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1 Introduction

1.1 Discovery of Exoplanets

1.1.1 Historical Perspective

The study of exoplanets, planets orbiting stars beyond our solar system, was once
confined in the realm of speculation. For centuries, astronomers debated whether
planetary systems like our own were commonplace or exceptional, but lacked the
observational tools to resolve the question. That changed in 1995, when Mayor
and Queloz (1995) announced the discovery of 51 Pegasi b, a Jupiter-mass planet
orbiting a sun-like star just 50 light-years away. Detected via the radial velocity
method, this hot Jupiter changed previous assumptions about extrasolar planets

by showing that planetary systems could differ dramatically from our own.

In the decades since, exoplanetary science has evolved from single-point discovery
to thousands of exoplanets. At the time of this thesis, more than 5,000 exoplanets
that have been discovered, with potentially thousands of other “candidates” in line
(NASA Science, 2017). Perhaps the most surprising finding has been the ubiquity
of planets between the size of Earth and Neptune, so-called “Sub-Neptunes”, which
are now known to be the most common type of planets in the galaxy, despite

having no solar system analogues (Fulton et al., 2017).

This observational revolution has prompted a shift in how interior structure models
are developed. Early interpretations of exoplanets’ interior structure often relied
on simple two-layer models or empirical mass-radius relationships (Seager and
et al., 2007; Van Eylen et al., 2021). However, as measurements become more
precise and atmospheric characterization entered the picture, it became clear that
more sophisticated models were needed, ones that account for realistic thermal
gradients, phase transitions, and compositional degeneracies (i.e., cases where

different internal structures can yield the same mass and radius).



Today, with the launch of the James Webb Space Telescope (JWST), we can
detect different compositions that make up a specific exoplanet. From these results,
atmospheric mean molecular weight, in particular, can be a key link between
spectral retrievals and bulk composition inference. Spectral retrieval is the process
of fitting atmospheric models to observed spectra; the distribution of light intensity

across wavelengths infers the chemical and physical properties of the atmosphere

(Carroll and Ostlie, 2007).

This provides a bridge between observational and interior structure modeling efforts.

The framework used in this thesis represents this new era of interior modeling.

1.1.2 Observational Techniques

The interpretation of an exoplanet’s internal structure begins with a small set of
measurable physical properties: mass (M,), radius (R,), equilibrium temperature
(Teq), and, when available, atmospheric composition via spectroscopy. These
observables are not direct products of a single method, but rather arise from
the combination of several detection and characterization techniques. In this
section, we focus on the methods most relevant to this work—those that yield the

parameters used as inputs to our interior structure models.

Radial Velocity (RV): The radial velocity method detects the periodic Doppler
shifts in a star’s spectral lines induced by the gravitational pull of an orbiting
planet. As the star moves toward and away from us, the resulting redshift and
blueshift allow measurement of the stellar velocity semi-amplitude K, which can
be related to the planet’s minimum mass (M, siné), the orbital period (P), and
eccentricity (e) through Keplerian dynamics (Mayor and Queloz, 1995; Wright and
Gaudi, 2013). Though RV only provides a lower limit on M,, without knowledge of
inclination (4), it becomes especially powerful when combined with transits, which

may provide ¢ from geometry.



RV sensitivity increases with planet mass and proximity to the star, making it
well-suited to detecting massive, short-period planets (e.g., hot Jupiters). However,
improvements in spectrograph precision—down to ~1 m/s—have enabled the
detection of small planets around low-mass stars, including Earth-mass planets
like Proxima Centauri b (Fischer et al., 2016; Anglada-Escudé et al., 2016). Since
mass is a critical input to structure models, RV is foundational to any interior

inference effort.

Transit Photometry: The transit method detects planets by observing the
periodic dimming of a star as a planet passes in front of it. The depth of this flux

decrement yields the ratio of planet to star radius (Winn, 2010):

2
s (B
R,
When combined with accurate stellar parameters, the planetary radius Rz, can
be extracted. Transit surveys like Kepler and TESS have dramatically expanded

the known planet population, particularly for close-in, sub-Neptune-sized planets

(Borucki et al., 2010; Ricker et al., 2015).

Because the probability of transit is inversely proportional to the orbital separation,
transit detections are biased toward close-in planets. However, these are also the
planets most amenable to atmospheric characterization and thus form the core of
our sample. Radius is one of two key quantities (alongside mass) used to constrain

interior composition, and thus forms a cornerstone of our modeling framework.

Transmission and Emission Spectroscopy: For transiting planets, follow-up
spectroscopic observations can reveal the composition and thermal structure of
the atmosphere. During a transit, starlight filters through the planetary limb,
allowing for the detection of molecular absorption features—a technique known as
transmission spectroscopy. Similarly, during secondary eclipse, emission spectra

can be obtained by measuring the planet’s thermal contribution.



These spectra provide constraints on the presence of molecules (e.g., HoO, COq,
CHy), atmospheric metallicity, and the mean molecular weight (MMW) (Kempton
and Knutson, 2024). The MMW, in particular, is vital to this work: it acts as a
proxy for the envelope composition, enabling us to constrain the bulk composition
of our target exoplanets. Additionally, observations from HST and JWST play a

central role in bridging atmospheric data with interior structure models.

Equilibrium Temperature (7,,): Though not directly measured, T¢, is calcu-
lated from the stellar flux incident on the planet, using known stellar parameters
and the orbital distance inferred from transits or RV. This quantity sets the outer
boundary temperature in our models and influences the atmospheric scale height
and thermal profile. We assume a Bond albedo (typically 0 unless otherwise stated)

and full redistribution to estimate T¢, for each planet in our sample.a

Together, these techniques yield the physical parameters—»M,, R,, T, and
MMW-—used as inputs to the SMILE structure solver. Understanding how each
of these quantities is derived, and the limitations and biases of the methods that
produce them, is essential for interpreting the internal structures of sub-Neptune

planets.



Summary of Observable Parameters

Interior models rely on the following observables:
e Mass (M) — from Radial Velocity (RV)
e Radius (R) — from Transit Photometry

e Equilibrium Temperature (7i,) — from stellar flux and orbital

separation

e Mean Molecular Weight (MMW) — from Atmospheric Spec-

troscopy

These form the key inputs to the SMILE structure solver.

1.2 Exoplanet Demographics

1.2.1 Diversity of Exoplanets

The discovery of exoplanets over the past three decades has revealed a staggering
diversity in planetary systems. The first confirmed exoplanet orbiting a Sun-like
star—b1 Pegasi b—was discovered in 1995 via the radial velocity method (Mayor
and Queloz, 1995). This hot Jupiter, orbiting its star every 4.2 days, was unlike
anything in the Solar System, immediately highlighting the surprising variety of
planetary system architectures. Since then, thousands of exoplanets have been
detected, with radii ranging from smaller than Earth to more than twice that
of Jupiter, and with orbital periods spanning from a few hours to several years.
The known exoplanet population now includes massive gas giants, rocky planets,
and volatile-rich sub-Neptunes. Many of these planets have no clear Solar System
analogue—especially those in the intermediate radius regime between Earth and

Neptune, where sub-Neptunes dominate the population.

This diversity is apparent in both the radius—period and mass-radius parameter



spaces (Figures 1 and 2). These distributions demonstrate that exoplanets occupy
a wide range of physical and orbital regimes, although their detectability is strongly
shaped by observational biases. Detection techniques such as transits and radial
velocities are most sensitive to planets with large sizes or masses and short orbital
periods, leading to an overrepresentation of close-in, gas-rich planets in current
exoplanet catalogs. As a result, occurrence rates derived from these samples must

be interpreted carefully (Youdin, 2011; Cassan et al., 2012).

Planet Radius vs Orbital Period
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Figure 1: Radius—period distribution of known exoplanets, color-coded by detection
method. NASA Exoplanet Science Institute (2025).

Despite these biases, it is still possible to categorize exoplanets into several broad,

phenomenologically motivated classes:

Gas giants: These planets have masses and radii comparable to Jupiter and
Saturn. Many are located on short-period orbits and are therefore subject to intense
stellar irradiation, earning the designation “hot Jupiters.” Others occupy wider
orbits and are cooler, more akin to the Solar System’s giant planets. Some massive

objects exceed 13 Jupiter masses and blur the boundary with brown dwarfs.

Ice giants: Analogous in size and mass to Uranus and Neptune, these planets tend

to have significant volatile content but lower H/He fractions than gas giants. While
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most detected ice giants reside on short orbits (P < 100 days), future missions
like Roman are expected to expand our ability to detect longer-period analogues

(Spergel et al., 2015).

This diversity is further illustrated by the mass-radius distribution (Figure 2),
which reveals a wide spread in bulk density and highlights the compositional

continuum from rocky to gas-rich planets.

Planet Radius vs Planet Mass
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Figure 2: Mass-radius distribution of confirmed exoplanets up to 40Mg, with
composition curves for pure iron, silicates (MgSiO3), and water. The broad scatter
reflects the diversity in bulk composition among similarly sized planets. NASA
Exoplanet Science Institute (2025).

Sub-Neptunes: This class includes planets with radii between roughly 1 and
4 Rs, and is the dominant population in the size range probed by Kepler and TESS.
These planets exhibit a wide range of compositions—from rocky cores with thin
hydrogen atmospheres to volatile-rich water worlds. They are often divided into
super-Farths (1-1.5 Rg) and mini-Neptunes (2-4 Rg), depending on their likely
bulk structure, as inferred from their radius and density. (Mulders, 2018; Rogers
and Owen, 2021). Sub-Neptunes are particularly abundant around M dwarfs and

are the focus of this study.
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Rocky planets: Planets with radii below ~1.5 Rg and high bulk densities are
inferred to be primarily rocky. These include true Earth analogues, though their
detection is challenging due to their small size and low signal-to-noise ratios in both
RV and transit data. Interestingly, the population exhibits a deficit of planets near
1.5-2 Rg, known as the radius valley, which may reflect divergent evolutionary
pathways driven by atmospheric loss (see figure 4, Rogers and Owen (2021)).
Whether rocky exoplanets resemble the terrestrial planets of the Solar System in

structure and composition remains an open question.

Beyond these size-based groupings, exoplanets also orbit an extraordinary range
of stellar hosts—from cool M dwarfs to hot, massive O- and A-type stars. Host
star properties can influence planetary formation, retention of volatiles, and the
likelihood of atmospheric loss. For instance, metal-rich stars have been linked to
an increased likelihood of hosting giant planets (Quirrenbach et al., 2011; Fischer
and Valenti, 2005), and high-energy radiation from young or active stars can strip

away lightweight atmospheres—particularly for low-mass planets in close-in orbits

Overall, the combination of these observational biases, stellar dependencies, and
compositional diversity motivates the development of flexible, physics-based interior
models capable of disentangling this complexity—one of the primary aims of this
thesis. We will focus on characterizing the interiors of sub-Neptunes, since their
ubiquity and lack of solar system analogues makes them particularly interesting

targets for further study.

1.2.2 Bulk Composition of sub-Neptunes

For planets with well-measured masses and radii, it is possible to constrain their
bulk densities and thereby gain insight into their interior compositions. These
quantities serve as critical inputs to planetary interior structure models like SMILE
(see Section 2.2), which use them to infer plausible combinations of core, mantle,

water, and gas envelope components. A first-order interpretation involves com-
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paring observed properties to theoretical mass-radius relations for planets of pure
composition—iron, silicate rock (MgSiO3), water, or hydrogen—helium. While such
models are admittedly idealized, they offer valuable baselines for interpreting the

diversity of planetary interiors.

This diversity is further illustrated in Figure 3, which shows the mass-radius
distribution for sub-Neptune to Neptune-sized planets orbiting M dwarfs (Rogers
et al., 2023). Overlaid are theoretical curves for Earth-like, water-rich, and H/He-
enveloped planets, highlighting the wide range of plausible compositions among
small planets. The light orange band denotes the range of sizes consistent with thin
H/He atmospheres atop rocky cores, while some low-density planets lie above even
these curves—suggesting significant water content. However, degeneracies remain:
planets with intermediate densities can often be fit by either water-rich interiors or
rocky compositions enveloped in thin hydrogen atmospheres (Mousis et al., 2020;
Turbet et al., 2020; Aguichine et al., 2021). The equilibrium temperature also

plays a key role, influencing atmospheric retention and escape.
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Figure 3: Mass-radius diagram of planets orbiting M dwarfs, overlaid with com-
position models for rocky, water-rich, and H/He-enveloped interiors. Orange
shading marks the regime of low-density planets consistent with H/He atmospheres.
Adapted from Rogers et al. (2023).
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The interpretation of sub-Neptune compositions is particularly complex. These
planets exhibit a wide range of densities and interior makeups, suggesting that
their cores, water layers, and atmospheres can vary greatly from one planet to
another. Figure 4 illustrates one of the most striking population-level features: the
so-called radius valley, a dearth of planets between 1.5 and 2 Rs that separates
rocky super-Earths from larger mini-Neptunes (Fulton et al., 2017). This feature
is thought to arise from evolutionary processes such as photoevaporation (Owen
and Wu, 2013) or core-powered mass loss (Gupta and Schlichting, 2019), which
preferentially strip atmospheres from low-mass, close-in planets—leaving behind
smaller, denser cores. The valley therefore encodes valuable information about

atmospheric retention and the thermal history of exoplanets.
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Figure 4: Completeness-corrected histogram of planet radii for short-period planets,
showing a bimodal distribution with peaks near 1.3 Rs and 2.4 Rg. The deficit
near 1.7 Rg is known as the radius valley. Adapted from Fulton et al. (2017).

While mass and radius provide first-order constraints on planetary compositions,
equilibrium temperature and atmospheric metallicity can influence a planet’s
interior structure and what is observable from spectral retrievals. Benneke et al.
(2024) proposed a temperature-dependent classification scheme for sub-Neptunes,

distinguishing three distinct interior regimes: Hycean worlds (hydrogen-rich planets
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with potential subsurface oceans), Stratified mini Neptunes (planets with hydrogen-
rich low metallicity atmosphere above denser volatile layer), and miscible-envelope
sub-Neptunes (where volatiles remain well mixed with hydrogen throughout the
envelope, Benneke et al., 2024). Volatiles, in this context, refer to molecules like
water (HoO), methane (CHy), and carbon dioxide (COsz) that can exist in gas or

liquid form and easily respond to changes in temperature and pressure.

These regimes differ in whether water and other volatiles condense out of the
upper atmosphere or remain well-mixed with hydrogen, which in turn affects the
atmospheric composition accessible to transmission spectroscopy, as shown in
Figure 5. In colder, stratified (layered) interiors, heavy volatiles may be hidden
beneath the observable atmosphere, making the planet appear more hydrogen-rich
than it truly is. In contrast, warmer planets with fully mixed envelopes allow
volatiles to remain suspended throughout the atmosphere, enabling a more accurate
retrieval of the bulk envelope composition. In the population-level study presented

in this study, we model the planets assuming a mixed envelope scenario.

H,/He - dominated Ha/He - dominated
Liquid H,O
l ' H,0 condensation
Silicates Cold trapping »
Silicates Silicates

Hycean World Stratified Mini-Neptune Miscible-Envelope Sub-Neptune
(coldest) (cool) (warm/hot)

Figure 5: Temperature-dependent interior structure of sub-Neptunes driven by
the phase changes of H,O. For example, TOI-270d’s high atmospheric metal mass
fraction indicates that high-molecular-weight volatiles (H,O, CHy, CO, CO;) are
well-mixed with the Hy/He in a warm miscible envelope (right scenario). Adapted
from Benneke et al. (2024).

Nonetheless, compositional inference remains highly degenerate. Many observed
planets are consistent with a range of interiors, depending on assumptions about

temperature, composition, and formation history. For example, the same bulk
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density can correspond to either a rocky planet with a thin H/He envelope or
a water-rich world with little to no gas (Lozovsky et al., 2018). Atmospheric
metallicity, temperature, and host star activity all further modulate observable
properties and must be accounted for in any robust interior model (Thorngren et al.,
2016, 2019). The presence of volatile-rich “water worlds” is especially intriguing,
particularly around M dwarfs, where ice-rich material can be accreted even in
close-in orbits due to the proximity of the snow line (Kimura and Ikoma, 2022).
Indeed, some studies suggest that low-mass stars may preferentially host planets

with water-dominated envelopes (Luque and Pallé, 2022).

