star of MML 48 is so much dimmer than the

primary, the secondary eclipses in the B and V bands are extremely faint and well within

the error of each measurement, so we decided not to collect any data for the secondary

eclipses in these passbands in order to increase the cadence in the R and I bands.

For the primary eclipses, we used B, V, R, and I filters, with exposure times of 40s,

10s, 5s, and 5s respectively. This yielded approximately 250 images per night. Because

observations of secondary eclipses did not use two filters, which both had longer exposure

times, we collected roughly 300 images on these nights.

3 Data Processing and Analysis

Once the data was collected, we could move onto converting the raw data collected into

usable numerical information. In order to carry out the calibration and light curve extrac-

tions, I used a program called AstroImageJ. This is a tool created to customize the GUI

based ImageJ image processing program for astronomical purposes [5]. Although I used

it only to apply calibrations and generate light curves, it has a wide variety of other useful

tools for astronomical photometry.

3.1 Calibration of Science Images

Before any data can be extracted from the science images, they all needed to be calibrated

in the way described in Section 2.1. This involved applying the bias and flat field images.

Since bias images are not dependant on the filter being used in the telescope, all of

these images could be combined together to form one master bias file. This was done by

averaging each pixel in each bias image together. An average is ideal for this application
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because the bias image measures random noise, and we want to subtract a value that best

represents that noise, which takes the form of the mean of many different measurements

[3]. This master bias file could then be used to calibrate both the flat fields, and the science

images directly.

The flat field images required much more care than the bias images. There were two

complicating elements: firstly, there are different flats for each filter, and secondly, there

were two types of flat to choose from (dome and sky). The multiple-filters aspect arises

because there can be dust, debris, and defects in the filter lens itself. Handling this required

four different master flats to be generated, one for each filter, as opposed to the one filter-

independent master bias.

The choice between the dome and sky flats was more complicated. As described in Table

4, I collected both dome flats and sky flats during my observing run. I elected to use the

sky flats for this project by calibrating a small selection of science images in each filter, and

determining that the sky flats did a better job of minimizing the amount of deviation in the

relative flux of MML 48 when it was not eclipsing. This finding confirmed the conventional

choice to use sky flats over dome flats when possible [3].

3.2 Light Curve Extraction

Taking hundreds of calibrated science images does not give us the quantitative measure-

ment of brightness that we need in order to precisely measure the eclipses. In order to

draw useful conclusions, we need to convert the images into light curves. A light curve is

simply a graph that displays the flux of a star on the y-axis, and the date on the x-axis. If

the brightness of a star changes over time, then the light curve will display this.

In order to generate a light curve from all of the images, we need to figure out how bright

our target is in each one. The first step in this process is determining out how to measure

the brightness of an individual star in an image field. This is accomplished by drawing a

circle around the star, and summing the number of counts in each pixel. Then, an annulus is
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drawn around the target star, as seen in Figure 21. The average number of counts per pixel

in this ring is calculated, which gives us a measurement of the ‘brightness’ of the dark night

sky. This average can be subtracted from each pixel in the inner circle around our target

to remove that background. Doing this for a single star is referred to as single-aperture

photometry.

Figure 21: Example of the circle and annulus used to measure a star’s brightness in AstroImageJ
from the User Manual [5]. The bright white circle in the center is the target star. The
first red circle defines the area in which counts are summed for the target. The area
between the second and third circles defines the bounds of the region used to calculate
the background counts per pixel. The number in red shows the total number of counts in
the target, after the background has been subtracted.

This method suffices when there is no atmospheric variation over time, which is the case

for space telescopes like TESS or Hubble. However, variations in airmass, seeing, and

cloud cover can change the number of photons that reach the detector between images,

which in turn can distort the absolute measure of brightness that we are making by sum-

ming the counts. This can be mitigated by instead measuring the relative flux of the target

with respect to other nearby stars. This accounts for variance from image to image, as the

relationship between the flux of stars will not significantly change because of Earth-based

sources of interference. This is called multi-aperture photometry, and essentially is com-

prised of conducting single-aperture photometry on several stars in a field. The relative flux

53



of the target can be calculated using the following equation:

Relative Flux =
Total Target Counts∑

(Total Reference Star Counts)
. (39)

By conducting multi-aperture photometry on each science image, one can generate a graph

of the relative flux over time: a light curve.

Figure 22: Reference stars considered for use in the multi-aperture photometry of MML 48 (in
green), displayed in AstroImageJ. Each star has a circle with a radius of nine, and annulus
around that, which were used to determine the relative flux.

3.2.1 Selection of Reference Stars

Finally, I needed to pick which stars in our field to use as references. I selected one primary

eclipse and secondary eclipse to use as a representative for the whole dataset, as conducting

this analysis on every night’s data would have been extremely time consuming and super-

fluous, as each primary/secondary eclipse was largely the same. I selected the ten brightest

stars and generated a table with the corrected number of counts for each reference star,

for each science image. The location of the stars used are presented in Figure 22. I then

calculated the relative flux of our target with respect to all (210 − 1) possible combinations
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Figure 23: Light curve of MML 48 in the B band from the sixth night of observing. The dashed lines
indicate the beginning and end of the eclipse, with the solid red line indicating the peak
of the eclipse. The region to the right of the rightmost dashed line is the “plateau region”
used in variation calculations. This light curve was produced using the combination of
reference stars outlined at the end of Section 0.3.3. The eclipse was recorded to occur
at JD - 2400000 = 55987.8836782, with a length of .14166 Julian Days, and all eclipse
times were extrapolated from this value.

of reference stars using a python script that iterated over the aforementioned tables. For

each night’s data, I then selected the data collected after the eclipse ended, and found the

standard deviation of that subset, as show in Figure 23.

I compiled all of the standard deviations into one table, and selected the minimum to

determine the optimal combination of reference stars for each type of eclipse, on average.

The results of this analysis are presented in Figure 24. This figure shows how the deviation

changes as different combinations of reference stars are used. While the optimal choice of

reference stars varies slightly from filter to filter, it is clear that the choice of all the brightest

reference stars (11111) is by no means a bad option, and as far as ease of computation, this

choice is ideal. Thus, for all future data analysis, I will use the 5 brightest reference stars.

Note that the analysis presented above only informs the selection of the data analysis

parameters: the variations discussed above do not correlate with the errors of the measure-

ments that will be made in the future. They are useful only in determining the optimal
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choice of reference stars.

(a) B Band (b) V Band

(c) R Band (d) I Band

Figure 24: Standard deviation of the plateau region of various combinations of reference stars for a
primary eclipse. The text labels indicate which reference stars are being used, where a 1
indicates the reference star is being used, and a 0 indicates that the reference star is being
ignored. The horizontal line indicates the minimum deviation for that filter. While 10
stars were initially considered as candidate reference stars, the 5 dimmest rapidly proved
to be insignificant, and were discarded, so only 5 reference stars are shown in these plots.

3.2.2 Selection of Aperture and Annulus Radius

Throughout the previous selection of reference stars and choice of flats, a nominal radius

of 10 px was used for the generation of relative fluxes. However, this choice was not

demonstrably the best radius, so an analysis similar to the one used to determine the ideal

set of reference stars was conducted on the radius size. The annulus radius was not varied,
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since it was entirely determined by the field near MML 48: a small star lies very close by,

so the annulus needed to be big enough to avoid that interference.

Filter Radius (px)
7 8 9 10 11 12

B 0.00426 0.00507 0.00433 0.00469 0.00466 0.00511
V 0.00264 0.00330 0.00354 0.00394 0.00465 0.00499
R 0.00475 0.00370 0.00388 0.00425 0.00429 0.00462
I 0.00292 0.00213 0.00188 0.00209 0.00233 0.00245

Mean: 0.00364 0.00355 0.00341 0.00374 0.00398 .00429

Table 5: Standard deviation of the relative flux of MML 48 with varying radii. The radius
with the lowest mean deviation was with a radius of 9 pixels, so this was the radius
used in the multi-aperture photometry. Each standard deviation is a measurement
of relative flux, and so has no definite unit. The mean across each filter for each
radius is given, with the minimum mean at 9 px shown in bold. This data is
presented graphically in Figure 25.

The radius size was determined by calculating the standard deviation in the brightness

of MML 48 (while not eclipsing) using various radii choices, using the method outlined

in Figure 23. The results of this analysis are presented in Table 5 and Figure 25, which

demonstrate that, on average, a radius of 9 px was best. This choice was not cut and dry:

the best radius was not the same for each filter, and there was no clear trend describing how

the radius impacted the standard deviation for each filter. Although I could have selected

a different radius for each filter, that would have introduced a lot of room for error when

executing the steps to generate the light curves, so instead I selected the best choice overall.

3.2.3 Selection of Detrending Parameters

After calculating the relative flux of MML 48 for each image, we could move onto the

final step in producing our final light curves: detrending. Detrending refers to the process

of calculating and removing any trends that an undesired variable might be imposing on a

dataset. Typically, the two variables that should be detrended are the airmass and the X/Y

position of the target in an image.
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Figure 25: Standard deviation of the relative flux in the out-of-eclipse region with respect to aperture
radius. Note that the minimum deviation is not the same for all of the filters: the R and
I filters appear to agree on having a minimum around 8-9 px, but the B and V filters do
not show a clear minimum.

Airmass is a measurement of the amount of atmosphere between the telescope and outer

space. The Earth’s atmosphere attenuates and refracts light as it passes through, which

needs to be accounted for. The changes in airmass caused by the telescope tracking a

target’s rise and set can introduce trends into the data that aren’t actually created by the

target.

The X and Y position of the target in each image matters because, although flat-fielding

removes almost all evidence of debris and physical defects on the detector, slight varia-

tions can still be present. Ideally the telescope would track the target well enough for the

X and Y coordinates to stay the same throughout the night, but in our case, the mount

jumped around a fair amount. This also could potentially introduce unwanted trends in the

data. Because we know that these artificially introduced trends are present, we can remove

them in AstroImageJ. For each night, the light curves were processed with just airmass

detrended, both airmass and X/Y detrended, and no detrending. Similar to the choice of

radius, the standard deviation of each night’s out-of-eclipse region was computed and used
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as a metric of the usefulness of the detrending. The results of this test are presented in

Figure 26. In the end, detrending only airmass resulted in the most cohesive data. This

concluded the selection of parameters for the generation of the light curves from the March

CTIO observing run.

Figure 26: Plot of the standard deviation associated with various detrending options. As seen in all
four plots, detrending airmass has an obvious improvement over no detrending. However,
the X/Y detrending is less straightforward: while there is a slight improvement for most
nights, it actually contributes to the noise on night 6 in the V band and night 4 in the R
band. A determination was made that the improvement was so slight on the other nights
that X/Y detrending was unnecessary.

3.2.4 Final Light Curves

Using the parameters selected above, the final light curves could be produced. These curves

are presented in Figure 27. A truncated table of values for each of the curves is presented

in Tables 7 through 10.

3.3 Radial Velocity Curve Extraction

While light curves can provide information about the relative sizes and temperatures of

the component stars in an eclipsing binary, spectral data is needed to determine the star’s
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Figure 27: Final light curves from the March 2019 CTIO observing run. There are error bars asso-
ciated with each data point, but they are obscured by the marker. This data is presented
in phase-folded form in Figure 33, along with the model that was eventually generated.

mass ratio, as this data enables one to determine the radial velocities of the components.

Radial velocities are extracted by determining the Doppler shift that the stars experience

at different phases in their orbits: the stars will become more blue as they approach the

observer, and more red as they recede. While in an ideal world we would be able to isolate

the spectra of both the primary and secondary star in MML 48, unfortunately it is to dim to

be resolved, so we only have one radial velocity curve, from the primary.

The process for determining the Doppler shift requires having a reference star of a similar

spectral type that we know the velocity of. While in theory one could determine the velocity

of the component stars purely from the location of specific spectra features such as the Hα

line, it is much easier to use a known standard star in practice. Each spectra of the target star
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is overlaid with the matching spectra of the standard, and then the two are cross-correlated.

In simple terms, this cross-correlation refers to how well the spectra line up. Then, one

of the spectra is shifted over by one pixel, and the two are cross-correlated again. This is

repeated over a range of pixels, and the ‘similarity’ of the two spectra are plotted on the

y-axis, with the number of pixels offset on the x-axis. At some pixel offset there will be

a Gaussian peak where the spectra are most similar, which, by determining the pixel-to-

wavelength ratio, gives us a velocity of the target relative to the standard. From there, it is a

simple geometric operation of accounting for the Earth’s movement (called the heliocentric

correction) to generate the radial velocities of the target.