As more precise mass and radius measurements become available, alongside spec-
troscopic observations with JWST to measure atmospheric composition, the ability
to distinguish between rocky, water-rich, and gas-enveloped planets will improve.
In the meantime, models like SMILE (more details on section 2.2) are essential
tools for interpreting this structural diversity. They allow us to move beyond bulk
density alone and extract more meaningful inferences about the internal structure
of planets like TOI-270d (see Section 3) within the broader context of the exoplanet

population.

1.2.3 Habitability

The broader search for life remains one of the core motivations behind exoplanet
science. A planet is often considered potentially habitable if it resides within the
“habitable zone” of its host star—the region where stellar insolation allows for
liquid water to exist on the surface (Dressing and Charbonneau, 2015). However,
this orbital definition alone is not sufficient. A planet’s atmosphere, interior
composition, and the activity of its host star all strongly influence its surface and
subsurface conditions (Meadows and Barnes, 2018). Particularly around M dwarfs,
flare activity and atmospheric erosion pose challenges to habitability, even for

planets within this nominal zone.
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In recent years, the concept of habitability has expanded to include exotic config-
urations such as Hycean worlds—sub-Neptunes with hydrogen-rich atmospheres
overlying high-pressure liquid water layers (Madhusudhan et al., 2021). While these
planets may not have solid surfaces, they could still offer stable, temperate environ-
ments shielded from harmful radiation. The James Webb Space Telescope (JWST),
already operational, is actively characterizing the atmospheres of small exoplanets,
including several Hycean candidates. Meanwhile, the upcoming Extremely Large
Telescope (ELT), expected to begin science operations around 2028, will push
the frontier even further by enabling high-resolution ground-based spectroscopy
(Observatory, 2024). Together, these observatories provide our best opportunity yet
to detect atmospheric biosignatures and probe the limits of planetary habitability

beyond the Solar System.

1.3 Motivation for This Study

Sub-Neptune exoplanets, planets with radii between Earth and Neptune, represent
the most common class of exoplanets in our galaxy. Yet, their composition
and formation histories remain poorly understood. Unlike the terrestrial or gas
giant planets of our solar system, sub-Neptunes have uncertain interior structure
properties. This presents a major modeling challenge: multiple compositions can

produce the same mass and radius, a problem known as compositional degeneracy.

Although thousands of sub-Neptunes have been discovered, most existing models
struggle to resolve this degeneracy. Many rely on oversimplified assumptions, such
as isothermal interiors or stratified, unmixed volatile layers, and often neglect
constraints from atmospheric observations. As a result, key questions remain
unanswered: What is the true compositional diversity of sub-Neptunes? Are they
water-rich, hydrogen-rich, a combination of sub-populations, or something else?

How do these objects form and evolve?

This study addresses these challenges by developing interior structure models

16



that incorporate temperature-dependent equations of state, isothermal-adiabatic
thermal profiles, and mixed H/He-H5O envelopes. Importantly, this work connects
interior structure models to observable quantities such as atmospheric mean molec-

ular weight (MMW), enabling direct comparison with JWST spectral retrievals.

The analysis begins with TOI-270d, a well-characterized sub-Neptune with new
JWST constraints, and expands to a broader population of planets selected for
upcoming or ongoing atmospheric observations. Through this combined case-
study and population-level approach, the goal is to demonstrate that detailed
interior structure modeling—when done carefully—can yield meaningful insights
into planetary composition, even in the absence of detailed atmospheric spectra.
As high-precision observations become more common, frameworks like this will be

essential for interpreting the growing diversity of small exoplanets.

2 Modeling Framework and Physical Founda-

tions

2.1 Initial Steps to Interior Structure Modeling

Understanding a planet’s internal structure requires linking physical laws with
material properties. At the heart of this connection is the equation of state
(EOS), which describes how material’s density responds to change in pressure and

temperature:

p=p(PT) (1)

Each planetary material-such as iron, silicates, water, or hydrogen-helium, has its
own EOS, which determines how compressible it is under planetary conditions.

The EOS is essential for evaluating the planet’s internal density structure and,

17



ultimately, its radius.

Once the EOS provided a way to get the local density, the stage was set to
numerically integrate the structure equations that shape a planet’s interior layer

by layer.

The first equation I used to integrate was the mass continuity equation, which
ensures that mass is correctly distributed throughout the planet’s volume. It

describes how the radius changes with increasing enclosed mass:

dR 1

= )

dM 47w R?p
At each step of the integration, the local density p is required. This value is
obtained using the equation of state (EOS), which defines density as a function of
pressure and temperature. Once p is known, the mass continuity equation provides

the next value of the radius.

The second key equation is hydrostatic equilibrium, which ensures that the inward

force of gravity is balanced by the pressure gradient at each layer:

dP GM
dM ~—  4rR4 (3)

This equation is evaluated using the current radius (from mass continuity) and the
mass enclosed up to that layer. Together, these two differential equations describe

the planet’s interior structure when linked by the provided EOS.

The equation of state (EOS) describes how materials compress under pressure
and temperature—directly determining the planet’s internal density structure
and, ultimately, its radius. During this initial step, my work didn’t consider the
temperature part from the EOS. For rocky interiors (iron and silicate), I adopted
isothermal EOS models from Seager and et al. (2007), as thermal effects in these

layers have minimal influence on the mass-radius relation (Grasset et al., 2009;
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Howe et al., 2014).

To solve this coupled system, I applied Euler’s method, which propagates the
solution forward using a first-order approximation. At each mass increment AM,

the radius and pressure are updated according to:

dR dP
Ri+l—Ri+(m)i'AM ; ]DiJrl_Pi"‘(d_M)i'AM (4)

Mass increases step-by-step as AM is added at each layer:

M = M; + AM

Here:

The subscript ¢ denotes the current step in the numerical integration, corre-

sponding to a shell at a given depth inside the planet.

M; is the total mass that has been accumulated up to the current step.

R; and P; are the radius and pressure at step i (the current shell).

R;11 and P, are the updated values at the next shell, after adding a small

mass increment AM .

(%)i and (%)i are the derivatives evaluated at step 1.

This method allows the structure to be built up incrementally from the surface

inward, keeping track of how radius and pressure evolve as more mass is enclosed.

The integration proceeds from a known surface pressure and an initial guess for
the planet’s surface radius R,. To find the correct planetary radius, I began by
setting a plausible range of surface radii that spans the expected size for Earth-like

planets. I then calculated the midpoint of this range and used it as an initial guess
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for R,. This radius guess was passed to the integration routine, which computed
the resulting total mass. I compared the integrated mass to the observed mass of

the target planet.

If the integrated mass was too large, it meant the radius was underestimated, so 1
increased the guess. If the integrated mass was too small, the radius was too large,
and I decreased it. This process was repeated until the computed mass matched
the observed mass to within one part in a million. We call this a bisection method.
The program evaluates the radius and pressure profiles as it accumulates mass,

and terminates when the total enclosed mass equals the target planet mass.

To validate this method, I first modeled an Earth-mass planet with a pure silicate
(MgSiOs) and then a pure iron (Fe) composition. I adopted isothermal EOS models
from Seager and et al. (2007) for both MgSiO3 and Fe, interpolated density as a

function of pressure, and implemented the structure equations as described above.

I extended the model to planets ranging from 1 to 10 Earth masses to examine
how the radius changes with mass. As shown in Figure 6, pure silicate consistently
yield larger radii than pure iron planets at a given mass, which shows the lower
density of silicate relative to iron. For example, at 5 Earth mass, a silicate planet
has a radius of around 1.6, while a pure iron planet is closer to 1.2 Earth radii. My
model successfully reproduced the radius of a pure silicate and pure iron Earth to

within a few percent of published mass-—radius relations (Seager and et al., 2007).

Figure 6 is modeled on an Isothermal temperature profile assumption. An isother-
mal profile assumes a constant temperature throughout the planet’s interior. While
this is a simplification compared to real planetary interiors, which typically have
temperature gradients, this assumption removes temperature as a variable in the
EOS and allows the use of a pressure-dependent tabulated EOS. As a result, it
provides a computationally simple and physically reasonable baseline for initial

validation.
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Figure 6: Mass-radius relationship from initial modeling work. The curves represent
my calculated results for planets composed of pure iron and pure silicate, compared
to known theoretical models.

Although these initial models offered useful insights into how planetary radius
responds to mass and composition, they were limited in several key ways. They
assumed a single, uniform material throughout the planet, neglected the effects
of temperature gradients, and could not account for layered structures or phase
transitions. As such, they could not capture the full physical complexity of exo-

planets—particularly those with volatile-rich envelopes or differentiated interiors.

To overcome these limitations, I transitioned to a more sophisticated modeling
framework: SMILE!. While it builds on the same physical principles and structure
equations as my initial model, SMILE expands the scope considerably—it supports
multiple compositional layers, temperature-dependent equations of state, and more

realistic thermal structures, including isothermal—-adiabatic profiles and fully mixed

H/He-H50 envelopes.

An isothermal-adiabatic profile assumes that the outermost part of the atmosphere

IStructural Model of Internal Layers of Exoplanets
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is at constant temperature (isothermal), anchored to the planet’s equilibrium tem-
perature, while deeper layers transition into a convective region where temperature
increases with pressure along an adiabatic gradient (Nixon and Madhusudhan,
2021). This two-part structure reflects the physical conditions expected in sub-
Neptune atmospheres, where stellar irradiation dominates the upper layers and

internal heat transport drives convection below.

This framework forms the foundation for the interior structure modeling presented

in this thesis.

2.2 SMILE

While my initial structure models (see Section 2.1) focused on single-layer planets
using simplified assumptions, more realistic exoplanet interiors require a flexible
framework that incorporates layered compositions, temperature gradients, and
temperature-dependent material properties. For this purpose, I utilized the publicly
available SMILE package (Nixon and Madhusudhan, 2021), developed by Nixon et
al., which is designed to simulate the internal structure of exoplanets with arbitrary

layerings and thermal profiles.

SMILE builds on the same fundamental structure equations introduced earlier—mass
continuity and hydrostatic equilibrium—Dbut extends the approach to accommodate
complex, multi-material interiors and self-consistent thermal stratification. Instead
of solving for radius using a fixed composition and isothermal profile, SMILE

supports up to four fully differentiated layers:

An iron (Fe) core,

A silicate (MgSiO3) mantle,

A water (H20) layer,

An optional hydrogen—helium (H/He) envelope.
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Each layer is defined by a mass fraction, and the sum of the layers must equal the

total planet mass.

Model Inputs: Figure 7 summarizes the key inputs required by SMILE. These

include:

e The total planetary mass (M,), surface pressure (F), and surface temperature

(To) as boundary conditions,
e Mass fractions for each of the four potential layers,

e A pressure-temperature profile (e.g., isothermal-adiabatic) to describe the

thermal structure,

e Equations of state (EOS) for each material, interpolated from tabulated data.

Temperature profile Equations of state
Mass fractions of p T p
Fe, MgSiO;, H,0, H/He

Boundary conditions
(M, P, To)

Figure 7: Inputs to the SMILE model include layer mass fractions, boundary
conditions, a pressure-temperature profile, and material equations of state.

Thermal Structure: Isothermal-Adiabatic Profiles

To accurately model the internal structure of a planet, it is essential to specify
how temperature changes with depth. The thermal profile directly influences the

equation of state (EOS) and, in turn, the resulting pressure and density profiles.

In this study, we adopt a two-layer temperature structure consisting of an isothermal
layer at the top of the atmosphere, transitioning to an adiabatic gradient deeper
in the envelope. This usothermal-adiabatic profile offers a physically motivated
yet computationally tractable approach to representing the thermal structure of

sub-Neptune atmospheres (Nixon and Madhusudhan, 2021).
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The isothermal region is anchored to the planet’s equilibrium temperature 7.,

defined by stellar and orbital properties:

R,

Toy = Toy| 2
4 2a

(1 - Ap)'! (5)

where T, is the effective temperature of the host star, R, is the stellar radius, a
is the planet’s semi-major axis, and Ag is the Bond albedo. The Bond albedo,
ranging from 0 (absorbs all energy) to 1 (perfectly reflective), is the fraction of total
incident stellar energy that a planet reflects back into space across all wavelengths

(Carroll and Ostlie, 2007).

We compute T¢, for each planet using Equation 5, assuming zero Bond albedo and
full heat redistribution. The resulting equilibrium temperature defines the upper

isothermal boundary condition in all SMILE simulations.

The transition between the isothermal and adiabatic layers is set by the pressure at
the radiative—convective boundary, P,q, which marks where radiative transport be-
comes inefficient and convection dominates. Below this boundary, the temperature

increases with pressure according to the adiabatic gradient:

dT ol
(@) = por ®)

s pPep
where « is the thermal expansion coefficient, p is the local density, and cp is the
specific heat capacity at constant pressure. For mixed H/He and HyO envelopes,

the adiabatic gradient is computed using entropy-weighted mixing (Chabrier et al.,

2019; Nixon et al., 2024).

To ensure physical consistency, P,q is selected so that water remains in the vapor or
supercritical phase at the base of the isothermal layer. This prevents condensation
near the radiative-convective boundary, as shown in Figure 8. The same methods

are used for all the planets in this study to calculate the To, and,P,g.
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Figure 8: Phase diagram of water adapted from Nixon et al. (2024), showing
vapor, liquid, supercritical, and solid regimes. The white lines indicate how the
equilibrium temperature constrains the maximum radiative-convective boundary
pressure (P,q) to prevent condensation for TOI-270d, with T,, = 387 K,P,q = 1.33
barr.

In contrast to the rocky layers, temperature substantially affects how pressure
and density evolve in volatile-rich layers. For water, we implement a temperature-
dependent EOS from Thomas and Madhusudhan (2016) that captures transitions
between vapor, liquid, supercritical, and high-pressure ice phases. For hydro-
gen—helium, we adopt the EOS from Chabrier et al. (2019), which accounts for

thermal and compositional variations relevant to sub-Neptunes.

Figure 9 shows representative EOS curves used in this study, illustrating how
density varies with pressure for the major planetary materials modeled in SMILE.
The hydrogen-helium EOS (red) shows lower densities at low pressures, highlighting
its strong contribution to inflating planetary radii even when present in small mass

fractions. Water shows a notable density jump corresponding to phase transitions.
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Equations of State: Density vs. Pressure

—— H:0 EOS (300 K)
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Figure 9: Schematic of representative EOS curves used in this study, showing how
density varies with pressure for key planetary materials. Curves are plotted at
fixed temperatures around 300 K.

With the compositional and thermal structure specified, SMILE proceeds to solve
the structure equations numerically, using an iterative approach to determine the

planetary radius.

Numerical Integration and Convergence: SMILE uses a shooting method
with bisection to solve for the planet’s radius. Similar to my initial model, an
initial guess for surface radius R, is made. The code then integrates the structure
equations inward using a fourth-order Runge-Kutta method, updating pressure,
radius, density, and temperature at each step based on the current EOS. The
process repeats, adjusting R, until the integration reaches the center of the planet

(i.e., R(M = 0)) within a small numerical tolerance.

¢ [R®=0)> 1km (R, too large) ]<_I

! |
| |
| 1
I | Choose > Solve planetary > Check > 0<R(M=0)<1km | 1|
1 R, structure equations R(M=0) (Converged) |
1 1
: ) [ R(M=0) <0 (R, too small) | — :
D e e T -

Figure 10: Flowchart of the SMILE model’s internal loop for solving planetary
radius. A bisection algorithm adjusts the radius until the integration reaches the
planetary center within a small tolerance.

26



The use of Runge-Kutta rather than Euler’'s method allows for greater numerical
stability and accuracy, particularly important when modeling stratified planets

where density can change steeply across interfaces.

Model Outputs: Once convergence is reached, SMILE outputs the final planetary
radius R, along with interior profiles for pressure, temperature, density, and compo-
sition. The internal structure is resolved layer-by-layer, allowing direct visualization

of the material stratification and the thermal behavior of each component.

H/He
Rp and j .

i - H,O phase
internal  H:0 P : )
structure Mgsio, ! structure

Fe

e -

Figure 11: Example SMILE output showing the interior layering (Fe, MgSiOs, H5O,
H/He) and corresponding pressure-temperature profile over a water phase diagram.
While this shows a fully stratified configuration, the models in this research assume
a fully mixed H/He-H5O envelope, which significantly alters both radius and
thermal structure (see also Benneke et al. 2024 and Section 3.4).