3.3.1 Spectral Standards and IRAF

Figure 28: Screenshot of one of the output plots an order being cross-correlated with FXCOR. The
large plot in the center shows the rough Gaussian formed by the standard and the tar-
get spectra being lined up (solid white line) and the theoretical Gaussian being fit to it
(dashed line). Image courtesy of Stefan Laos, Vanderbilt University.

In order to actually compute the radial velocity curves, we needed a suitable spectral
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standard and a program to compute both the cross-correlation and heliocentric correction.

The spectral standard chosen was HD1461: a G-class star (like MML 48) that had been

previously analyzed by other members of the research group. The spectra collected in

March and the spectral standard were then passed into the IRAF routine FXCOR, which

computed a cross-correlation for each order of the echelle spectra. Each order produced

a window similar to the one shown in Figure 28, which provided a visual confirmation

of what the program was doing. The pixel offset (and by extension the wavelength) is

determined from the center of the Gaussian that is fit the cross-correlation, along with an

appropriate error measurement. Finally, the Doppler shifting (from the pixel shift) from

each order was combined and heliocentrically corrected using a custom IDL script, to get

a radial velocity measurement for each spectra. The output of the IDL script can be seen in

Figure 29.

Figure 29: Example output of the IDL script used to combine the radial velocity measurements
from various orders into one measurement. The measured radial velocity for each order
is shown in blue, and the final mean value and error is shown in the horizontal black
lines.

3.3.2 Radial Velocity Curve Generation

With individual radial velocities, it was fairly trivial to generate a radial velocity curve by

plotting the radial velocity from each spectra on the y-axis, and the date on the x-axis. The
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oscillatory nature of the data can better be visualized by phase-folding the data. The radial

velocity curves for MML 48 (both raw and phase folded) can be seen in Figure 30.

Figure 30: Radial velocities extracted from the 2019 CTIO spectra. The left plot shows the data
plotted over date, while the right plot shows the data plotted over phase. In the right plot,
the relationship between the radial velocities is much easier to see. Note that the right
plot has one point that the left plot does not; one data point was collected several months
after the rest, and did not fit on the axes used.

4 Preliminary Modeling

Once I produced the light curves and radial velocity curve, I could move on to making

meaningful measurements of the masses and radii of MML 48. As seen in the introduction,

the width of the eclipses in combination with the radial velocities of the components can

give a precise measurement of the radii of both stars, and of Kepler’s laws can be applied to

the radial velocities to measure the masses of the component stars. However, this process

is not possible for MML 48: as of the writing of this paper, the secondary star’s radial

velocities have not been resolved, so getting a precise measurement of mass is complicated

greatly.

While one could go to the light curves and radial velocities directly to measure the mass

and radius, a more rigorous approach is to use a modelling program like PHOEBE 2.1 to

generate simulated light curves. By iterating the physical properties of a PHOEBE model

until it matches our data, we can converge on a set of values for the mass and radius for
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each component, with a meaningful assessment of the error associated with those values.

4.1 Integration With Existing Data

The first step in modeling MML 48 was to integrate the data I collected and processed with

some of the other data available from prior observations. Namely, existing radial velocities

for MML 48 were previously collected by SOAR and FEROS, and can be seen plotted over

phase with our SMARTS 1.5m radial velocities in Figure 31. My radial velocity curve

appears to agree well with the other data, which indicates that the radial velocity extraction

was successful.

Figure 31: Radial velocities for the primary component of MML 48 plotted over phase. The
SMARTS 1.5m was the new data collected at CTIO in March, 2019.

While there are other light curves available (including the ones used to identify MML

48 as an eclipsing system, SuperWASP and ASAS), they were not integrated into this

model for a few reasons. First and foremost, the amount of time I had to run my model

for was limited, and in the interest of getting results, I used mostly data that I had a hand

in processing or collecting. Secondly, the data from SuperWASP and ASAS include the

visible range of wavelengths (around the V filter), which I observed myself while at CTIO.
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While the redundancy is of course useful for the reduction of error, for my purposes, my

own data was sufficiently more resolved as to make these other sources of data not relevant

for the scope of this project.

4.2 Spectral Energy Distribution Analysis of MML 48

In addition to the light and radial velocity curves that already existed for MML 48, I had

access to Spectral Energy Distribution (SED) analysis for MML 48. An SED analysis

is comprised of two parts. First, individual fluxes of a target in different passbands are

plotted, as seen in the blue points in Figure 32. Next, a theoretical model for the energy

distribution for a star is derived from Stefan-Boltzmann’s Law. This model is distorted

from an idealized blackbody curve by radiative transfer models to create the bumps that

can be seen in Figure 32. This model is then fit to match the photometric data of a the

target. The parameters used to generate that fitted model can then be read out and used as

a starting point for the overall modeling process.

Figure 32: SED analysis of MML 48. The curve is a combination of the emissions from the primary
star, which emits light at smaller wavelengths, and the secondary, which emits more in
the infrared. The luminosity of the data points is largely dominated by the primary star,
but with more infrared measurements, the secondary star’s contribution would be more
readily observed.
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The SED analysis of MML 48 determined the effective temperature of the primary star

to be 5500± 200 K, which I used as the starting point for my future modeling.

4.3 Generation of Preliminary PHOEBE Model

The first step in the modeling process was to determine what stellar parameters I wanted to

measure. In the case of MML 48, I wanted to find the effective temperature of both stars,

the inclination of the orbit relative to Earth, the mass ratio, and the radii of both component

stars. The primary star’s effective temperature already had a good starting point, which

simplified the modeling process: I was able to limit how much the model changed this

value in order to speed up its run time. While there are many more stellar parameters that

PHOEBE can take into account, for the earliest model, these 6 proved to be more than

enough work for this project.

Next, we defined the initial values for these parameters, along with all of the other con-

stants that PHOEBE can incorporate, such as the limb darkening function to be used and

the surface reflectively of both stars. For the extraneous parameters (the ones not related to

the mass, radius, and effective temperature), I used the defaults set by PHOEBE 2. While

this does mean that some parameters were optimized for main-sequence stars as opposed

to young stars like MML 48, I was informed by the PHOEBE team that these parameters

would be sufficient for a preliminary model [Andrej Prša, private communication].

I was able to draw from prior research for the physical parameters. Specifically, an

earlier modeling attempt using the SOAR and FEROS radial velocities in addition to the

SuperWASP light curves offered a preliminary values for these parameters, which I used

as a jumping off point.