Key Advancements Over the Initial Modeling Approach (see Section 2.1):
e SMILE supports layered compositions, whereas my model assumed a single
uniform material.

e SMILE includes temperature-dependent EOS, while my model assumed an

isothermal interior.

e SMILE incorporates Runge-Kutta integration and bisection convergence, im-

proving numerical accuracy.

e SMILE can model fully mixed envelopes and track phase transitions (e.g., water

vapor to supercritical), which are not possible in the simplified approach.

27



Together, these capabilities make SMILE an essential tool for realistic interior mod-
eling, enabling the analysis of planets with complex compositions and observational
constraints (e.g., from JWST). It forms the foundation for all structure models

used throughout the remainder of this thesis.

2.3 Accelerating SMILE with Multiprocessing

Typically, SMILE has been used to generate a small number of interior models with
a fixed composition, often in the context of analyzing a single exoplanet. However,
the aim of my research is to explore the internal structure of an entire population of
sub-Neptunes. This requires generating thousands of models that span a wide and
continuous parameter space, including planetary mass, atmospheric composition,
boundary pressures, and temperature profiles. Although each individual SMILE
model runs in just a few seconds, evaluating millions of parameter combinations

becomes computationally challenging without further optimization.

To address this, I developed a custom multiprocessing framework that parallelizes
SMILE evaluations across multiple CPU cores. Instead of computing each model
sequentially, the system constructs a full grid of parameter combinations—such as
mass, P.q, equilibrium temperature, envelope mass fraction, and mean molecular
weight (MMW)—and distributes them among all available processing cores. Each
core executes SMILE independently, calculating the planetary radius and internal
structure for its assigned batch of models. Once the calculations are complete,

results are aggregated and saved for downstream analysis.
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Start: Define Fixed Input Parameters
(Mass, Surface Pressure, Temp_eq)

Generate Parameter Grid
(Pad, WMF, MMW, H/He)

Distribute Jobs Across CPU Cores
(Multiprocessing)

Run SMILE, Compute Radius
(Rp)

Validate Results
(Skip unphysical Cases, Filter Data)

Store & Output Results
R, WMF, HHE, MMW, pad

Figure 12: Architecture of the multiprocessing system used for SMILE-based grid
modeling for multiple target Exoplanets.

To enhance both physical realism and computational efficiency, the system filters out
models deemed unphysical or unstable. In particular, we exclude cases where the
hydrogen-helium (H/He) mass fraction exceeds 30%. Such high volatile contents are
unlikely to be retained by sub-Neptunes due to a combination of photoevaporative
mass loss and limitations set by planet formation theory. Low-mass planets exposed
to strong stellar irradiation can lose much of their primordial hydrogen through
atmospheric escape, while core accretion models predict that planets in this size
regime rarely acquire thick H/He envelopes in the first place (Owen and Wu,
2013; Lee and Chiang, 2015). Additionally, the framework dynamically detects the
number of available CPU cores and parallelizes the workload accordingly, ensuring

optimal utilization of computational resources across large model grids.

This parallel framework improved computational efficiency by a factor of 5-10,

depending on the model grid resolution and hardware. It made high-resolution grid
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searches feasible, enabling robust exploration of the mass-radius—composition space.
This tool proved especially useful in population-level studies where thousands of
planetary models are required to interpret observational trends across exoplanet

samples.

3 Analyzing the Internal Structure of TOI-270 d

3.1 Introduction and Scientific Motivation

TOI-270d is a temperate sub-Neptune discovered in 2019 using the transit method
by the Transiting Exoplanet Survey Satellite (TESS) (Giinther et al., 2019). It
orbits a bright M3V-type star with an apparent magnitude of J = 9.1 (Mikal-
Evans et al., 2023). The planet has a mass of 4.78 4+ 0.43 M and a radius of
2.113 £ 0.065 Rg, placing it in the sub-Neptune category (Van Eylen et al., 2021).
It completes one orbit every 11.4 days at a distance of 0.0721 AU (Giinther et al.,

2019).

At the time we began studying TOI-270d, it was considered one of the most promis-
ing small exoplanets for atmospheric characterization using transit spectroscopy,
due to its relatively low bulk density and temperate equilibrium temperature
(Mikal-Evans et al., 2023). These properties suggested that the planet could host a
volatile-rich envelope, potentially composed of water vapor or other high-molecular-
weight species, making it a strong water-world candidate (Luque and Pallé, 2022;
Van Eylen et al., 2021). These traits made TOI-270d an ideal prototype for interior

structure modeling.

Initial work exploring the internal structure of TOI-270d simplified its composition
by excluding water layers and modeling the planet as a rocky core with a H/He
envelope only (Van Eylen et al., 2021). A more recent study by Luque and

Pallé (2022) included water as a compositional component, but assumed a purely
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isothermal temperature profile throughout the envelope. These simplifications
highlighted the need for more physically motivated interior models that incorporate
thermal gradients, realistic volatile compositions, and observational constraints

such as mean molecular weight (MMW) retrieved from spectra.

TOI-270d was the first planet I analyzed using models generated with the SMILE
framework. It served as a critical testbed for validating the pipeline, exploring
structural degeneracies, and eventually expanding the modeling effort to a larger

population of sub-Neptunes.

3.2 First Attempt: Pure H;O Envelopes

To begin my research exploring sub-Neptune interiors, I explored the hypothesis
that TOI-270d could be a pure water world. In this preliminary study, I constructed
models assuming a rocky interior (iron core + silicate mantle) overlaid with a pure

H50 envelope. These were the first SMILE models I computed.

The key parameters varied in this initial grid were the water mass fraction (WMF)
and surface pressure (F,). The thermal structure was modeled using an adiabatic

temperature profile anchored at the equilibrium temperature of the planet.

In these pure water models, the envelope consisted entirely of H,O vapor, corre-
sponding to a fixed atmospheric mean molecular weight (MMW) of 18.02 g/mol;
pure H,O envelope. Figure 13 and figure 14 illustrate some of the results from this

initial analysis.

Note that, to identify physically consistent models, I used a chi-squared-like filtering
criterion that compares the modeled mass and radius to the observed values. Models
were retained only if they fell within the 1o observational uncertainties in both

mass and radius, satisfying:
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where M., and R, are the observed mass and radius of TOI-270d, M cqel
and Ryoqe are the corresponding model predictions, and o); and og are their
respective uncertainties. This same filtering criterion was applied consistently

across all models, including those with layered and mixed volatile envelopes (see

Sections 3.3 and 3.4).
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Figure 13: Mass-radius relationships for TOI-270d assuming pure H,O envelopes
with varying water mass fractions and surface pressures. The observed mass and
radius of TOI-270d are indicated in blue.

As illustrated in Figure 13, a range of water mass fractions and surface pressures

yield models that are consistent with the mass and radius of the planet.
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Figure 14: Water mass fraction vs. surface pressure for pure HyO envelope models
of TOI-270d that match its observed radius.

Figure 14 shows the range of envelope water mass fractions and corresponding
surface pressures that yield models consistent with TOI-270d’s measured mass
and radius. As the surface pressure increases, we can see the range of water mass

fractions that are consistent with the measured mass and radius of TOI-270d.

In the plots above, the water mass fraction (WMF) refers to the fraction of the
entire planet’s mass made up of water—that is, the bulk WMF. In this pure H,O
envelope scenario, all volatile mass is water, so the envelope WMEF is equal to
the total WMF'. Later sections will distinguish more clearly between these two
quantities. Ultimately, we found that a range of WMF values were consistent with
the mass and radius of the planet. However, in this preliminary study, we assumed
a purely adiabatic temperature profile, rather than setting the radiative-convective
boundary at a location appropriate for the planet’s equilibrium temperature. Our
later work used more realistic temperature profiles, leading to some differences

between results.

This first modeling phase served as both a learning experience and a foundational
validation of the SMILE framework. It also underscored the importance of surface
pressure and thermal structure in shaping planetary radii. These early results

pointed toward key directions for future modeling—namely, the need to refine the
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thermal profile using self-consistent atmospheric models and to incorporate the
effects of a hydrogen—helium (H/He) envelope for a more realistic treatment of

volatile-rich atmospheres.

3.3 Layered H/He-H;0 Envelopes (Prior to MMW Con-

straints)

Following this early work, I began incorporating hydrogen and helium into the
envelope structure. This marked a shift from the pure HyO hypothesis to a more
realistic two-component envelope model composed of H,O and H/He. This also
introduced the concept of the total envelope mass fraction—the fraction of the
planet’s total mass assigned to the volatile envelope, separate from the solid interior.
The envelope was modeled as layered rather than mixed, meaning H,O and H/He
occupied distinct regions within the volatile layer.For each model, I independently
varied the envelope mass fraction (from 0 to 1) and the envelope’s water mass
fraction (WMF, also from 0 to 1). Here, envelope WMF refers specifically to
the mass fraction of water within the envelope alone, that is the fraction of the

envelope’s mass composed of HyO.

The total mass of water and H/He in the planet was calculated as:

Total water mass fraction = envelope fraction x WMF

Total H/He mass fraction = envelope fraction x (1 — WMF)

These models were still constrained only by mass and radius within 1o of the
observed values, with no atmospheric or spectral information incorporated at this
stage. The envelope components were not yet treated as miscible, and no mean

molecular weight (MMW) constraints were applied.

While useful for initial exploration, these layered-envelope models carried inher-
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ent limitations. Recent observations and theoretical work suggest that in warm
sub-Neptunes like TOI-270d, hydrogen, helium, and water are likely to exist as a
homogeneous, miscible mixture under the planet’s high-pressure, high-temperature
conditions (Benneke et al.,; 2024). In such regimes, phase separation is unlikely, and
efficient convection promotes compositional mixing throughout the envelope. More-
over, transmission spectra from JWST will provide constraints on the atmospheric
mean molecular weight (MMW), enabling a direct link between modeled envelope
composition and observables. These insights motivated the transition to fully
mixed H/He-H50 envelopes, guided by MMW-based sampling. This approach not
only reflects a more physically realistic interior structure but also enables forward

modeling compatible with spectroscopic data.

3.4 Mixed H/He-H>0 Envelopes: Transitioning to MMW-

Based Sampling

Recent theoretical and observational advances suggest that many sub-Neptunes
possess atmospheres where hydrogen, helium, and water remain well-mixed rather
than separated into distinct layers. This configuration is supported by both high-
pressure miscibility studies Soubiran and Militzer (2015) and the expectation of
strong vertical mixing in volatile-rich envelopes. In particular, steep temperature
gradients in sub-Neptune atmospheres-driven by stellar irradiation and internal
heat-can trigger deep convection and inhibit the formation of stable, layered
structures (Pierrehumbert, 2023). As a result, fully mixed envelopes are now
considered a physically realistic configuration for many volatile-rich exoplanets,
including recent studies of TOI-270d and GJ 1214b (Benneke et al., 2024; Nixon
et al., 2024).

Motivated by this, I transitioned from layered-envelope models to a framework
that assumes fully mixed H/He-H,O envelopes in all SMILE simulations. In this

setup, the gaseous envelope is treated as a single, well-mixed fluid composed of
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hydrogen, helium, and water, under the assumption of fully mixed envelopes.

3.4.1 Exploring Mixed Envelopes with WMF Sampling and MMW

Constraints

The atmospheric mean molecular weight (MMW) of TOI-270d’s atmosphere was
recently determined to be 5.47112% g/mol (Benneke et al., 2024). Assuming that
the envelope consists primarily of hydrogen, helium, and water, it is possible to map
this MMW constraint to an envelope water mass fraction (WMF). At this stage,
the envelope was assumed to be fully mixed, but sampling was still conducted in
terms of water mass fraction (WMF), rather than directly in MMW space. To
bridge the two, I constructed a numerical mapping between WMF and MMW for

H/He-H,O mixtures, as shown in Figure 15.

Assuming a solar hydrogen-to-helium mass ratio of 27.5% He (Asplund et al., 2009),
I varied the envelope’s WMF from 0 to 1, distributing the remaining mass between

H, and He, (Mp, and My,, respectively):

My = (1 — WMF) - 0.275, My, = (1 — WMF) - 0.725

These mass fractions were then converted to mole counts via n; = ]\fi, and used to

0

ng

compute the mole fractions x; = S These mole fractions were then used to
5 T

compute the mean molecular weight:
Matm = Z Ti - g

This process yielded a continuous mapping between WMF and MMW, enabling
me to determine which WMF' values would correspond to atmospheres consistent

with TOI-270d’s observed MMW range. The results are shown in Figure 15.
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Figure 15: Relationship between atmospheric mean molecular weight (MMW)
and water mass fraction (WMF). Left: Full curve from MMW = 2 to 18 g/mol,
with red dashed lines marking WMEF' thresholds of 0.53 and 0.75. Vertical blue
lines indicate the JWST-retrieved MMW range for TOI-270d (4.33 to 6.72 g/mol).
Right: Zoomed-in view focusing on the observationally allowed MMW range.
This panel reveals that TOI-270d’s envelope water mass fraction must lie between
approximately 0.53 and 0.75 to remain consistent with the measured MMW.

As shown in the figure 15, only models with envelope WMF's between approximately
0.53 and 0.75 are consistent with TOI-270d’s observed atmospheric MMW. The
steep slope of the MMW-WMF curve in this range highlights the diagnostic
power of MMW as an observable: even small changes in MMW translate to
significant differences in envelope composition. Note that this refers specifically to
the envelope—mnot the total planetary water fraction, which must also account for

the envelope mass fraction.

Using this mapping, [ filtered a precomputed grid of models (originally sampled in
WMF space) to retain only those with MMW values within the JWST-retrieved
range of 4.33-6.72 g/mol. In this sense, the models were MMW-consistent by

construction, even though MMW was not the primary sampling variable.

At this stage, I also explored a wide range of radiative-convective boundary
pressures (P,q), including 0.1 bar, 1 bar, 10 bar, and 100 bar. However, these
values were chosen arbitrarily and not yet constrained by the water phase diagram.
As a result, some models permitted condensation in the envelope, potentially

inflating the plausibility of high-water-fraction solutions.
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Figure 16 shows how these WMF-sampled models populate the mass-radius space,
including compositions that match TOI-270d’s measured radius across a wide
range of P,y assumptions. While the figure demonstrates the flexibility of the
WDMF-based models, it also underscores the need for tighter thermal constraints.
0Mass-Radius Relationship for Best-Fit Samples
rrrryrrrr[rrrr|yrrrr|rrrrrrr T T Tt
[ 0.00% H20 ]

[ 6% H20, 4% H/He .
2.75[ 10% H20, 5% H/He é ]

F 17% H20, 6% H/He .
2.50F l & }:
: /, E

i TOI-270d
2.25}

3.0

2.00}

1.75F

Radius (Earth Radii)

1.50F

1.25}

4 I I AT EF AT AT AT A AT A IS AR T E TS B AT AT ST B B AT A AT AR
1.00 2 3 7 5 6 7 8 9 10

Mass (Earth masses)

Figure 16: Mass-radius relationships for best-fitting compositions of TOI-270d,
constrained to the observed MMW range (4 = 5.47117) g/mol). These models
were generated before switching to MMW-based sampling and do not yet apply a
condensation-aware cutoff on P,q.

Figure 17 further illustrates how the best-fitting envelope, water, and H/He mass
fractions vary across the allowed MMW range. As MMW increases, both the
water mass fraction and the overall envelope mass increase steeply, while the H/He
fraction remains relatively low. These results reflect the compositional degeneracy
present before applying condensation-aware filtering and motivate the need for

further refinement in later modeling stages.
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Figure 17: Best-fitting envelope, water, and H/He mass fractions as a function of
MMW for TOI-270d. These results were obtained without restricting P,q to values
that prevent HoO condensation, and therefore differ from the final, condensation-
aware grid models.

Subsequent modeling phases addressed this shortcoming by imposing physically
motivated upper limits on P,q, using the planet’s equilibrium temperature and the
water phase curve to ensure that all models remained in the vapor or supercritical
regime (see Section 2.2). This refinement, informed by studies such as Gupta et al.
(2025), eliminated condensation-permitting models and brought the framework

into full physical consistency with thermal expectations for close-in sub-Neptunes.