With the initial model created from the single-wavelength SuperWASP data and a hand-

ful of radial velocity points, I ran a Markov-Chain Monte Carlo (MCMC) sampling to

develop a better model that matches the multi-wavelength light curve data and new radial

velocities measurements that I obtained in Match 2019. This model consists of a modeled
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Figure 33: Phase folded modeled light curves for MML 48. The line in red shows the predicted
light curve, and the black points show the observed fluxes. In the B and V bands, the
secondary eclipse has a very low resolution, and so appears as a triangle instead of a
U-shape

radial velocity curve, as well as modeled light curves in all of the filters that I collected data

with. These models are presented as the red lines in Figures 34 and 33.

This attempt at optimizing the model largely failed, because an MCMC sampling re-

quires many thousands of steps in order to converge on an optimal solution, and I was only

able to run it for 10. This limits the model to serving as a preliminary view of the system,

rather than a well-defined set of specific parameters.

While the model shown in Figure 33 might appear to closely match the observed data,

careful examination shows that there is a lot of room for improvement: the model’s primary

eclipses match the data well in all 4 filters, but the secondary eclipses are evidently too deep.
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Figure 34: Phase folded modeled radial velocity curves for MML 48.

The secondary eclipses begin at a noticeably higher flux than what the model predicts,

which implies that there is some other process happening that the model isn’t capturing,

such as the imperfections of the initial model carrying through to my final result. Secondly,

the depth of the primary eclipses is not quite lined up with the observed data. This implies

that either the period or eccentricity from the SuperWASP data was imperfect, which is an

important observation. Again, while this might appear to be a sufficiently deviation as to be

insignificant, in actuality that small gap represents a fairly large variation in the parameter

space explored by the preliminary MCMC optimization. Both of these problems can be

solved by allowing the MCMC sampling routine run longer, and allowing the eccentricity

and period to be a free parameter in the optimization.

5 Physical Properties for MML 48 From PHOEBE 2.1

Model

The parameters that were used to generate the preliminary PHOEBE 2.1 model used in are

presented in Table 6. With a completed model for MML 48, I obtained measurements about

the physical properties of the system. Specifically, I derived preliminary measurements for
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the effective temperatures and radii of both stars, and determine a mass function for the

system.

The physical parameters used to generate the PHOEBE 2.1 model are presented in Table

6. There are a few key features to note, mainly the definite measurements of mass present

(in spite of the lack of radial velocities for both components), the effective temperatures

for the secondary component, the large radii relative to main sequence stars, the inclination

being close to 90◦, and the large errors present.

Because the secondary component’s radial velocities could not be measured, I cannot

give a definitive measurement of the masses for both stars. However, I can compute a

mass function for MML 48 with Equation 38 with just the radial velocity of the primary

component, the orbital inclination, and the period of the orbit. This mass function serves to

constrain the possible combination of masses that are allowed for the system based off of

the one radial velocity curve that I do have. Since I have determined values for all of those

parameters, the creation of the mass function is a simple exercise in plugging in values and

error propagation.

The values used were 2.017 ± 2 × 10−7 days for the period, 31.95 ± .98km
s

for the

radial velocity, 82.47± .07 degrees for the inclination, and 6.67× 10−11 m3

s2·kg for Newton’s

Gravitational Constant. Note that this will return the mass function in terms of kilograms

as opposed to solar masses, requiring an extra conversion step. The mass function is then

given as

m3
2

(m1 +m2)2
= 7.024± .296× 10−3M�. (40)

The masses seen in Table 6 (and the associated mass ratio ≈ 4.3) are just one of the set

of masses that are allowed by the mass function for this system. The masses chosen by

PHOEBE 2.1 were simply two arbitrary masses close to my starting point that conformed

to the mass function given above. Unfortunately, PHOEBE 2.1 uses stellar atmosphere

models that are designed for main sequence stars, which means that these masses are quite
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possibly incorrect, although more data needs to be collected to be sure.

Secondly, the effective temperatures of the stars appear to display some of the limitations

of PHOEBE 2.1. The way that PHOEBE computes the flux of a star system in a given set

of wavelengths is by using a large lookup table called a Stellar Atmosphere Model. These

tables provide information about how light from the inside of the star will be impacted

by the star’s atmosphere and temperature, and are pre-computed by PHOEBE in order

to accelerate the run time the model. However, these atmosphere models only exist for

certain temperatures. PHOEBE 2.1’s default atmosphere model only extends to effective

temperatures as low as approximately 3250 K, which is extremely close to the final value

that PHOEBE 2.1 computed for MML 48’s primary effective temperature. This indicates

that, rather than converging on a temperature of 5300±300 K, PHOEBE instead converged

on its extreme edge case.

On a supportive note, the mass and radii for the primary component are well within

the typical ranges for a pre-main sequence star. The primary has an effective temperature

similar to our Sun’s (5300k compared to the Sun’s 5777K), with a mass close to one M�.

However, the radius is larger than that of the Sun, which implies that MML 48 is still in

the contracting phase of stellar birth. This is what one would hope to see with a pre-main

sequence star, and does lend credibility to the general correctness of the preliminary model.

Additionally, the predicted inclination, 82.47◦, is close to 90◦, as we would expect from a

system with deep, well defined eclipses. This also lends credibility to the veracity of the

preliminary model.

Finally, since this model was not allowed to run for the extended periods of time needed

to effectively utilize an MCMC sampling, the errors associated with each measurement are

enormous. These errors can be reduced simply by running the sampling longer.
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Parameter Primary Star Secondary Star

Period (days) 2.017± 2×10−7

Orbital inclination (◦) 82.47± 0.07
Peak Radial Velocity (km

s
) 31.95± 0.98

Mass function (M�) 7.024± .296× 10−3

System Velocity (km
s

) 6.71± 0.07
Effective Temperature (K) 5300± 300 3500± 200

Mass (M�) 0.93± 0.1 0.22± 0.05
Radius (R�) 1.3± 0.1 0.48± 0.1

Table 6: Stellar parameters determined by the preliminary PHOEBE model.

6 Conclusions

In spite of these shortcomings, the model does provide some important information. Firstly,

it is clear that the model is close to describing MML 48 well, which lends credibility to the

earlier modeling and SED analysis. Furthermore, the parameters that PHOEBE 2 generated

can be used to get a general idea as to how useful MML 48 will be in training other stellar

evolution models in the future.

6.1 MML 48 and the Hayashi Track

As mentioned earlier in this paper, one of the driving reasons to study MML 48 was to

add to the short list of fully investigated pre-main sequence eclipsing binaries, in the hopes

that the masses and radii measured could be used in future modeling efforts. Because of

MML 48’s young age, it is particularly useful for empirically testing models on or near the

Hayashi Track of stellar development.