3.4.2 Final MMW-Based Modeling and Constraints on TOI-270d’s

Composition

Can interior structure modeling alone, without the aid of atmospheric constraints-
yield meaningful insights into the bulk composition of a sub-Neptune exoplanet
like TOI-270d? This question served as the foundation for my final modeling phase.
By systematically exploring a broad grid of compositions, I tested how interior

modeling alone could narrow down TOI-270d’s possible structure.
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To explore the full range of plausible interior compositions for TOI-270d, I generated
models across a two-dimensional grid of envelope mass fraction (ranging from 0.01
to 1.0) and atmospheric mean molecular weight (MMW, ranging from 2.35 to
18). This spans compositions from pure H/He to pure water vapor. The grid was
computed using a custom multiprocessing framework built on top of SMILE (see

Section 2.3), enabling efficient evaluation of thousands of composition models.

For each MMW value, the corresponding envelope water mass fraction (WMFq,,)

was computed using the prescription from Nixon et al. (2024):

T alLy ®)
Patm (M0 — MH/He)

where p,0 = 18.02 g/mol, py/me = 2.34 g/mol, and fiayy, is the sampled MMW.

The implied H/He and H,O mass fractions were then scaled by the total envelope
mass fraction to compute the total mass fraction of each volatile component
for each model. All envelopes were assumed to be fully mixed and followed an

isothermal—-adiabatic temperature profile.

To identify physically plausible solutions, I evaluated each model using SMILE
and applied the same chi square filtering criterion described in Equation 7, which
requires the model’s mass and radius to fall within the 1o observational uncertainties
of TOI-270d. Only models with x? < 1 were retained. Additionally, I fixed (P,q =
1.32), the highest value that avoids water condensation at TOI-270d’s equilibrium

temperature.

40



Best Fitting Fractions vs. MMW for TOI_270d
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Figure 18: Best-fitting water mass fraction (blue), envelope mass fraction (green),
and H/He mass fraction (red) for TOI-270d, plotted as a function of mean molecular
weight (MMW). These models were generated using MMW-based sampling and
filtered using the criteria listed above, but without applying the 50% WMF cutoff.
The H/He Ratio in this plot represents the Hydrogen Helium Mass Fraction

Figure 18 illustrates how the envelope composition evolves across the sampled
MMW grid. At low MMW values (near 2.35 g/mol), the envelope is composed
almost entirely of hydrogen and helium, with negligible water content. As MMW
increases, the required water mass fraction rises steeply to maintain consistency
with TOI-270d’s observed radius. These results demonstrate the steep degeneracy
between H/He and H,O in the mixed-envelope regime: many combinations can
match the observed mass and radius, but only a subset are chemically and physically

realistic.

To further constrain the solution space, I applied an upper limit on the planet’s
total water mass fraction, excluding all models exceeding 50%. Luque and Pallé
(2022) This filtering step is motivated by formation and evolution considerations:
extremely water-rich planets are likely rare in close-in orbits due to limited icy

accretion and long-term atmospheric loss (Rogers and Owen, 2021).

Imposing this cutoff narrows the space of acceptable models, excluding water-
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dominated atmospheres and setting an upper limit of p,¢, ~ 15.4. Figure 19 shows
the distribution of best-fitting H/He mass fractions across the remaining MMW

range.
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Figure 19: H/He mass fraction vs. mean molecular weight (MMW) for TOI-270d
after applying a 50% WMF cutoff. The physically plausible region excludes water-
dominated atmospheres (MMW 2> 15.4 g/mol) and reveals a peak in allowable
H/He fraction near MMW = 9.1 g/mol.

After filtering, we find that the allowed MMW range is reduced to approximately
2.35-15.4 g/mol. The maximum allowable H/He mass fraction is 4.27%, occurring
at MMW = 9.06 g/mol. The minimum viable H/He mass fraction is 0.2%,
corresponding to MMW = 2.35 g/mol (a nearly pure H/He atmosphere). Solutions
at low MMW (2.35-4.5 g/mol) are H/He-dominated, while those at intermediate
MMW (6-12 g/mol) contain mixed envelopes with varying H/He-H50O ratios.
High-MMW models (MMW > 15.4 g/mol) are eliminated due to exceeding the

water fraction limit.

The release of JWST spectra for TOI-270d then provided a concrete atmospheric
constraint. Benneke et al. (2024) reported a measured mean molecular weight (in

g/mol) of:

Hatm = 5471—%%2
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This value allowed me to formally restrict the MMW sampling range to 4.33-6.72
g/mol and rerun the model grid within this window. Since the models had already
been filtered for physical viability, the addition of this MMW constraint allowed for
a much tighter constraint on TOI-270d’s bulk composition. Only models within this
MMW range—and consistent with observed mass, radius, and water condensation
limits—were retained. We found that the total envelope mass fraction ranges
from 8%-17%, with the HyO fraction ranging from 5%-14%. This led to a narrow

constraint on the H/He fraction of 2%-4%.

Even prior to the JWST atmospheric measurement, this detailed interior structure
modeling placed an upper limit of MMW = 15.4 g/mol, effectively ruling out
highly water-dominated envelopes. The observed MMW of 5.47 + 1.2 g/mol falls
well within this predicted range, confirming that the planet lies in the moderate
H/He regime. This demonstrates that interior structure modeling alone can yield

meaningful composition constraints, even in the absence of atmospheric data.

This result—grounded in detailed interior structure modeling—provided the mo-
tivation to extend this approach to a population-level analysis. Even without
atmospheric spectra, detailed interior structure modeling can place physically
meaningful bounds on the bulk composition of sub-Neptunes. Then, when MMW
measurements do become available (as with TOI-270d), they can be layered onto

the model grid to further constrain the bulk composition of the target exoplanet.

TOI-270d emerged as a prototypical case study for the SMILE framework—guiding
the structure modeling approach used across the 18 JWST Cycle 1-3 sub-Neptunes
presented in Section 4. Unlike the low envelope mass fractions (~0.5-1%) proposed
in early sub-Neptune formation models (Owen and Wu, 2013), TOI-270d exhibits
a significantly more massive volatile envelope, with a constrained H/He fraction of
2-4% and a total water fraction as high as 14%. This finding confirms TOI-270d’s
status as a mixed-envelope sub-Neptune and provides direct constraints on its bulk

water content. The elevated water fraction suggests that TOI-270d must have
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formed or evolved in a way that enabled substantial water enrichment—whether
through migration from beyond the snow line, reduced atmospheric escape, or
water-rich accretion. More broadly, these results point to greater diversity in the
atmospheric and interior structures of sub-Neptunes than previously assumed, mo-
tivating future studies into the physical mechanisms that govern water enrichment

in volatile-rich planets.

4 Exoplanetary Population Study: Interior Struc-

tures of Sub-Neptunes

4.1 Method

Building on the detailed modeling of TOI-270d, I expanded the analysis to a
broader population of sub-Neptune exoplanets. The goal of this population-level
study is to explore the diversity of internal structures across planets with similar
sizes but potentially very different compositions and thermal environments. All
targets selected for this study are confirmed transiting sub-Neptunes with well-

characterized masses and radii and are scheduled for atmospheric observations by

JWST during Cycles 1 through 3.

This selection ensures that the targets are not only observationally accessible but
also among the most promising candidates for connecting atmospheric data to
interior structure. The final sample comprises 27 exoplanets, of which 20 have been
fully analyzed with SMILE as of this writing. The remaining systems are pending

analysis due to either missing parameters or shortage of time.
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4.1.1 Sample Overview

The planets in this population span a wide range of equilibrium temperatures,
from temperate environments (e.g., LHS-1140b and LP-791-18c) to more irradiated
planets such as TOI-824b and WASP-47e. Their radii fall between 1.6 and 3.7
Earth radii, and their masses span from approximately 3 to 20 Earth masses. Bulk
densities vary widely, reflecting underlying diversity in envelope composition and

thickness (see Table 1 and Figure 20).
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Figure 20: Mass-radius diagram for the 27 JWST Cycle 1-3 sub-Neptune targets.
Color corresponds to the calculated equilibrium temperature, and point size scales
with bulk density.

Figure 20 illustrates the diverse structural landscape occupied by sub-Neptunes.
Some, like LHS-1140b and TOI-1685b, exhibit compact, high-density structures
while others, like TOI-270d and TOI-1231b, have lower bulk densities. Notably,
several targets occupy similar positions in the mass-radius diagram but differ
significantly in equilibrium temperature or density, suggesting possible differences

in atmospheric loss, envelope metallicity, or formation history.
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Name Mass (Mg) Radius (Mg) Toq (K)  Cycle
TOI-836 b**  45+09 1.70+0.07 871 +36 1
LHS 1140 b** 56 £0.2 173 £0.03 226 +4 1
TOIL-776 b** 40409 1.854+0.13 514+17 1

K2-18 b** 809211 237+022 284+15 1
LP 791-18 ¢** 7.1 4 0.7 2444010 324 £ 2 1
TOI-836 c** 9.6 327 2594 0.09 665+27 1
TOI-421 b** 72407 2687918 981 +16 1
CGJ 1214 b** 84404 273 +0.03 567 + 8 1
TOI-1685 b** 3.1+ 0.6 1.70 £0.70 1069 + 16 2
WASP-47 e** 6.8 +£0.6  1.81 +£0.03 2208 +40 2
GJ 9827 d** 3.0+ 0.6 1.89%01% 600 £17 2
TOI-1468 ¢ 6.6 =0.7 2.06 £0.04 338 3 2
GJ 3090 b 33407 213+£011 693 +18 2
TOI-270 d** 48+ 04 213+0.06 38710 2
LTT 3780 ¢ 804405 239919 350+ 10 2
TOI-125 b**  95+09 2734+0.08 1037 £11 2
TOI-125 ¢** 6.6 £1.0 276 +0.10 828+ 9 2
TOI-824 b** 18.5 715 2.93 1% 1253 732 2
TOI-1130 b** 193 +£1.0 256 £0.13 632+ 13 2
TOI-1231 b** 154 4+ 3.3  3.65 01¢ 330 + 4 2
TOI-4336 b 5.1% 2.121008 308 £ 9 3
HD 207496 b** 6.1 & 1.6 2.257012 7434+ 26 3
TOI-2076 b 6.9% 252 +004 79712 3
TOI-4010 b 11.0 + 1.3  3.02 4+ 0.08 1441 *13 3
TOI-451 ¢ 9.8* 3104013 875 713 3
TOI-2076 d 10.5% 3.23 +£0.06 530 & 8 3
TOI-2076 ¢ 12.0% 3.50 £0.04 630+ 9 3
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Table 1: List of JWST Cycle 1-3 sub-Neptune targets selected for interior structure
modeling. Columns show planetary name, mass, radius, equilibrium temperature,
and JWST observation cycle. A total of 27 planets are listed, of which 18 (high-
lighted in the main analysis) were fully modeled in this study using the SMILE
framework. Systems with incomplete or pending analysis are included here for
completeness. Planets marked with x* are those fully modeled in this study using
the SMILE framework. The remaining systems are pending due to incomplete data
or time constraints.



4.1.2 Modeling Procedure

Having defined the target sample, I applied a uniform interior modeling approach
across all planets. Each planet was modeled with a differentiated interior (iron
core, silicate mantle) and a fully mixed H/He-H,O envelope, following an isother-
mal-adiabatic temperature profile anchored to the equilibrium temperature (T¢,).
These equilibrium temperatures were computed directly from stellar parameters
using the expression in Equation 5. These calculated values were then used to
interpolate the radiative-convective boundary pressure (P,q), ensuring thermal

consistency across all targets.

To prevent water condensation at the top of the atmosphere, we constrained P,q
to remain within the vapor or supercritical regime for each planet’s equilibrium
temperature. This constraint was based on the phase diagram of HyO (Figure 8),
following the methodology of Nixon et al. (2024). For each target, we computed
the maximum allowable P,q such that the isothermal layer remained above the

vapor—liquid boundary at the corresponding temperature.

For each planet, a grid of models was run, varying the total envelope mass fraction
between 0.001 and 1.0, and scanning over mean molecular weights (MMWSs) from
2.35 to 18 g/mol. The water mass fraction (WMF) corresponding to each MMW

was computed using the relation Equation 5.

To constrain the modeled compositions, I filtered the outputs to include only models
that matched the observed mass and radius of each planet within 1o uncertainties.
Additionally, I applied an upper limit of 50% on the total water mass fraction to

be consistent with planet formation theory.
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4.2 Results and Discussion

4.2.1 Exoplanetary Population Trends

Following the methodology outlined in Section 4, we analyzed the interior structure
of 18 sub-Neptune exoplanets using the SMILE modeling framework. Fach target
was selected for having well-characterized mass and radius measurements and

scheduled JWST atmospheric observations.

In this section, we present the population-level trends in hydrogen—helium enve-
lope fractions, atmospheric mean molecular weights (MMWs), and composition
degeneracies. For clarity, we first describe global correlations across the sample
(e.g., between density and maximum H/He content), then highlight several case

studies illustrating unique structural outcomes.

TOI-270d appears in both Table 2 and Table 3 for consistency with the rest of the
population. Although its modeling is discussed in detail in Section 3, we include
its key metrics here to enable direct comparison with other sub-Neptunes in the

sample.

4.2.2 Hydrogen—Helium Mass Fractions

One of the main goals of this study was to constrain the maximum hydrogen—helium
(H/He) mass fraction that each planet in our sample could retain while remaining

consistent with observed mass and radius measurements.

The analysis reveals a wide diversity in atmospheric retention across the sub-
Neptune population. The most H/He-rich planet in our sample is TOI-1130b,
which supports a maximum hydrogen—helium (H/He) mass fraction of 13.18%,
consistent with its large radius (3.66 Rg) and low-to-moderate density (2.22 g/cm?).
In contrast, high-density planets like TOI-836b and LHS-1140b place some of the

tightest constraints on volatile retention, with H/He mass fractions limited to just
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Name Max H/He (%) MMW @ Max H/He (g/mol)

WASP-47e < 0.1 —
TOI-836b 0.57 11.61
LHS-1140b 0.62 11.29
TOI-1685b 0.80 11.29
K2-18b 2.20 10.97
TOI-125b 2.50 9.06
TOI-776b 3.02 9.38
GJ 9827d 3.58 9.6959
HD-207496b 3.98 9.38
TOI-270d 4.27 9.06
TOI-824b 5.27 7.4602
TOI-836¢ 6.38 8.10
LP 791-18 ¢ 6.53 7.46
TOI-421b 6.96 8.74
TOI-125¢ 8.23 7.7796
GJ 1214b 8.43 7.46
TOI-1231b 10.76 8.10
TOI-1130b 13.18 6.502

Table 2: Maximum hydrogen—helium (H/He) mass fractions and associated mean
molecular weights (MMW) before applying the 50% water mass fraction (WMF)
constraint. These values represent the most radius-inflating compositions allowed
under unconstrained modeling. The table is sorted in order of increasing H/He
mass fraction.
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Name Max H/He (%) MMW @ Max H/He Max MMW (g/mol)

TOI-1130b 13.18 6.502 7.7796
TOI-125¢ 8.23 7.7796 10.9735
GJ 1214b 8.43 7.46 9.70
TOI-1231b 10.76 8.10 9.38
TOI-421b 6.96 8.74 14.17
LP 791-18 ¢ 6.53 7.46 13.53
TOI-270d 4.27 9.06 15.44
TOI-836¢ 6.38 8.10 15.76
TOI-776b 3.02 9.38 18.00
LHS-1140b 0.62 11.29 18.00
K2-18b 2.20 10.97 18.00
HD-207496b 3.98 9.38 18.00
TOI-836b 0.57 11.61 18.00
TOI-125b 2.50 9.06 18.00
TOI-1685b 0.80 11.29 18.00
GJ 9827d 3.58 9.6959 18.00
TOI-824hb 5.27 7.4602 18.00
WASP 47e < 0.1 — —

Table 3: Same as Table 2, but after applying the 50% WMF constraint. The
final column shows the maximum allowable atmospheric MMW consistent with
water-rich envelopes (WMF < 50%). Planets with Max MMW = 18 g/mol are
unconstrained by this filter.
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0.57% and 0.62%, respectively.