As reviewed in Section 1.1, the Hayashi Track is the period of a star’s development in

which its radius decreases, but its temperature remains mostly constant. Figure 35 shows

MML 48’s component stars plotted over a series of evolution paths simulated with the

Baraffe 2015 stellar evolution model. While of course the Baraffe evolution model is as

hobbled as all of the other pre-main sequence stellar evolution models by lack of empirical
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Figure 35: Plot of the primary (red) and secondary (blue) components of MML 48 on an H-R di-
agram. The grey lines that start vertical are models of how stars approach the main
sequence. The vertical section of those lines describes the Hayashi track, where the ra-
dius of the star decreases as the temperature remains constant. The diagonal grey lines
are isochrones: the age of the star in each model is constant along each line. The line
in black shows an isochrone at 16 Myr (the approximate age of MML 48). This H-R
diagram uses radius on the y-axis, which is proportional to luminosity, which was used
in Figure 1.2.1. The models and isochrones were created using the Baraffe 2015 stellar
evolution model.

data, it does give us some rough insight into where MML 48 is in its development.

We can see that, according to this model, the secondary star is still on the Hayashi track,

while the primary component has stopped contracting, and is gradually heating up and

approaching the main sequence. We can also see that the 16 Myr isochrone (shown in
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black) lies within the error bars for both the primary and secondary components, which

lends some credibility to the model.

6.2 MML 48 and a 16 Million Year Isochrone

In addition to simply contributing to the short list of fully investigated pre-main sequence

systems, MML 48 also provides the last piece of data needed to create an empirical isochrone.

An isochrone is a line that connects different stars with the same age. If the data used to

generate that isochrone comes directly from measurements, then that isochrone can be said

to be empirically tested, which provides astronomers an invaluable tool in modeling pre-

main sequence stellar evolution.

There are two other pre-main sequence eclipsing binaries, named MML 53 and NP PER

that are also approximately 15 Myr old, and have masses that are likely significantly differ-

ent from MML 48’s. This means that, in combination with these two other systems, there

will be 6 points to define an empirical isochrone at approximately 15 Myr.

6.3 Future Work

The mass function and radii of MML 48 presented in this paper provide only the beginning

of the investigation into the properties of MML 48. There are several more avenues of

investigation open for MML 48, including the collection of more data, the integration of

other existing data into our model, and a more concerted effort towards optimizing the

system.

6.3.1 Integration of More Data

A significant area that needs more work is the incorporation of all of the data available to

us into our model. There are light curves for MML 48 from a number of other sources in

addition to ASAS, SuperWASP, and CTIO. In June of 2018 V and R band light curves were

collected at CASLEO in Argentina, and in July 2013 z-band light curves were collected at
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Figure 36: Light curves recorded by the TESS mission. The oscillation in the relative flux between
1.02 and .98 has the characteristics of a star spot, which could potentially be modeled in
PHOEBE 2.1. The Julian Date on the X-axis is offset by -2457000 days, as per TESS
specifications.

Faulkes Telescope South in Australia. Additionally, more light curves in B, V, R, and I

were collected at CTIO in July of 2019, which can be integrated into this model.

Additionally, MML 48 was specified as a target of interest for the Transiting Exoplanet

Survey Satellite (TESS), a space telescope that observes the same area in the night sky for

two full 13.7 day segments. This data, shown in Figure 36, offers us an extremely good

dataset to use for modeling. It also displays some features of MML 48’s light curve that

were not seen in other data collection runs. For example, there is a large variability in the

relative flux of MML 48 unrelated to the eclipses, which was not observed in the ASAS or

CTIO photometry.
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6.3.2 MCMC Versus Levenberg–Marquardt

A key area to probe further is how the PHOEBE 2.1 model is optimized. Since PHOEBE

2.1 has no native optimization functions, I had to do this step manually. In this project,

I used Markov-Chain Monte Carlo optimization, which samples from a probability distri-

bution associated with the model and observed data to eventually converge on a set of pa-

rameters for the model that minimizes the difference between the two. I chose this method

because it can give me a concrete assessment of the uncertainty of the model, it handles

the non-linearity of eclipsing-binary modeling well, and it is a well-accepted method for

model optimization in the scientific community.

However, using MCMC methods was not the best approach for this stage of inquiry into

MML 48 for a few reasons. Firstly MCMC samplings take a very long time to run when

using modeling programs like PHOEBE 2.1. This is because an ideal sampling will create

several (ideally hundreds) of models per iteration, and run thousands of iterations to con-

verge on one set of parameters. This requires a large amount of computation time, which

turned out to be impractical for this project. Secondly, MCMC samplings are best for find-

ing a set of model parameters when there are few bounds on what the initial parameters

should be. Ideally, I would have run several simultaneous MCMC samplings starting from

varying places around the parameter space of my model, and wait for them to converge.

However, since I already had a good starting place from the prior modeling and SED anal-

ysis, I did not make full use of the benefits that MCMC sampling offers. Finally, in order

to make meaningful assessments of error from an MCMC sampling, I would have needed

to let my optimization run much longer than I had time to allow for.

In retrospect, I should have focused my efforts on using some form of a non-linear least

squares fitting approach to model MML 48. Since my initial values for my parameters

started close to the final ones, I could have used a more direct minimization approach than

MCMC. One good option is using a Levenberg–Marquardt optimization, which uses an

iterative non-linear least squares fitting algorithm to converge on a solution. This provides
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scientifically valid final parameters with meaningful errors, without the need for a full

exploration of the parameter space. In the future, I will use such an algorithm to refine my

final results.

6.3.3 Future Data

In order to determine the radial velocities needed to determine the exact mass of the com-

ponent stars in MML 48, a proposal for the collection of infrared spectra of MML 48 was

submitted earlier this year. Infrared spectra are particularly desirable because the secondary

component of MML 48 is relatively cool, which means that its blackbody curve peaks at a

much lower temperature. In the vicinity of 500nm, the secondary star is only 1-2% of the

brightness of the primary. However, in infrared the secondary star is approximately 20%

of the brightness. This new spectra should allow us to resolve the secondary star’s radial

velocities, and make a definite measurements of mass.
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7 Appendix

7.1 Light Curves (Tables)

JD - 2400000 Relative Flux Error

58561.59723 1.02286 0.00182
58561.6014 1.01443 0.00181

58561.60556 1.00255 0.00177
58561.60981 0.99399 0.00176
58561.61398 0.99481 0.00175

... ... ...

Table 7: First 5 rows of B band light curves
collected at CTIO in March 2019.

JD - 2400000 Relative Flux Error

58561.59838 1.00812 0.0018
58561.60254 1.00594 0.0018
58561.60671 1.01009 0.0018
58561.61097 0.99962 0.00178
58561.61513 0.99514 0.00177

... ... ...

Table 8: First 5 rows of V band light curves
collected at CTIO in March 2019.

JD - 2400000 Relative Flux Error

58560.58804 1.01539 0.00189
58560.58943 0.99358 0.00185
58560.59127 1.00884 0.00188
58560.59311 0.98215 0.00182
58560.59495 1.02368 0.00191

... ... ...

Table 9: First 5 rows of R band light curves
collected at CTIO in March 2019.

JD - 2400000 Relative Flux Error

58560.59035 1.02507 0.00154
58560.59219 0.9739 0.00148
58560.59403 1.00066 0.00151
58560.59587 0.99133 0.0015
58560.59771 1.0007 0.00151

... ... ...

Table 10: First 5 rows of I band light curves
collected at CTIO in March 2019.
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7.2 Code
7.2.1 Detrending Comparison

from pathlib import Path
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

JD = ’J.D.-2400000’
path = Path(’D:/Astronomy/201903/final_curves/detrends’)

files = [
’n3r.csv’,
’n3i.csv’,
’n4b.csv’,
’n4v.csv’,
’n4r.csv’,
’n4i.csv’,
’n5i.csv’,
’n5r.csv’,
’n6b.csv’,
’n6v.csv’,
’n6r.csv’,
’n6i.csv’,
’n7i.csv’,
’n7r.csv’,
’n8b.csv’,
’n8v.csv’,
’n8r.csv’,
’n4i.csv’

]

def errFind(filepath):
eclipse_time = 55987.8836782
eclipse_length = .14166

# Period of the eclipse divided by two (since we want
both primary and secondary)

period = 2.0171078125/2
df = pd.read_csv(filepath)

# Determines the time of this eclipse, used to determine
where the flat sections are
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while eclipse_time < df[JD][0]:
eclipse_time = eclipse_time + period

cutoffup = eclipse_time + (eclipse_length/2)
cutoffdown = eclipse_time - (eclipse_length/2)
df = df[(df[JD] > cutoffup) | (df[JD] < cutoffdown) ]
df = df[df[’rel_flux_T1_n’] > .85]
df = df[df[’rel_flux_T1_n’] < 1.07]
print(str(filepath))
return np.std(df[’rel_flux_T1_n’]), np.std(df[’

airmass_dn’]), np.std(df[’airmass_xy_dn’])

def getPlotNum(name):
c = name[2]
if c == ’b’:

return 1
elif c == ’v’:

return 2
elif c == ’r’:

return 3
else:

return 4

plt.figure()
nights = [3, 4, 5, 6, 7, 8]
noneTotal = []
airmassTotal = []
xyTotal = []
for filename in files:

plt.subplot(2, 2, getPlotNum(filename))
none, airmass, xy = errFind(path / filename)
noneTotal.append(none)
airmassTotal.append(airmass)
xyTotal.append(xy)
plt.scatter(int(filename[1]), none, color=’blue’, marker

=’x’)
plt.scatter(int(filename[1]), airmass, color=’red’,

marker=’o’)
plt.scatter(int(filename[1]), xy, color=’green’, marker=

’ˆ’)

none = np.mean(noneTotal)
airmass = np.mean(airmassTotal)
xy = np.mean(xyTotal)
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none = np.round(none, 4)
airmass = np.round(airmass, 4)
xy = np.round(xy, 4)

plt.subplot(2,2,1)
plt.title(’B Band’)
plt.ylabel(’Standard Deviation (mag)’)
plt.ylim([0, .015])
plt.xlim([2, 9])

plt.subplot(2,2,2)
plt.legend([’No Detrend: ’ + str(none), ’Airmass Detrended:

’ + str(airmass), ’Airmass and X/Y Detrended: ’ + str(
xy)])

plt.title(’V Band’)
plt.ylim([0, .015])
plt.xlim([2, 9])

plt.subplot(2,2,3)
plt.title(’R Band’)
plt.xlabel(’Night’)
plt.ylabel(’Standard Deviation (mag)’)
plt.ylim([0, .015])
plt.xlim([2, 9])

plt.subplot(2,2,4)
plt.title(’I Band’)
plt.xlabel(’Night’)
plt.ylim([0, .015])
plt.xlim([2, 9])

plt.show()
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7.2.2 Reference Table Generation

import Normalized_Flux_Generator as nfg
from pathlib import Path
import sys
import os
import pandas as pd
import numpy as np
NIGHTS = [3, 4, 5, 6, 7, 8]

dir = "E:/Astronomy/201903/"

def getStandardDeviationPrimary(nightnum, radius = 10):
if nightnum % 2 != 0:

print("Must be an even numbered night.")
return

# get the file path to each table
filedir = dir + "n" + str(nightnum) + "/tables/"
path = Path(filedir)
for d in path.iterdir():

if (str(d).endswith("sky")):
path = path / "sky"
break

print("Generating SDs for b band (night " + str(nightnum
) + ")...")

bdf = pd.DataFrame.from_dict(data=nfg.
Normalized_Flux_Generator(path/("bband_r" + str(
radius) + ".csv")).generate(), orient=’index’,
columns=[’b’])

print("Generating SDs for v band (night " + str(nightnum
) + ")...")

vdf = pd.DataFrame.from_dict(data=nfg.
Normalized_Flux_Generator(path/("vband_r" + str(
radius) + ".csv")).generate(), orient=’index’,
columns=[’v’])

print("Generating SDs for r band (night " + str(nightnum
) + ")...")

rdf = pd.DataFrame.from_dict(data=nfg.
Normalized_Flux_Generator(path/("rband_r" + str(
radius) + ".csv")).generate(), orient=’index’,
columns=[’r’])

print("Generating SDs for i band (night " + str(nightnum
) + ")...")