These constraints are visualized in Figure 21, which shows strong anticorrelation
between bulk density and maximum H/He mass fraction (left panel). Low-density
planets like TOI-1231b and GJ 1214b accommodate up to 8-11% H/He, while
compact, dense planets sharply restrict hydrogen-rich envelopes. The trend rein-
forces the interpretation that high-density planets have either lost their primordial
atmospheres through photoevaporation or never accreted significant H/He during

formation (Owen and Wu, 2013).
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Figure 21: Left: Maximum hydrogen—helium (H/He) mass fraction versus bulk
density. Right: Maximum constrained (at 50% wmf) mean molecular weight
(MMW) as a function of bulk density. Together, these plots highlight the inverse
relationship between hydrogen helium mass fraction and density across the sub-
Neptune sample.

The right panel of Figure 21 further illustrates how the maximum constrained
MMW increases with planetary density. While low-density planets can reach a
compositional ceiling at MMW ~ 9-10 g/mol, denser planets such as TOI-836b,
TOI-1685b, and LHS-1140b allow MMW values up to 18 g/mol, even though the
corresponding H/He content remains negligible. This combination of low H/He
and high MMW offers a useful diagnostic: it implies that, if atmospheres exist at
all, they are likely composed of heavier molecules (e.g., water, CO,, or outgassed

species) rather than hydrogen-dominated mixtures.
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4.2.3 Maximum Mean Molecular Weight and Composition Degeneracy

In addition to constraining hydrogen—helium (H/He) mass fractions, our mod-
eling framework also reveals how atmospheric mean molecular weight (MMW)
shapes—and limits—plausible envelope compositions. For each planet, we com-
puted the maximum MMW allowed before the total water mass fraction (WMF)

exceeds 50%), our upper bound for physical viability.

Several planets—such as TOI-776b, TOI-824b, and K2-18b—remain unconstrained
by this filter, with their maximum MMW pinned at 18 g/mol, the upper limit of
our model grid. This suggests that even fully water-dominated envelopes remain
consistent with observed mass and radius for these targets. While degenerate,
these planets remain prime candidates for atmospheric characterization, which

may rule out extreme compositions.

By contrast, other planets exhibit tighter constraints. When the maximum allowed
MMW falls below 18 g/mol (e.g., in the range of 9-15 g/mol), high-MMW, water-
dominated solutions are ruled out by the WMF cap. GJ 1214b and TOI-1231b, for
instance, permit MMWs up to only 9.7 and 10.8 g/mol, respectively—beyond which
water content becomes implausibly high. TOI-270d similarly shows a constrained

maximum MMW of 15.4 g/mol, excluding the most water-rich cases.

Figure 21 visualizes this trend: denser planets tend to support higher maximum
MMWs, since heavier molecular compositions are needed to reproduce small radii.
However, this is not a simple one-to-one relationship. Planets like TOI-421b, with
intermediate density, are more constrained than expected—Ilikely due to thermal
structure and radiative-convective boundary limits (i.e., P,q) that further restrict

the envelope.

These results show that, even in the absence of spectral retrievals, physically moti-
vated MMW-WMF mappings enable us to isolate realistic atmospheric scenarios,

rule out extreme compositions, and guide future observations with JWST and

52



beyond.

4.2.4 Thermal Limits and Water Mass Fractions

Beyond matching observed mass and radius, our interior models were filtered using
two physically motivated constraints designed to eliminate unphysical or implau-
sible configurations. These constraints—one thermal, one compositional—play

complementary roles in shaping the range of allowable envelope structures.

First, we enforced a temperature-dependent cap on the radiative-convective bound-
ary pressure (P,q), requiring that the top of the envelope remain in the vapor or
supercritical phase. This constraint was imposed to prevent condensation of water
near the upper atmosphere, following the phase data of HyO. It primarily affects
cooler planets, such as LP-791-18c and K2-18b, which can only support modest
convective zones before intersecting the vapor—liquid boundary. As a result, the
allowed H/He fractions for these planets are more conservative, but grounded in

realistic thermal structure assumptions.

Second, we imposed a maximum total water mass fraction (WMF) of 50% to
remain consistent with planet formation theory, which disfavors highly water-
dominated compositions for close-in sub-Neptunes. This compositional filter proved
particularly useful for differentiating plausible envelope scenarios. For instance,
GJ 1214b and TOI-1231b allow mean molecular weights (MMWSs) up to ~9-10
g/mol while remaining within the WMF limit. In contrast, denser planets such
as TOI-824b and HD-207496b support somewhat heavier envelopes (MMW ~14

g/mol) without exceeding the cap.

Together, these thermal and compositional constraints help eliminate physically
unrealistic models—such as those with condensed water layers or extreme volatile
content—thereby refining the space of plausible envelope structures across the

sub-Neptune population.
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4.2.5 Case Studies and Edge Cases

While global trends reveal broad correlations between planetary properties and
interior compositions, several individual systems in the sample stand out for their
atypical structural characteristics. These edge cases help illustrate the physical
limits of our modeling framework and highlight the diversity of sub-Neptune

interiors beyond average trends.

TOI-270d: As detailed earlier (Section 3), TOI-270d lies near the center of the
observed sub-Neptune distribution in both radius and temperature. Prior to the
release of JWST spectra, interior modeling constrained its maximum MMW to
approximately 15.4 g/mol, already ruling out the most water-rich configurations.
The observed value of 5.47713% g/mol from transmission spectroscopy falls well
within the predicted range. TOI-270d serves as a benchmark for validating MMW-
based interior models and exemplifies how bulk properties can yield meaningful

composition constraints, even in the absence of spectroscopic data.

K2-18b: K2-18b is one of the few planets in the sample whose atmosphere has
been observed with JWST), revealing a Ho-dominated atmosphere containing CH,4
and CO, (Madhusudhan et al., 2023). However, the low temperature of this planet
(Teq ~ 284K) means that the assumption of a mixed envelope may not hold at
low pressures, as HoO may have condensed out of its upper atmosphere, resulting
in a stratified structure (e.g., Benneke et al., 2024). It has even been suggested
that this planet could host a liquid water ocean beneath its Hs-rich atmosphere
(Madhusudhan et al., 2020; Nixon and Madhusudhan, 2021). However, our current
observations of this planet can be explained either by a liquid ocean or by a mixed
envelope (Shorttle et al., 2024; Wogan et al., 2024). Our work assumes a mixed
envelope for the planet, and places an upper limit on the H/He mass fraction of
2.2%. If it is eventually determined that the planet is indeed stratified, follow-up

work will be required to revise its bulk composition.
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TOI-1130b: TOI-1130b supports one of the highest H/He mass fractions in the
sample, with a maximum value of 13.2%. This is consistent with its large radius
(2.56 Rg) and low-to-moderate density. The planet exemplifies a volatile-rich sub-
Neptune in which a thick primordial atmosphere is retained. Its position near the
low-density tail of the mass—radius diagram highlights the capacity for substantial

hydrogen—helium envelopes in extended sub-Neptunes.

WASP-47e: WASP-47e is a compact sub-Neptune whose high density effec-
tively excludes any significant volatile envelope. Interior models consistently
return negligible H/He content, and no well-defined atmospheric mean molecular
weight (MMW) can be assigned. These results support a scenario in which the
planet has undergone complete atmospheric loss or formed with minimal gas accre-
tion—consistent with expectations for photoevaporated or impact-stripped cores

in high-irradiation environments (Rogers and Owen, 2021; Owen and Wu, 2013).

These examples illustrate that the relationship between density, temperature, and
interior composition is nontrivial. While high-density planets tend to restrict
volatile envelopes, some temperate, low-density planets can still accommodate high-
MMW, water-rich solutions. Conversely, there exist targets where the 50% WMF
constraint imposes meaningful upper bounds on MMW, excluding steam-dominated
atmospheres. These findings reinforce that detailed structure modeling—including
realistic equations of state, phase-aware thermal constraints, and envelope com-
position limits—is essential for distinguishing between degenerate solutions and

isolating physically viable planetary interiors.

5 Conclusion

In this thesis, I developed and applied a physically motivated modeling method
to understand the interior structure of sub-Neptune exoplanets. Sub-Neptunes

are one of the most abundant exoplanets in the exoplanet population, without a
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solar system analogue. Using the equations of planetary structure, i.e., the mass
continuity equation and hydrostatic equilibrium equation, coupled with equations
of state, I developed a simple planetary interior model, which I validated against
published results. I subsequently transitioned to a more comprehensive model
(SMILE, Nixon and Madhusudhan, 2021) which enabled detailed simulations of
layered and mixed composition interiors with temperature—dependent equations of

state.

The modeling considers different key parameters to make sure that our results are
consistent with the measured mass and radius of the exoplanet being analyzed.
By incorporating appropriate temperature profiles, taking into account the likely
location of the radiative-convective boundary in the atmosphere, I constructed a
modeling framework that analyzed thousands of model evaluations to find planetary
interior parameters which align with the measured mass and radius of a given

exoplanet.

TOI-270d served as the primary test for the modeling framework. I have modeled
TOI-270d exploring pure water, layered, and fully mixed H/He/H;O envelope
scenarios, to demonstrate that detailed interior structure modeling alone can
place meaningful constraints on the composition, even in the absence of spectro-
scopic constraints. I found that the maximum mean molecular weight (MMW)
of TOI-270d is 15.44 g/mol. A subsequent measurement of the MMW by JWST
found pu = 5.47713% g/mol, within the range suggested by my models. These
JWST measurements in turn allowed for more accurate constraints on the interior

structure.

Building on this foundation, I extended the analysis to a population of 18 sub-
Neptune exoplanets selected for observation during the first 3 cycles of JWST
observations. There is a clear relationship between bulk density and volatile content,
showing that relatively low density planets can support up to 10-13% hydrogen-

helium mass fractions, while high density planets are consistent with minimal
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or no primordial gas. By filtering models with a 50% water mass fraction limit,
I identified the most physically consistent interiors across the diverse sample of
exoplanets. Additionally, we were able to recognize the exoplanets of which MMW
is not affected by the 50% constraints as potential exoplanets with high likelihood of
envelopes mostly consisting of heavier molecules rather than hydrogen-dominated

mixtures.

Together, these results provide a roadmap for integrating interior and atmospheric
data to constrain exoplanet compositions. As transmission spectroscopy yields a
more precise measurement of the atmospheric MMW, the methods presented here
will become very important for interpreting and constraining the bulk composition
of exoplanets. Even without direct spectral detections, detailed interior structure
modeling can significantly narrow the space of viable planetary compositions. In
this way, interior structure modeling becomes not just a tool for interpreting

observations, but a framework for guiding them.
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Appendix: Code Listings

The full code for the SMILE package can be found at:

https://github.com/mcnixon/smile

grid search.py — Multiprocessing Framework

V]

import sys

import os

import logging

import pandas as pd

import numpy as np

import time

from datetime import datetime

import multiprocessing as mp

from scipy.interpolate import interpld

import smile

# Path to SMILE Package

sys.path.insert (0, "/Users/biruknardos/a_UMD_Research/smile")

# Setup logging to see progress on the Jupyter notebook

logging.basicConfig(level=logging.INFO, format='/(message)s',
handlers=[
logging.FileHandler ("Parallel_grid.log"),
logging.StreamHandler (sys.stdout)

D)

# Function that gives insight about what pad values to use

nnn

- The function reads in the target file from target path that

be provided

- The user provides the path, the codes checks if it is csv or

excel and reads in the data
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26

29

30

39

- From the data it get the temprature equlibrium (teq_val) of the
planet that the user is interested in

- Taking the phase diagram of h20 it will math the teq to the pad
to get the max pad that could like in the

- phase line without becoming liquid. Then it will tell the user

the advised pad max value

# Load liquid-vapor data from the txt file

def load_phase_data(file_path):
Load the phase boundary data from the liquid_vapour_bd.txt

file

Args:

- file_path (str): Path to the liquid_vapour_bd.txt file.

Return:

- DataFrame with temperature and pressure boundaries

phase_data = pd.read_csv(file_path, delim_whitespace=True,
header=None, names=["Pressure_Pa", "Temprature_K"])

return phase_data
# Function to calculate max Pad (pressure) given an equilibrium
temprature

# Automatically load phase data when the module is imported

PHASE_DATA = load_phase_data('/Users/biruknardos/a_UMD_Research/

General/liquid_vapour_bd.txt"')
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54 |def find_max_pad(Teq_val, extrapolate=False):
56 Find the maximum allowable Pad (pressure) for a given

equilibrium temperature (Teq).

58 Args:

59 - Teq_val (float): The equilibrium temperature of the planet (

in K).

60 - extrapolate (bool): If True, allows extrapolation for Teq

values outside data range.

61

62 Returns:

63 - max_pad (float): The maximum pressure (Pad) in Pa before
transitioning to vapor.

64 e

66 # Set up interpolation function

67 interp_fun = interpld(

68 PHASE_DATA["Temprature_K"],

69 PHASE_DATA["Pressure_Pa"],

70 fill_value="extrapolate" if extrapolate else None,
71 bounds_error=not extrapolate

72 )

73

74 # Check if the Teq_val is within the data range

75 min_temp, max_temp = PHASE_DATA["Temprature_K"].min(),

PHASE _DATA["Temprature_K"].max ()

77 if Teq_val < min_temp or Teq_val > max_temp:

78 if not extrapolate:

79 print (f"Error: Teq value {Teq_vall} K is outside the
interpolation range ({min_temp} K - {max_templ} K).
Set extrapolate=True to see an extrapolated
result.")

80 return None
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81

83

84

86

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

else:
print (f"Warning: Teq value {Teq_val} K is outside the

data range. Result will be extrapolated.")

# Calculate max pad using the interpolated function

max_pad = interp_fun(Teq_val)

max_pad_bar = max_pad / 1leb
print (£"The maximum Pad value for Teq = {Teq_val} K is {

max_pad:.3f} Pa or {max_pad_bar:.4f} bar.")
if Teq_val < min_temp or Teq_val > max_temp:
print (f"Note: This value is extrapolated. The maximum

reliable Teq range is {min_temp} K to {max_templ} K.")

return max_pad # Return Max pad in Pa

# Function to calculate WMF from MMW (Nixon et al., 2024)

def derive_wmf (mmw, h2_mw=2.016, he_mw=4.003, h20_mw=18.015):

Derives the Water mass fraction (WMF) from the given MMW using

formula from Nixon et al., 2024
he_maf = 0.275 # 27.5% of H/He is helium
h2_maf = 1 - he_maf # The rest is hydrogen

# The average molecular weight of the H/He mixture

total_hhe = h2_maf/h2_mw + he_maf/he_mw

h2_mof

(h2_maf/h2_mw) / total_hhe

he_mof (he_maf/he_mw) / total_hhe

# Hydrogen/Helium
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115

116

117

118

119

124

126

130

131

133

134

136

138

139

140

141

144

def

def

hhe_mw = h2_mof*h2_mw + he_mof*he_mw

# Using the equation from Nixon et al., 2024

wmf = (h2o_mw * (mmw-hhe_mw))/ (mmw * (h2o_mw - hhe_mw))

return wmf

calc_mmw (h2_maf, he_maf, h2o_maf):
h2_mw = 2.016
he_mw = 4.003

h2o_mw = 18.015

# Convert mass fractions to mole fractions

total_moles = h2_maf/h2_mw + he_maf/he_mw + h2o_maf/h2o_mw

if total_moles == 0 or np.isnan(total_moles):

return np.nan # Return NaN to indicate an invalid case

h2_mof (h2_maf/h2_mw) / total_moles

he_mof (he_maf/he_mw) / total_moles

h2o_mof = (h2o_maf/h2o_mw) / total_moles

# Calculate MMW using mole fractions

mmw = h2_mof * h2_mw + he_mof * he_mw + h2o_mof * h2o0_mw

return mmw

validate_mmw(x_env_w, x_env_g):

Validate teh MMW by recalculating it from x_env_w (Water mass
fraction) and

x_env_g (H/He mass fraction)

# Split the H/He into He and H2
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146

147

148

149

160

161

162

163

164

165

166

167

168

169

he_maf 0.275 * x_env_g
h2_maf = x_env_g - he_maf

h2o_maf = x_env_w

# Compute MMW
mmw = calc_mmw(h2_maf, he_maf, h2o_maf)

return mmw

def error_calc(file_path, mass_val, mass_unc, rad_val, rad_unc,

pname, save_files=True):

This function calculates chi-squared error for a given dataset

based on pre-calculated MMW.