idf = pd.DataFrame.from_dict(data=nfg.
Normalized_Flux_Generator(path/("iband_r" + str(
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radius) + ".csv")).generate(), orient=’index’,
columns=[’i’])

bdf[’v’] = vdf[’v’]
bdf[’r’] = rdf[’r’]
bdf[’i’] = idf[’i’]
print("Calculating mean...")
bdf[’mean’] = bdf.mean(axis=1)
return bdf

def getStandardDeviationSecondary(nightnum, radius = 10):
if nightnum % 2 != 1:

print("Must be an odd numbered night.")
return

# get the file path to each table
filedir = dir + "n" + str(nightnum) + "/tables/"
path = Path(filedir)
for d in path.iterdir():

if (str(d).endswith("sky")):
path = path / "sky"
break

# Combine dicts from each night/filter into one
dictionary per filter, and find SD of that dict

print("Generating SDs for r band (night " + str(nightnum
) + ")...")

rdf = pd.DataFrame.from_dict(data=nfg.
Normalized_Flux_Generator(path/("rband_r" + str(
radius) + ".csv")).generate(), orient=’index’,
columns=[’r’])

print("Generating SDs for i band (night " + str(nightnum
) + ")...")

idf = pd.DataFrame.from_dict(data=nfg.
Normalized_Flux_Generator(path/("iband_r" + str(
radius) + ".csv")).generate(), orient=’index’,
columns=[’i’])

rdf[’i’] = idf[’i’]
print("Calculating mean...")
rdf[’mean’] = rdf.mean(axis=1)
return rdf

df = pd.DataFrame(columns=[’SDn3’, ’SDn4’, ’SDn5’, ’SDn6’, ’
SDn7’, ’SDn8’])

for n in NIGHTS:
if n % 2 == 1:

tbl = getStandardDeviationSecondary(n)
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tbl[’b’] = np.nan
tbl[’v’] = np.nan

else:
tbl = getStandardDeviationPrimary(n)

df[("SDn" + str(n))] = tbl[’mean’]
df[("SDn" + str(n) + ’b’)] = tbl[’b’]
df[("SDn" + str(n) + ’v’)] = tbl[’v’]
df[("SDn" + str(n) + ’r’)] = tbl[’r’]
df[("SDn" + str(n) + ’i’)] = tbl[’i’]

df[’mean’] = df.mean(axis=1)
df[’mean_b’] = df[[’SDn3b’, ’SDn4b’, ’SDn5b’, ’SDn6b’, ’

SDn7b’, ’SDn8b’]].mean(axis=1)
df[’mean_v’] = df[[’SDn3v’, ’SDn4v’, ’SDn5v’, ’SDn6v’, ’

SDn7v’, ’SDn8v’]].mean(axis=1)
df[’mean_r’] = df[[’SDn3r’, ’SDn4r’, ’SDn5r’, ’SDn6r’, ’

SDn7r’, ’SDn8r’]].mean(axis=1)
df[’mean_i’] = df[[’SDn3i’, ’SDn4i’, ’SDn5i’, ’SDn6i’, ’

SDn7i’, ’SDn8i’]].mean(axis=1)

86



7.2.3 Code for Calculation of Normalized Flux from Raw Data Tables

import astropy as astro
import numpy as np
import pandas as pd
from pathlib import Path
import sys
import time
import matplotlib.pyplot as plt
JD = ’J.D.-2400000’

class Normalized_Flux_Generator:
def __init__(self, filename):

self.filename = filename
self.results = {}
self.plateau_cutoff_up = 0
self.plateau_cutoff_down = 0
self.use = ’after’

def normalize_df(self, df, cutup, cutdown, flag):
before_df = df[df[JD] < cutdown]
after_df = df[df[JD] < cutup]

before_df
def get_combos(self, num_refs):

combos = []
for i in np.arange(0, 2**num_refs):

str = bin(i)[2:]
while len(str) < num_refs:

str = "0" + str
combos.append(str)

return combos

def get_normalized_flux(self, df, references):
i = 2
temp = pd.DataFrame()
temp[’Source-Sky_T1’] = df[’Source-Sky_T1’].copy()
temp[’sum’] = 0
for t in references:

if (t == ’1’):
temp[’sum’] = temp[’sum’] + df[’Source-Sky_C

’ + str(i)]
i = i + 1

rel = (temp[’Source-Sky_T1’]/temp[’sum’])
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return rel/np.median(rel)

def convert_combo(self, combo):
i = 2
refs = []
for c in combo:

if (c == "1"):
refs.append(’C’ + str(i))

i = i + 1
return refs

def normalized_flux(self, filename, graph = False):

# Used to estimate how long the task will take to
run

TIME_PER_JOB = .01

# Time of any eclipse, used to calculate the time of
the given nights eclipse

eclipse_time = 55987.8836782
eclipse_length = .14166

# Period of the eclipse divided by two (since we
want both primary and secondary)

period = 2.0171078125/2

filepath = Path(filename)
df = pd.read_csv(filepath)

# Determines how many availible reference stars
there are

cols = list(df)
current_col = cols[16]
num_refs = 0
while current_col.startswith("rel_flux_C"):

num_refs = num_refs + 1
current_col = cols[16 + num_refs]

# Determines the time of this eclipse, used to
determine where the flat sections are

secondary = False
while eclipse_time < df[JD][0]:

eclipse_time = eclipse_time + period
secondary = not secondary
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self.plateau_cutoff_up = eclipse_time + (
eclipse_length/2)

self.plateau_cutoff_down = eclipse_time - (
eclipse_length/2)

df[’rel_flux_T1_n’] = self.get_normalized_flux(df, "
1"*num_refs)

# eliminate outliers
df = df[df[’rel_flux_T1_n’] > .85]
df = df[df[’rel_flux_T1_n’] < 1.07]

if self.use == ’both’:
ndf = df[(df[JD] > self.plateau_cutoff_up) | (df

[JD] < self.plateau_cutoff_down)]
elif self.use == ’after’:

ndf = df[(df[JD] > self.plateau_cutoff_up)]
elif self.use == ’before’:

ndf = df[(df[JD] < self.plateau_cutoff_down)]
results = {}
min = 100
for combo in self.get_combos(num_refs):

if combo != num_refs*"0":
postdf = ndf[ndf[JD] > self.

plateau_cutoff_up]
predf = ndf[ndf[JD] < self.