Parameters:

df: DataFrame containing the full grid of models (from the
grid search), including the MMW

- mass_val: observed mass

- mass_unc: uncertainty in mass

- rad_val: observed radius

- rad_unc: uncertainty in radius

- pname: name of the planet or specific dataset, used for

filenames
- save_files: If True, saves CSV files for both full data and

filtered data (default: True)

Returns:

- filtered_df: DataFrame filtered by error <= 1 sigma.

df = pd.read_csv(file_path)
# Calculate error metric (chi-squared)
df ['mass_diff'] = df['Mass'] - mass_val

df ['radius_diff'] = df['Radius'] - rad_val
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df ['error'] = ((df ['mass_diff'] / mass_unc)**2 + (df["'

radius_diff'] / rad_unc) *x*2)

if save_files:
# Save all data (with error)
all_data_file = f"all_data_error_{pname}_{datetime.now().
strftime ('%Y%m%d_%H%AMY%LS ') }.csv"
df .to_csv(all_data_file, index=False)

print (£"Al11 data with error saved to: {all_data_file}")

# Filter the results where error <= 1

filtered_df df [df ['error'] <= 1].copy ()

filtered_df

filtered_df .sort_values('error').reset_index(

drop=True)

if save_files:
# Save the filtered results (with error) to a CSV
filtered_file = f"filtered_with_error_{pnamel}_{datetime.
now () .strftime ('%Y%m%d_%H%M%S')}.csv"
filtered_df .to_csv(filtered_file, index=False)

print(f"Filtered data saved to: {filtered_filel}")

print (f"Number of rows with error <=1: {len(filtered_df)l}")

return filtered_df

def single_run(m, pad, mmw, env_fraction, temp):

# Skip calculation if env_fraction is too small or zero

wan

- The envelope fraction (env_fraction) represents the fraction
of the planet's mass that is made up of the gaseous
envelope,

which includes water (H20), hydrogen (H2), and helium (He).
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217

218

219

220
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222

226

- If the env_fraction is 0, both the water mass fraction (
x_env_w) and the H/He mass fraction (x_env_g) must also be
0.
This is because the envelope doesn't exist, so these
components cannot contribute to the planet's mass.
- Instead of calculating the radius using the SMILE package,
the code skips the radius calculation and sets radius_full

to O directly.

if env_fraction == O0:
x_env_w = 0
x_env_g = 0

radius_full 0 # Avoid calling smile.get_radius if
envelope fractions are zero
logging.info (f"Skipping radius calculation for mass={m},
pad={pad}, env_frac={env_fraction:.2f}, Radius={
radius_fulll}")
else:
# Calculate x_env_w (Water mass fraction) from the MMW
x_env_w = derive_wmf (mmw) * env_fraction # Water mass
fraction in the whole planet

x_env_g = env_fraction - x_env_w # H/He mass fraction in

the whole planet

# Skip calculation if x_env_g > 0.3
if x_env_g > 0.3:
logging.info (f"Skipping calculation for H/He Mass
fraction={x_env_g:.2f}, which is above 30%")

return None

# Validate the calculated MMW

if x_env_w + x_env_g == 0:
mmw_calculated = np.nan
else:
mmw_calculated = validate_mmw(x_env_w, x_env_g)
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logging.info (£"MMW Validation: Original MMW={mmw:.3f},

Calculated MMW={mmw_calculated:.3f}")

# Only calculate radius if there's a non-zero envelope and

H/He ratio is within the limit

if x_env_w + x_env_g > 0 and x_env_g <0.31:
# Calculate radius using smile
radius_full = smile.get_radius(mass=m, PO=1e3, TO=temp

, Pad=pad, x_g=x_env_g, X_W=X_env_w, mixed=True)

if isinstance(radius_full, list) or radius_full is
None:
radius_full = 0
else:

radius_full = 0

logging.info(f"Calculated for mass={m}, pad={pad}, MMW={
mmw:.3f}, WMF={x_env_w}, H/He={x_env_g}, env_frac={

env_fraction:.2f}, Radius={radius_fulll}")

row_data = {
'Mass': m,
'Radius': radius_full,
'Pad': pad,
'WMF': x_env_w,

'H/He': x_env_g,
'"Env_Fraction': env_fraction,

'MMW ' : mmw

return row_data

73




¥}
ot
)

259

260

261

264

265

266

268

269

280

282

284

286

287

&)
o}
oo

# Use parallel Processing to run the grid model
def parallel_run(mass_val, mass_unc, rad_val, rad_unc, teq_val,
pad_list, env_fractions, mmw_list=None, pname="PlanetName"):

data = []

masses = np.linspace(mass_val - mass_unc, mass_val + mass_unc,

10)

# If no mmw_list is provided, default to MMW range from 2 to
18

if mmw_list is None:
mmw_list = np.linspace(2.35,18,50) # Default range of MMW

values

# Generate arguments (without executing)
args = [

(m, pad, mmw, env_fraction)

for m in masses

for pad in pad_list

for mmw in mmw_list

for env_fraction in env_fractions

# Count valid combinations by skipping unwanted cases
valid_combinations = 0
for m, pad, mmw, env_fraction in args:
if env_fraction == O:
continue # Skip if env_fraction is O
x_env_w = derive_wmf (mmw) * env_fraction
x_env_g = env_fraction - x_env_w
if x_env_g > 0.31:
continue # Skip if H/He fraction > 0.3

valid_combinations += 1

# Log valid combinations and calculate time estimate
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logging.info(f"Total combinations generated: {len(args)l}")
logging.info(f"Valid combinations after skipping: {

valid_combinations}")
# Set base timing
base_combinations = 10000

base_time_in_hours = 0.4167 # 25 minutes in hours

# Estimate time based on valid combinations

num_cores = mp.cpu_count ()
cores_to_use = num_cores - 1
estimated_time = (valid_combinations / base_combinations) *

(10 / cores_to_use) * base_time_in_hours

logging.info (£"SMILE :) Starting parallel computation with {
valid_combinations} combinations, Using {cores_to_use} CPU
cores, Estimated total time for computation: {

estimated_time:.2f} hours")

# Start parallel computation
start_time = time.time ()
with mp.Pool(cores_to_use) as pool:
results = pool.starmap(single_run, [(m, pad, mmw,
env_fraction, teq_val) for m, pad, mmw, env_fraction
in args if env_fraction != 0 and (env_fraction -

derive_wmf (mmw) * env_fraction) <= 0.3])

# Processing and saving results
for result in results:
if result is not None:

data.append (result)

result_file = f'{pname}_Model_grid_full_{datetime.now().

strftime ("%Y%mY%d_%HY%M%S")}.csv'

df _full = pd.DataFrame (data)
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def

df _full.to_csv(result_file, index=False)

# Log runtime
total_runtime = time.time() - start_time
logging.info(f"Total runtime: {total_runtime / 60:.2f} minutes

({total_runtime / 3600:.2f} hours)")

return result_file

specific_run(m, pad, x_env_w, Xx_env_g, temp):

# Ensure the envelope fractions are valid
env_frac = x_env_w + x_env_g
if env_frac > 1:
logging.warning (f"Warning: Envelope fraction exceeds 1.

Total env_frac = {env_fracl}")

# Calculate radius using SMILE with provided x_env_w and
X_env_g
radius_full = smile.get_radius(mass=m, PO=1e3, TO=temp, Pad=

pad, xX_g=x_env_g, X_W=X_env_w, mixed=True)

if isinstance (radius_full, list) or radius_full is None:

radius_full = 0

logging.info (f"Calculated for mass={m}, pad={padl}, x_env_w={
x_env_w:.3f}, x_env_g={x_env_g:.3f}, Radius={radius_fulll}"

)

row_data = {
'Mass': m,
'Radius': radius_full,
'Pad': pad,
'"WMF': x_env_w,
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'H/He': x_env_g,

'"Env_Fraction': env_frac # Total fraction for reference

return row_data

def specific_parallel_run(mass_list, rad_val, rad_unc, teq_val,

pad_list, xw_list, xg_list, pname, save_files=True):

data = []

# Ensure that the input lists have the same length

if not (len(xw_list) == len(xg_list) == len(pad_list) == len(
mass_list)):
raise ValueError ("All input lists must have the same

length!")

# Create the list of arguments for each combination
args = [
(mass, pad, x_env_w, x_env_g, teq_val)
for mass, pad, x_env_w, x_env_g in zip(mass_list, pad_list

, xw_list, xg_list)

logging.info (£"SMILE :) Starting specific grid computation

with {len(args)} combinations...")

# Use multiprocessing to compute the results

with mp.Pool(mp.cpu_count() - 1) as pool:

results = pool.starmap(specific_run, args)

logging.info("Specific grid computation completed, processing

results...")

for result in results:
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if result is not None:

data.append (result)

# Save the results with a timestamp in the filename
result_file = f'{pname} _Specific_grid_{datetime.now().strftime

("AYhm%d_%HAMY%S") ;. csv!

df = pd.DataFrame (data)

# Check for save_files flag before saving
if save_files:
result_file = f'{pname}_Specific_grid_{datetime.now().
strftime ("%Y%m%d_%H%MY%S") }.csv!
df .to_csv(result_file, index=False)
logging.info(f"Results saved to {result_filel}")
return result_file
else:

return df # Return the DataFrame directly if not saving

def run_grid_search(planet_name, file_path, pad_list,
env_fractions, mmw_list=None,teq_val=None):
# Log the start time
start_time = datetime.now ()
logging.info(f"Grid search started at: {start_time.strftime ('}

Y-%m-%d %H:%M:%S')}")

# Track start time in seconds for calculating total runtime

time_start = time.time ()

# Get the file extension

_, file_extension = os.path.splitext(file_path)

# Read the file based on its extension

if file_extension == '.xlsx' or file_extension == '.xls':

planets_df = pd.read_excel(file_path)
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elif file_extension == '.csv':
planets_df = pd.read_csv(file_path)
else:
raise ValueError ("Unsupported file format, Provide Excel

or CSV file")

planet_data planets_df [planets_df ['Name'] == planet_name]

planet_data planet_data.iloc [0]

mass_val planet_data['Mass_value']

mass_unc = planet_datal['Mass_unc']

rad_val planet_data['Radius_value']

rad_unc = planet_data['Radius_unc']

# I added this because it helps me in testing for TO0I-270d,

but providing it is not mandatory

if teq_val is None:

teq_val = planet_datal['Teq_calc']

result_file = parallel_run(mass_val, mass_unc, rad_val,
rad_unc, teq_val, pad_list, env_fractions, mmw_list,

planet_name)

# Log the end time
end_time = datetime.now()
logging.info(f"Grid search finished at: {end_time.strftime('}Y

-%m-%d %H:%M:%S')F")

# Calculate and log total runtime
total_runtime = time.time() - time_start
logging.info(f"Total runtime: {total_runtime:.2f} seconds ({

total_runtime/60:.2f} minutes)")
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433 return result_file

434

436 |# Main execution block

438 |1f __name__ == "__main__":
439 logging.info("This script is intended to be imported into
Jupyter Notebook or other script. It doesn't calculate

error"

general.py — Analysis and Utilities

1 |# from astropy import units as u
2 |import numpy as np

3 |import pandas as pd

import matplotlib.pyplot as plt

5 |from scipy.ndimage import gaussian_filterild

g |# Function calculating Equilibrium Temperature

o |def Calculate_Teq(file_path, planet_name, albedo=0, f=1):

10 nnn

11 Calculate equilibrium temperature with given file_path and
planet name

nmnn

13

14 data = pd.read_csv(file_path)

15 planet_index = dataldata['Name'] == planet_name].index [0]
16

17 # Extract the values

18 T_star = data.loc[planet_index, 'T_star_(K)']

19 T_star_unc = data.loc[planet_index, 'T_star_unc']
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R_star = data.loc[planet_index, 'R_star_(solar_radii)'] =*
6.957e+8 # Convert solar radii to m
R_star_unc = data.loc[planet_index, 'R_star_unc'] * 6.957e+8

# Convert solar radii to m

a = data.loc[planet_index, 'sm_axis_(au)'] * 1.496e+11

Teq_nasa = data.loc[planet_index, 'Teq(nasa_arch) ']

# Calculating R_star / a with geometric factor

Rd = R_star / (2 * a)

# Calculate Teq with heat redistribution factor

Teq = T_star * np.sqrt(Rd) * ((1-albedo)*f) x* 0.25

# Calculating Uncertainty

unc_rd = np.sqrt((R_star_unc / R_star)**2) * Rd

unc_tp np.sqrt ((T_star_unc / T_star)**2 + (0.25xunc_rd/Rd)
*%2)

Tp_unc = Teq * unc_tp

# Calculate the difference from NASA Archive value

Teq_diff = Teq - Teq_nasa

# Print Results

print (f"\nCalculated Teq for {planet_namel}: {Teq:.2f} K")
print (f"Uncertainty in Teq: +/-{Tp_unc:.2f} K")

print (f"NASA Archive Teq: {Teq_nasa} K")

print (f"Difference: {Teq_diff:.2f} K")

# Update the DataFrame with the Calculated Values
data.at[planet_index, 'Teq_calc'] = round(Teq, 4)
data.at[planet_index, 'Teq_calc_unc'] = round(Tp_unc, 4)

data.at[planet_index, 'Teq_diff_nasa'] = round(Teq_diff, 4)

# Save file
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def

data.to_csv(file_path, index=False)

print (f"Updated file saved at {file_pathl}")

return Teq, Tp_unc, Teq_diff

filter_pad(file_path: str, pad_value: float, pname: str):
nmnn
Filters the data by a specified Pad value and saves the result

to a new CSV file.

Parameters:

- file_path: str, the path to the CSV file with all Pad values

- pad_value: float, the Pad value in bars to filter by.
- pname: str, a specific name or identifier to include in the

output file name.

# Convert pad_value from bars to Pascals

pad_value_pa = pad_value * 1eb

# Read the input file

df = pd.read_csv(file_path)

# Filter by the specified Pad value

df _filtered = df[df['Pad'] == pad_value_pal]

# Check if there are any rows with the specified Pad value
if df _filtered.empty:

print (£"No data available for Pad value: {pad_valuel} bar")
else:

# Create the output file name

output_file_path = f"filtered_with_error_pad{pad_valuel}_{

pnamel}.csv"
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# Save the filtered data to the output file
df _filtered.to_csv(output_file_path, index=False)
print(f"Filtered data for Pad = {pad_value} bar saved to

'{output_file_pathl}'")

# Function to plot best fitting vs MMW
def analyze_results(file_path: str, pname: str, save_plot: bool =
True, ylim: tuple = (0, 0.15)):
W
- The function takes a csv file path that contains the grid
models with calculated error and is
filtered by one sigma error.
- Plots Best fitting vs MMW (Scatter plot)

- Plots Best fitting H/He vs MMW (Scatter plot)

Parameters:

- file_path: Path to the CSV file with the filtered data

- pname: Name of the planet to include in the plot title and
saved filenames

- save_plot: If True, saves the plots as PNG files (default:
True)

- ylim: Tuple to set y-axis limits for the "Best Fitting H/He

vs MMW" plot (default: (0, 0.15))

df _filtered = pd.read_csv(file_path)

# Best fitting vs MMW (Scatter) plot

plt.figure(figsize=(10, 6))

plt.scatter(df _filtered['MMW'], df_filtered['Env_Fraction'],
color='red', alpha=0.7, label='Envelope Fraction')

plt.scatter(df _filtered['MMW'], df_filtered['H/He'], color='

green', alpha=0.7, label='H/He Mass Fraction')
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plt.scatter(df _filtered['MMW'], df_filtered['WMF'], color="

blue', alpha=0.7, label='Water Mass Fraction')

plt.xlabel ('Mean Molecular Weight (MMW)', fontsize=14)

plt.ylabel ('Best Fitting Fractions', fontsize=14)

plt.title(f'Best Fitting Fractions vs Mean Molecular Weight
for {pname}', fontsize=16)

plt.grid(True)

plt.xticks (fontsize=12)

plt.yticks(fontsize=12)

plt.tight_layout ()
if save_plot:
plt.savefig(f'best_fitting_vs_mmw_{pnamel}.png')

plt.show ()

# Best Fitting H/He vs MMW (Scatter) plot

plt.figure(figsize=(10, 6))

plt.scatter(df_filtered['MMW'], df_filtered['H/He'], color='
green', alpha=0.7, label='H/He Mass fraction')

plt.xlabel ('Mean Molecular Weight (MMW)', fontsize=14)

plt.ylabel ('Best Fitting Fractions', fontsize=14)

plt.title(f'Best Fitting H/He vs Mean Molecular Weight for {

pname}', fontsize=16)

plt.grid(True)

# Apply user-defined ylim or the default

plt.ylim(ylim)

plt.tight_layout ()
if save_plot:
plt.savefig(f'best_fitting_hhe_vs_mmw_{pnamel}.png')

plt.show ()
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def fill_between(file_path: str, pname: str, save_plot: bool =
False, pad_value: float = None):
nmnn
Creates a shaded plot of best fitting mass fractions vs. Mean

Molecular Weight (MMW) for a specific Pad value.