plateau_cutoff_down]

prenormal = self.get_normalized_flux(predf,
combo)

postnormal = self.get_normalized_flux(postdf
, combo)

prestd = np.std(prenormal)
poststd = np.std(postnormal)

if self.use == ’both’:
std = np.average([prestd, poststd],

weights=[len(prenormal), len(
postnormal)])

elif self.use == ’after’:
std = poststd

else:
std = prestd

if std < min:
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min = std
results[combo] = std

print(min)
return results

def generate(self):
self.results = self.normalized_flux(self.filename)
return self.results
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7.2.4 Observation Plan Generator

from astroplan import Observer
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.time import Time
import AltitudePlotter
import os

class Eclisping_Plan_Maker:
def __init__(self, observatory_name, target_name,

first_date, utc_offset, num_nights,
primary_eclipse_time,orbital_period,
primary_eclipse_time_format = ’jd’, template_filename
=’PLAN_TEMPLATE.tex’, output_filename=’output.tex’):
self.observatory_name = observatory_name
self.target_name = target_name
self.first_date = Time(first_date)
self.utc_offset = utc_offset * u.hour
self.num_nights = num_nights
self.template_filename = template_filename
self.output_filename = output_filename
self.template = open(template_filename, ’r’).read()
self.dir_path = os.path.dirname(os.path.realpath(

__file__))
self.orbital_period = orbital_period
self.primary_eclipse_time = primary_eclipse_time
self.primary_eclipse_time_format =

primary_eclipse_time_format

def _save_altitude_plots(self):
nights = self.first_date + np.arange(0, self.

num_nights) * u.day
names = []
for night in nights:

# there was a \ at the end of the next line
filename = self.dir_path + ’/output/figures/’ +

\
self.target_name.replace(’ ’, ’’) + night.

value[0:10] + ’.jpg’
print(’Generating plot for ’ + filename + ’...’)
fig = AltitudePlotter.AltitudePlotter(
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target_name=self.target_name,
observatory_name=self.observatory_name,
observing_time=night, utc_offset=self.
utc_offset, fig=plt.figure())

fig.set_eclipsing_parameters(Time(self.
primary_eclipse_time, format=self.
primary_eclipse_time_format), self.
orbital_period*u.day)

plot = fig.plot_altitude()
plot.savefig(filename)
plt.close(plot)
names.append(’figures/’ + self.target_name.

replace(’ ’, ’’) + night.value[0:10] + ’.jpg’
)

return names

def _get_figure_laTex(self, names):
result = ’’
for name in names:

print(’Generating TeX for ’ + name + ’...’)
result = result + self._get_include_graphics(

name)
return result

def _get_include_graphics(self, filename, caption=’
Caption Here’):
return ’\\begin{center}\n\t\\begin{figure}[h]\n\t\t

\\centering\n\t\t\\includegraphics[width=4in]{’ +
filename + ’}\n\t\t\\caption{’ + caption + ’}\n\
t\t\\label{’ + filename + ’}\n\t\\end{figure}\n\\
end{center}\n’

def _get_times_table(self, observatory_name, first_date,
utc_offset, num_nights):

obs = Observer.at_site(observatory_name)
nights = first_date + np.arange(0, num_nights) * u.

day

df = pd.DataFrame(columns=[’Date’, ’Sunset’,
’N. Twilight (Evening)’,

’N. Twilight (Morning)
’])

# Add target rise/target set
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# Add eclipse entry/exit
night_names = list(map(lambda x: x.value[0:10],

nights))
df.Date = night_names

sunset = obs.sun_set_time(nights)
sunset.format = ’iso’
df[’Sunset’] = list(map(lambda time: time.value

[11:19], sunset))

evening_twilight_dates = obs.
twilight_evening_nautical(
nights)

evening_twilight_dates.format = ’iso’
df[’N. Twilight (Evening)’] = list(

map(lambda date: date.value[11:19],
evening_twilight_dates))

morning_twilight_dates = obs.
twilight_morning_nautical(
nights)

morning_twilight_dates.format = ’iso’
df[’N. Twilight (Morning)’] = list(

map(lambda date: date.value[11:19],
morning_twilight_dates))

return df.to_latex(index=False)

def generate_latex(self):
timetable = self._get_times_table(observatory_name=

self.observatory_name,
first_date=self.

first_date,
utc_offset=self
.utc_offset,
num_nights=self
.num_nights)

altplots = self._get_figure_laTex(self.
_save_altitude_plots())

print(’Generating LaTeX File...’)
output = self.template.replace(’!TIMETABLE!’,

timetable)
output = output.replace(’!ALTPLOTS!’, altplots)
output = output.replace(’!STARTDATE!’, self.
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first_date.value[0:10])
output = output.replace(

’!ENDDATE!’, (self.first_date + self.num_nights*
u.day).value[0:10])

output = output.replace(’!OBJECT!’, self.target_name
)

print(’Writing to ’ + self.output_filename + ’...’)
open(self.dir_path + ’/output/’ +

self.output_filename, ’w’).write(output)

Eclisping_Plan_Maker(observatory_name=’Cerro Tololo’,
target_name=’MML 48’,

first_date=’2019-07-03 00:00’, utc_offset=0,
num_nights=5, primary_eclipse_time
=2454945.0393516, orbital_period =
2.0171078125).generate_latex()
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7.2.5 Time Table Generator

from astroplan import Observer
import pandas as pd
import numpy as np
import astropy.units as u
from astropy.time import Time
from astroplan import FixedTarget

observatory_name = ’Cerro Tololo’
num_nights = 5
first_date = ’2019-07-03 00:00’

obs = Observer.at_site(observatory_name)
nights = first_date + np.arange(0, num_nights) * u.day
target = FixedTarget.from_name(’MML 48’)

df = pd.DataFrame(columns=[’Date’, ’Sunset’,
’N. Twilight (Evening)’, ’N. Twilight (Morning)’, ’

Ingress’, ’Egress’])

# Add target rise/target set
# Add eclipse entry/exit
night_names = list(map(lambda x: x.value[0:10], nights))
df.Date = night_names

sunset = obs.sun_set_time(nights)
sunset.format = ’iso’
df[’Sunset’] = list(map(lambda time: time.value[11:19],

sunset))

evening_twilight_dates = obs.twilight_evening_nautical(
nights)

evening_twilight_dates.format = ’iso’
df[’N. Twilight (Evening)’] = list(

map(lambda date: date.value[11:19],
evening_twilight_dates))

morning_twilight_dates = obs.twilight_morning_nautical(
nights)

morning_twilight_dates.format = ’iso’
df[’N. Twilight (Morning)’] = list(

map(lambda date: date.value[11:19],
morning_twilight_dates))
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print(obs.target_rise_time(nights, target, which=’next’))
# print(df.to_latex(index=False))
# return df.to_latex(index=False)
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