Parameters:

- file_path: str, the path to the CSV file with data.

- pname: str, the name of the planet to include in the plot
title and save filenames.

- save_plot: bool, if True, saves the plot as a PNG file.

- pad_value: float, optional, the specific Pad value in bars

to filter by.

# Read the filtered file

df _filtered = pd.read_csv(file_path)

# Check unique Pad values in the data
unique_pads = df_filtered['Pad'].unique() / 1e5 # Convert
from Pascals to bars

unique_pads = sorted(set(unique_pads))

# Determine the Pad value to use
if pad_value is None:
if len(unique_pads) == 1:
pad_value = unique_pads [0]
print (f"Using the only available Pad value: {pad_value
} bar")
else:
print (f"Multiple Pad values found: {unique_pads}")
print ("Please specify a pad_value from the list above.
"

return
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169 else:

170 if pad_value not in unique_pads:

171 print (f"Specified Pad value {pad_valuel} bar is not in
the data. Available values are: {unique_padsl}")

172 return

174 # Filter data by the specified Pad value in Pascals
175 pad_value_pa = pad_value * 1eb
176 df _filtered_pad = df_filtered[df_filtered['Pad'] ==

pad_value_pal

178 # Calculate min/max for plotting shaded regions
179 min_max_df = df_filtered_pad.groupby('MMW').agg(
180 min_ef=('Env_Fraction', 'min'),

181 max_ef=('Env_Fraction', 'max'),

182 min_wmf=(C'WMF', 'min'),

183 max_wmf=(C'WMF', 'max'),

184 min_hhe=('H/He', 'min'),

185 max_hhe=('H/He', 'max')

186 ) .reset_index ()

187

188 plt.figure(figsize=(10, 6))

189
190 sigma = 0.7

191

192 min_ef_smooth = gaussian_filterld(min_max_df['min_ef'], sigma=
sigma)

193 max_ef_smooth = gaussian_filterld(min_max_df['max_ef'], sigma=
sigma)

194

195 min_wmf_smooth = gaussian_filterld(min_max_df['min_wmf'],

sigma=sigma)
196 max_wmf_smooth = gaussian_filterld(min_max_df['max_wmf'],

sigma=sigma)

197
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min_hhe_smooth = gaussian_filterld(min_max_df['min_hhe'],
sigma=sigma)
max_hhe_smooth = gaussian_filterld(min_max_df['max_hhe'],

sigma=sigma)

# Create shaded areas between min and max values

plt.fill_between(min_max_df ['MMW'], min_ef_smooth,
max_ef_smooth, color='red', alpha=0.5, label='Envelope
Fraction')

plt.fill_between(min_max_df ['MMW'], min_wmf_smooth,
max_wmf_smooth, color='blue', alpha=0.5, label='Water Mass

Fraction')

plt.fill_between(min_max_df ['MMW'], min_hhe_smooth,

max_hhe_smooth, color='green', alpha=0.5, label='H/He Mass

Fraction')

plt.xlabel ('Mean Molecular Weight (MMW)', fontsize=14)
plt.ylabel('Best Fitting Mass Fraction', fontsize=14)
plt.title(f'Best Fitting Mass Fraction vs Mean Molecular

Weight for {pname} (Pad = {pad_valuel} bar)', fontsize=16)

plt.grid (True)

plt.legend (fontsize=12, loc='upper left')
plt.xticks(fontsize=12)

plt.yticks (fontsize=12)

plt.yscale('log')

plt.tight_layout ()

if save_plot:
plt.savefig(f'filled_between_plot_{pname}_pad_{pad_value}
bar.png')

plt.show ()
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def clean_display(file_path: str, output_file: str = None,
mmw_range: tuple = None, save_file: bool = False,
mmw_threshold: float = 10):
# Read the CSV file

df = pd.read_csv(file_path)

# Apply MMW range filtering if provided
if mmw_range:
df = df[(df['MMW'] >= mmw_range[0]) & (df['MMW'] <=
mmw_range [1])]
print (f"Filtering MMW between {mmw_range[0]} and {

mmw_range [1]}")

# Remove duplicates
df .drop_duplicates (subset=['MMW', 'Env_Fraction', 'H/He', 'WMF

'], inplace=True)

# Save only if save_file is True and output_file is specified
if save_file:
if output_file is None:
raise ValueError ("Please provide an output file path
when save_file is True.")
df .to_csv(output_file, index=False)

print (f"Updated data saved to '{output_filel}'")

# Check and display duplicates
num_dup = df.duplicated(subset=['MMW', 'Env_Fraction', 'H/He',

"WMF']1) .sum ()

print (£"The file has {num_dupl} duplicates." if num_dup else

The file has no duplicates.")

# Display unique Pad values in bars

unique_pads = sorted(df['Pad'].unique())

unique_pads_bar = [f"{pad / 1le5} bar" for pad in unique_pads]
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248 print ("Available unique Pad values:", ", ".join(
unique_pads_bar))

249

250 # Display min and max for columns of interest

251 min_max_vals = {

252 'WME': (df['WMF'].min(), df['WMF'].max()),

253 '"H/He': (df['H/He']l.min(), df['H/He']l.max()),

254 "Env_Fraction': (df ['Env_Fraction']l.min(), df['

Env_Fraction'].max())

255 }

256 for name, (min_val, max_val) in min_max_vals.items():

257 print (f"{name} - Min: {min_val:.4f}, Max: {max_val:.4f}")

258

259 print ("\n")

260 # Display Pad values associated with min and max H/He

261 hhe_max, hhe_min = df['H/He'].max (), df['H/He'].min ()

262

263 # Get the rows for max and min H/He

264 max_row = df.loc[df['H/He'] == hhe_max]

265 min_row = df.loc[df['H/He'] == hhe_min]

266

267 # Extract Pad and MMW values for max and min H/He

268 pad_max = max_row['Pad'].values[0] if not max_row.empty else
None

269 pad_min = min_row['Pad'].values[0] if not min_row.empty else
None

270 mmw_max = max_row['MMW'].values[0] if not max_row.empty else
None

271 mmw_min = min_row['MMW'].values[0] if not min_row.empty else
None

272

273 # Print the results for max and min H/He

274 print (£"Pad value for max H/He ({hhe_max:.4f}): {pad_max:.4f}
Pa or {pad_max / 1eb5 if pad_max else Nonel} bar, MMW: {
mmw_max}")
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print (£"Pad value for min H/He ({hhe_min:.4f}): {pad_min:.4f}
Pa or {pad_min / 1eb5 if pad_min else None} bar, MMW: {

mmw_min}")

# Find the row with minimum MMW
mmw_min_row = df.loc[df['MMW'].idxmin()] # Row with the

absolute minimum MMW

min_mmw_value = mmw_min_rowl['MMW'] # Minimum MMW
hhe_for_min_mmw = mmw_min_row['H/He'] # Corresponding H/He
pad_for_min_mmw = mmw_min_row['Pad'] # Corresponding Pad

print (f"Absolute Min MMW: {min_mmw_value:.4f}, H/He: {
hhe_for_min_mmw:.4£f}")
print (f"Pad corresponding to Min MMW: {pad_for_min_mmw:.4f} Pa

or {pad_for_min_mmw / 1le5:.2f} bar")

# Find the smallest H/He with a reasonable MMW
filtered_df = df[df['MMW'] <= mmw_threshold] # Filter rows
with MMW <= threshold
if not filtered_df.empty:
min_hhe_row = filtered_df.loc[filtered_df['H/He'].idxmin ()
] # Row with smallest H/He
smallest_hhe = min_hhe_row['H/He']
# Smallest H/He
corresponding_mmw = min_hhe_row['MMW']
# Corresponding MMW for smallest
H/He
print (f"Smallest H/He within threshold (MMW <= {
mmw_threshold}): {smallest_hhe:.4f}, Corresponding MMW

{corresponding_mmw:.4£f}")

# Compare the two rows
if min_mmw_value == corresponding_mmw:
print ("The minimum MMW also gives the smallest H/He

within the threshold.")
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else:
print ("The minimum MMW does NOT give the smallest H/He
within the threshold.")
else:

print (f"No rows found with MMW <= {mmw_thresholdl}.")

def clean_display(file_path: str, output_file: str = None,

mmw_range: tuple = None, save_file: bool = False):
# Read the CSV file

df = pd.read_csv(file_path)

# Apply MMW range filtering if provided
if mmw_range:
df = df [(df ['MMW'] >= mmw_range[0]) & (df['MMW'] <=
mmw_range [1])]
print (f"Filtering MMW between {mmw_range[0]} and {

mmw_range [1]}")

# Remove duplicates
df .drop_duplicates (subset=['MMW', 'Env_Fraction', 'H/He', '

WMF '], inplace=True)

# Save only if save_file is True and output_file 1is
specified
if save_file:
if output_file is None:
raise ValueError ("Please provide an output file path
when save_file is True.")
df .to_csv(output_file, index=False)

print (f"Updated data saved to '{output_filel}'")

# Check and display duplicates

num_dup = df.duplicated(subset=['MMW', 'Env_Fraction', 'H/He

", 'WMF']).sum()
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print (£"The file has {num_dup} duplicates." if num_dup else

"The file has no duplicates.")

# Display unique Pad values in bars
unique_pads = sorted(df['Pad'].unique ())

unique_pads_bar = [f"{pad / 1le5} bar" for pad in unique_pads

print ("Available unique Pad values:", ", ".join(

unique_pads_bar))

# Display min and max for columns of interest

min_max_vals = {
'"WMF': (df['WMF'] .min(), df['WMF '] .max()),
'H/He': (df['H/He'].min(), df ['H/He'] .max()),
'"Env_Fraction': (df ['Env_Fraction'].min (), df [’

Env_Fraction'].max ())

}

for name, (min_val, max_val) in min_max_vals.items ():
print (f"{name} - Min: {min_val:.4f}, Max: {max_val:.4f

i)

# # Display Pad values associated with min and max H/He

# hhe_max, hhe_min = df['H/He']l.max (), df ['H/He'].min ()

# # Get the rows for max and min H/He

# max_row df .1loc[df ['H/He']l] == hhe_max]

# min_row df .1loc[df ['H/He'] == hhe_min]

# # Extract Pad and MMW values for max and min H/He

# pad_max = max_row['Pad'].values[0] if not max_row.empty else
None

# pad_min = min_row['Pad'].values[0] if not min_row.empty else
None

# mmw_max max_row ['MMW '] .values [0] if not max_row.empty else

None

92




360

361

362

363

364

365

366

367

368

369

370

371

# mmw_min = min_row['MMW'].values[0] if not min_row.empty else

None

# # Print the results for max and min H/He

# print (f"Pad value for max H/He ({hhe_max:.4f}): {pad_max:.4f
} Pa or {pad_max / 1leb if pad_max else Nonel} bar, MMW: {
mmw_max +")

# print (f"Pad value for min H/He ({hhe_min:.4f}): {pad_min:.4f
} Pa or {pad_min / 1leb5 if pad_min else None} bar, MMW: {

mmw_minl}")

# Find the row with minimum MMW

mmw_min_row = df.loc[df['MMW'].idxmin ()]

hhe_for_min_mmw = mmw_min_row['H/He']
pad_for_min_mmw = mmw_min_rowl['Pad']
min_mmw_value = mmw_min_row['MMW'] # The minimum MMW itself

print (£"Min MMW: {min_mmw_value:.4f}")

print (f"H/He corresponding to Min MMW: {hhe_for_min_mmw:.4f
i)

print (f"Pad corresponding to Min MMW: {pad_for_min_mmw:.4f}

Pa or {pad_for_min_mmw / 1e5:.2f} bar")

# Find the smallest H/He with a reasonable MMW

sorted_hhe = df.sort_values(by='H/He', ascending=True)

reasonable_mmw_threshold = 10

filtered_hhe_mmw = sorted_hhe[sorted_hhe['MMW'] <=
reasonable_mmw_threshold]

smallest_hhe_row = filtered_hhe_mmw.iloc[0] # Get the first
row after filtering

smallest_hhe = smallest_hhe_row['H/He'l]

corresponding_mmw = smallest_hhe_row['MMW']

# Print the results for smallest H/He and its corresponding

MMW
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376 | # print (f"Smallest H/He with reasonable MMW: {smallest_hhe:.4f
iR
377 | # print (f"Corresponding MMW for this H/He: {corresponding_mmw

:.4f3F")

370 |def pad_plot(file_path, pname: str, pad_value=None, save_plot=
False):

450 wn

381 Plots best fitting fractions vs. Mean Molecular Weight (MMW)
for a given Pad value (in bars) from the filtered dataset,
382 and displays a summary of min and max values for H/He, WMF,

and Env_Fraction for the specific Pad value.

383

384 Parameters:
385 - file_path: str, the path to the filtered CSV file.
386 - pname: str, the name of the planet to include in the plot

title and save filenames.

387 - pad_value: float, optional, the specific Pad value in bars

to filter and plot.

388 - save_plot: bool, if True, saves the plots as PNG files (
default: False).

W

389

390

391 # Read the filtered file

392 df _filtered = pd.read_csv(file_path)

393

394 # Check unique Pad values in the data

395 unique_pads = df_filtered['Pad'].unique() / 1e5 # Convert

from Pascals to bars

396 unique_pads = sorted(set(unique_pads))
397

398 # Determine the Pad value to use

399 if pad_value is None:

400 if len(unique_pads) == 1:

401 pad_value = unique_pads [0]
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426

print (£"Using the only available Pad value: {pad_value

} bar")
else:
print (f"Multiple Pad values found: {unique_pads}")
print ("Please specify a pad_value from the 1list above.
")
return
else:

if pad_value not in unique_pads:
print (f"Specified Pad value {pad_valuel} bar is not in
the data. Available values are: {unique_padsl}")

return

# Filter data by the specified Pad value in Pascals
pad_value_pa = pad_value * 1leb
df _filtered_pad = df_filtered[df_filtered['Pad'] ==

pad_value_pal

# Calculate summary statistics for H/He, WMF, and Env_Fraction
min_max_summary = {
'"WMF': (df_filtered_pad['WMF'].min(), df_filtered_pad['WMF
'T.max()),
'H/He': (df_filtered_pad['H/He']l.min(), df_filtered_pad['H
/He'l . max()),
"Env_Fraction': (df_filtered_pad['Env_Fraction'].min(),

df _filtered_pad['Env_Fraction'].max())

# Find MMW values for min and max H/He

hhe_min, hhe_max = min_max_summary['H/He']

mmw_min_hhe = df _filtered_pad.loc[df_filtered_pad['H/He'] =

hhe_min, 'MMW'].values[0]

mmw_max_hhe = df _filtered_pad.loc[df_filtered_pad['H/He'] =

hhe_max, 'MMW'].values[0]
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# Display summary information with formatted output
print (£"Summary for {pname} at Pad = {pad_value:.1f} bar:")
for name, (min_val, max_val) in min_max_summary.items ():
print (f" {name} - Min: {min_val:.2f}, Max: {max_val:.2f}"
)
print (£f" MMW corresponding to min H/He ({hhe_min:.2el}): {
mmw_min_hhe:.2f3}")
print (£f" MMW corresponding to max H/He ({hhe_max:.2f}): {

mmw_max_hhe:.2f}")

# Plot 1: Best Fitting Fractions vs MMW

plt.figure(figsize=(10, 6))

plt.scatter(df_filtered_pad['MMW'], df_filtered_padl[’
Env_Fraction'], color='red', alpha=0.7, label='Envelope
Fraction')

plt.scatter(df _filtered_pad['MMW'], df_filtered_pad['WMF'],
color='blue', alpha=0.7, label='Water Mass Fraction')

plt.scatter(df_filtered_pad['MMW'], df_filtered_pad['H/He'],

color='green', alpha=0.7, label='H/He Ratio')

plt.xlabel ('Mean Molecular Weight (MMW)', fontsize=14)

plt.ylabel ('Best Fitting Fractions', fontsize=14)

plt.title(f'Best Fitting Fractions vs. Mean Molecular Weight
for {pname} (Pad = {pad_valuel} bar)', fontsize=16)

plt.grid(True)

plt.legend(fontsize=12)

plt.tight_layout ()

if save_plot:
plt.savefig(f'best_fitting_fractions_{pname}_pad_{

pad_valuel}bar.png')

plt.show ()

# Plot 2: H/He vs MMW

plt.figure(figsize=(10, 6))
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plt.scatter(df _filtered_pad['MMW'], df_filtered_pad['H/He'],

color='green', alpha=0.7, label='H/He Ratio')

plt.xlabel ('Mean Molecular Weight (MMW)', fontsize=14)

plt.ylabel ('H/He Mass Fraction', fontsize=14)

plt.title(f'H/He Mass Fraction vs. Mean Molecular Weight for {
pname} (Pad = {pad_value} bar)', fontsize=16)

plt.grid(True)

plt.legend(fontsize=12)

plt.tight_layout ()

if save_plot:
plt.savefig(f'hhe_mass_fraction_{pname}_pad_{pad_valuel}bar

.png')
plt.show ()

def wmf_filter (df, pname: str, wmf_cutoff: float, save_plot: bool

False):
nnn
Filters data by WMF cutoff and performs additional analysis

and plotting.

Parameters:

- df: DataFrame, the dataset to analyze.

- pname: str, the name of the planet to include in plot titles
and filenames.

- wmf_cutoff: float, maximum allowed WMF value for filtering.

- save_plot: bool, if True, saves the generated plots.

wn

# Filter rows where WMF exceeds the cutoff

df _filtered = df[df ['WMF'] <= wmf_cutoff]

print (£"Applying WMF cutoff: Excluding rows with WMF > {

wmf_cutoffl}")

# Plot 1: Best Fitting Fractions vs MMW

plt.figure(figsize=(10, 6))
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plt.scatter(df _filtered['MMW'], df_filtered['Env_Fraction'],
color='red', alpha=0.7, label='Envelope Fraction')

plt.scatter(df _filtered['MMW'], df_filtered['WMF'], color="'
blue', alpha=0.7, label='Water Mass Fraction')

plt.scatter(df _filtered['MMW'], df_filtered['H/He'], color='
green', alpha=0.7, label='H/He Ratio')

plt.xlabel('Mean Molecular Weight (MMW)', fontsize=14)

plt.ylabel('Best Fitting Fractions', fontsize=14)

plt.title(f'Best Fitting Fractions vs. MMW for {pnamel}',
fontsize=16)

plt.legend(fontsize=12)

plt.grid(alpha=0.3)

plt.tight_layout ()

if save_plot:
plt.savefig(f'best_fitting_fractions_wmf_cutoff_{pnamel}.

png')
plt.show ()

# Plot 2: H/He vs MMW (No dotted lines)

plt.figure(figsize=(10, 6))

plt.scatter(df_filtered['MMW'], df_filtered['H/He'], color='
green', alpha=0.7, label='H/He Ratio')

plt.xlabel ('Mean Molecular Weight (MMW)', fontsize=14)

plt.ylabel ('H/He Mass Fraction', fontsize=14)

plt.title(f'H/He Mass Fraction vs. MMW for {pnamel}', fontsize
=16)

plt.grid(alpha=0.3)

plt.tight_layout ()

if save_plot:
plt.savefig(f'hhe_vs_mmw_wmf_cutoff_{pnamel}.png')

plt.show ()

# Additional Summary Information

# Maximum H/He and corresponding MMW

hhe_max = df_filtered['H/He'].max()
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mmw_max_hhe = df_filtered.loc[df_filtered['H/He'] == hhe_max,
"MMW '] .values [0]
print (£"Max H/He ({hhe_max:.4f}) corresponds to MMW: {

mmw_max_hhe: . 4f}")

# Maximum MMW
max_mmw = df_filtered['MMW'] .max ()

print (£"Max MMW after cutoff: {max_mmw:.4f}")

# Minimum MMW and corresponding H/He

min_mmw_row = df_filtered.loc[df_filtered['MMW'].idxmin ()]
min_mmw = min_mmw_row['MMW']

hhe_for_min_mmw = min_mmw_row['H/He']

print (£"Min MMW ({min_mmw:.4f}) corresponds to H/He: {

hhe_for_min_mmw:.4f}")

# Smallest H/He with a "reasonable" MMW

sorted_hhe = df_filtered.sort_values(by='H/He', ascending=True
)

reasonable_mmw_threshold = 10

filtered_hhe_mmw = sorted_hhe[sorted_hhe['MMW'] <=

reasonable_mmw_threshold]

if not filtered_hhe_mmw.empty:
smallest_hhe_row = filtered_hhe_mmw.iloc [0]
smallest_hhe = smallest_hhe_row['H/He']
corresponding_mmw = smallest_hhe_row['MMW']
print (f"Smallest H/He (MMW <= {reasonable_mmw_threshold}):
{smallest_hhe:.4f3}")
print (f"Corresponding MMW for this H/He: {

corresponding _mmw:.4f}")

# Compare Min MMW and Smallest H/He

if min_mmw == corresponding_mmw:
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print ("The absolute minimum MMW gives the smallest H/
He.")
else:
print ("The absolute minimum MMW does NOT give the
smallest H/He.")
else:
print (f"No rows found with MMW <= {

reasonable_mmw_threshold} for smallest H/He.")

def best_display(file_path, pname: str, output_file=None,
mmw_range=None, pad_value=None, wmf_cutoff=None, save_file=
False, save_plot=False):
wan
Merges the functionalities of clean_display and pad_plot

functions with an optional WMF cutoff.

Displays filtered data, summaries, and plots for a specific
pressure value (Pad), Mean Molecular Weight (MMW) range,

and an optional cutoff for Water Mass Fraction (WMF).

Parameters:

- file_path: str, path to the filtered CSV file.

- pname: str, the name of the planet to include in the plot
titles and save filenames.

- output_file: str, optional, path to save the filtered data
if save_file is True.

- mmw_range: tuple, optional, range of MMW values to filter
the data.

- pad_value: float, optional, the specific Pad value in bars
to filter and plot.

- wmf_cutoff: float, optional, maximum allowed WMF value to
filter the data.

- save_file: bool, if True, saves the filtered data (default:

False) .
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- save_plot: bool, if True, saves the generated plots (default
False) .

nnn

# Read the dataset

df = pd.read_csv(file_path)

# Filter by MMW range if specified
if mmw_range:
df = df[(df['MMW'] >= mmw_range[0]) & (df['MMW'] <=
mmw_range [1])]
print (f"Filtering MMW between {mmw_range[0]} and {

mmw_range [1]1}")

# Remove duplicates
df .drop_duplicates (subset=['MMW', 'Env_Fraction', 'H/He', 'WMF

'], inplace=True)

# Save the filtered file if required
if save_file:
if output_file is None:
raise ValueError ("Please provide an output file path
when save_file is True.")
df .to_csv(output_file, index=False)

print (f"Updated data saved to '{output_filel}'")

# Check for duplicates

num_duplicates = df.duplicated(subset=['MMW', 'Env_Fraction',
"H/He', 'WMF']).sum()

print (£"The file has {num_duplicates} duplicates." if

num_duplicates else "The file has no duplicates.")

# Display unique Pad values

unique_pads = sorted(df['Pad'].unique() / 1leb) # Convert from

Pascals to bars
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print ("Available unique Pad values:", ", ".join([f"{pad} bar"

for pad in unique_pads]))

# Calculate min and max for columns of interest
min_max_vals = {
"WMF': (df['WMF'].min(), df['WMF'].max()),
"Env_Fraction': (df['Env_Fraction'].min(), d4df['

Env_Fraction'].max()),

for name, (min_val, max_val) in min_max_vals.items ():

print (f"{name} - Min: {min_val:.4f}, Max: {max_val:.4f}")

# Find Pad for max and min H/He

hhe_min = df['H/He'].min()
hhe_max = df ['H/He'].max ()
mmw_min_hhe = df.loc[df['H/He']l] == hhe_min, 'MMW'].values [0]
mmw_max_hhe = df.loc[df['H/He']l] == hhe_max, 'MMW'].values [0]

print (£"Min H/He ({hhe_min:.7f}) corresponds to MMW: {
mmw_min_hhe:.4f}")
print (f"Max H/He ({hhe_max:.4f}) corresponds to MMW: {

mmw_max_hhe: . 4f}")

# Find row for min MMW

min_mmw_row = df.loc[df['MMW'].idxmin ()]

min_mmw = min_mmw_row['MMW']

hhe_for_min_mmw = min_mmw_row['H/He']

print (f"Absolute Min MMW: {min_mmw:.4f}, H/He corresponding to

Min MMW: {hhe_for_min_mmw:.4f}")

# Find the smallest H/He value and its corresponding "
reasonable" MMW

sorted_hhe = df.sort_values(by='H/He', ascending=True)

reasonable_mmw_threshold = 10
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filtered_hhe_mmw = sorted_hhe[sorted_hhe['MMW'] <=
reasonable_mmw_threshold]
if not filtered_hhe_mmw.empty:
smallest_hhe_row = filtered_hhe_mmw.iloc [0]
smallest_hhe = smallest_hhe_row['H/He']
corresponding _mmw = smallest_hhe_row['MMW']
print (f"Smallest H/He with reasonable MMW: {smallest_hhe
DLAfFM)
print (f"Corresponding MMW for this H/He: {
corresponding _mmw:.4f}")
if min_mmw == corresponding_mmw:
print ("The absolute minimum MMW gives the smallest H/
He.")
else:
print ("The absolute minimum MMW does NOT give the
smallest H/He.")
else:

print ("No rows found with MMW <= 10 for smallest H/He.")

# Plot 1

plt.figure(figsize=(10, 6))

plt.scatter(df ['MMW'], df['Env_Fraction'], color='red', alpha
=0.7, label='Envelope Fraction')

plt.scatter(df['MMW'], df['WMF'], color='blue', alpha=0.7,
label="'Water Mass Fraction')

plt.scatter(df ['MMW'], df['H/He']l, color='green', alpha=0.7,
label='H/He Ratio')

plt.xlabel ('Mean Molecular Weight (MMW)', fontsize=14)

plt.ylabel('Best Fitting Fractions', fontsize=14)

plt.title(f'Best Fitting Fractions vs. MMW for {pnamel}',
fontsize=16)

plt.legend (fontsize=12)

plt.grid(alpha=0.3)

plt.tight_layout ()

if save_plot:
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plt.savefig(f'best_fitting_fractions_{pnamel}.png')

plt.show ()

# Plot 2: H/He vs MMW with vertical and horizontal lines

plt.figure(figsize=(10, 6))

plt.scatter(df ['MMW'], df ['H/He']l, color='green', alpha=0.7,
label='H/He Ratio')

plt.axvline (x=corresponding _mmw, color='darkblue', linestyle='
--', label=f'MMW for Smallest H/He = {corresponding_mmw:.4
£31)

plt.axhline (y=smallest_hhe, color='darkred', linestyle='--"',
label=f'Smallest H/He = {smallest_hhe:.4f}')

plt.axvline (x=min_mmw, color='red', linestyle='--', label=f'
Min MMW = {min_mmw:.4f}"')

plt.axhline (y=hhe_for_min_mmw, color='blue', linestyle='--',
label=f'H/He for Min MMW = {hhe_for_min_mmw:.4f}")

plt.axvline (x=mmw_min_hhe, color='purple', linestyle='--',
label=f'MMW for Min H/He = {mmw_min_hhe:.4f}"')

plt.axhline (y=hhe_max, color='orange', linestyle='--', label=f
'Max H/He = {hhe_max:.4f}"')

plt.axhline (y=hhe_min, color='cyan', linestyle='--', label=f'
Min H/He = {hhe_min:.4f}"')

plt.xlabel ('Mean Molecular Weight (MMW)', fontsize=14)

plt.ylabel ('H/He Mass Fraction', fontsize=14)

plt.title(f'H/He Mass Fraction vs. MMW for {pnamel}', fontsize
=16)

plt.grid(alpha=0.3)

plt.tight_layout ()

if save_plot:

plt.savefig(f'hhe_vs_mmw_{pnamel}.png')

plt.show ()

# Additional Analysis with WMF Cutoff (if provided)
if wmf_cutoff is not None:

wmf_filter (df , pname, wmf_cutoff, save_plot)
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run target.py — Remote Execution

# run_target.py

import sys

import os

import numpy as np

import grid_search # grid_search.py should import smile

def run_grid_search_for_target(target_name, mass_val,

if

__hame_ ==

rad_val, rad_unc, teq_val, pad_values):

# Convert pad_values from bars to Pascals
pad_list = np.array(pad_values) * 1eb
env_fractions = np.arange(0, 1, 0.01)

mmw_list = np.linspace(2.35, 18, 50)

mass_unc,

# Define the target path relative to the current file's

directory

current_dir os.path.dirname(__file__)

target_path = os.path.join(current_dir, 'Exoplanet_Target_List
.csv')
result_file = grid_search.run_grid_search(

file_path=target_path,
planet_name=target_name,
pad_list=pad_list,
env_fractions=env_fractions,
mmw_list=mmw_list

)

print (£"Grid search completed for {target_namel.

in {result_filel}")

_main__":
# Get command-line arguments
target_name = sys.argv[1]

mass_val = float(sys.argv[2])
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mass_unc = float(sys.argv[3])

rad_val = float(sys.argv[4])
rad_unc = float(sys.argv[5])
teq_val = float(sys.argv[6])

pad_values = list(map(float, sys.argv[7:]1)) # Capture

remaining args as pad values

# Run the grid search with the specified parameters

run_grid_search_for_target (target_name, mass_val, mass_unc,

rad_val, rad_unc, teq_val, pad_values)

TOI-270d Analysis Code

import sys

import os

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

from IPython.display import clear_output, Image, display

# Import Path to Import
sys.path.insert (0, "/Users/biruknardos/a_UMD_Research/smile")

sys.path.append('/Users/biruknardos/a_UMD_Research/General')

import smile

import grid_search

import gemneral

import testing

# Initial Setup

target_path = '/Users/biruknardos/a_UMD_Research/General/

Exoplanet_target_list.csv'
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df = pd.read_csv(target_path)
print (df.iloc [4])

mass_val = 4.8 # 0Observed mass for TO0I-1231Db

mass_unc 0.4 # Uncertainty in observed mass

rad_val = 2.13 # 0Observed radius for TO0I-270d

rad_unc 0.06 # Uncertainty in observed radius
grid_search.find_max_pad (387.0975)

# Run Grid

pad_list = np.array([0.001, 0.1])

env_fractions = np.arange(0,1,0.01)

mmw_list = np.linspace(2.35,18,100)

# grid_search.run_grid_search(

# file_path = target_path,

# planet_name = 'T0I-1231b',

# pad_list = pad_list,

# env_fractions = env_fractions,

# mmw_list = mmw_list,

# )

resultl = 'TOI-270d_Model_grid_full_20250107_092647 .csv'

grid_search.error_calc(resultl, mass_val, mass_unc, rad_val,
rad_unc, 'T0I_270d', save_files=False)

filteredl = 'filtered_with_error_TO0I_270d_20250107_095721.csv'

general.clean_display(filteredl)
# general.filter_pad(filteredl, pad_value= 1.6, pname='TO0I_270dNEW
")

filtered2 = 'filtered_with_error_padl.6_TOI_270dNEW.csv'
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general .best_display(file_path=filtered2, wmf_cutoff
'TOI_2704"')

general .analyze_results (filteredl, pname='T0I_170d"',
, save_plot=False)

general.clean_display(filteredl)

general .pad_plot(filtered2, pname='T0I_270d"')

general .fill_between(filtered2, pname='T0I_270d"')

general.clean_display(filtered2)

= 0.5, pname=

ylim=(0,0.06)
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