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1 Introduction

1.1 Discovery of Exoplanets

1.1.1 Historical Perspective

The study of exoplanets, planets orbiting stars beyond our solar system, was once

confined in the realm of speculation. For centuries, astronomers debated whether

planetary systems like our own were commonplace or exceptional, but lacked the

observational tools to resolve the question. That changed in 1995, when Mayor

and Queloz (1995) announced the discovery of 51 Pegasi b, a Jupiter-mass planet

orbiting a sun-like star just 50 light-years away. Detected via the radial velocity

method, this hot Jupiter changed previous assumptions about extrasolar planets

by showing that planetary systems could differ dramatically from our own.

In the decades since, exoplanetary science has evolved from single-point discovery

to thousands of exoplanets. At the time of this thesis, more than 5,000 exoplanets

that have been discovered, with potentially thousands of other “candidates” in line

(NASA Science, 2017). Perhaps the most surprising finding has been the ubiquity

of planets between the size of Earth and Neptune, so-called “Sub-Neptunes”, which

are now known to be the most common type of planets in the galaxy, despite

having no solar system analogues (Fulton et al., 2017).

This observational revolution has prompted a shift in how interior structure models

are developed. Early interpretations of exoplanets’ interior structure often relied

on simple two-layer models or empirical mass-radius relationships (Seager and

et al., 2007; Van Eylen et al., 2021). However, as measurements become more

precise and atmospheric characterization entered the picture, it became clear that

more sophisticated models were needed, ones that account for realistic thermal

gradients, phase transitions, and compositional degeneracies (i.e., cases where

different internal structures can yield the same mass and radius).
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Today, with the launch of the James Webb Space Telescope (JWST), we can

detect different compositions that make up a specific exoplanet. From these results,

atmospheric mean molecular weight, in particular, can be a key link between

spectral retrievals and bulk composition inference. Spectral retrieval is the process

of fitting atmospheric models to observed spectra; the distribution of light intensity

across wavelengths infers the chemical and physical properties of the atmosphere

(Carroll and Ostlie, 2007).

This provides a bridge between observational and interior structure modeling efforts.

The framework used in this thesis represents this new era of interior modeling.

1.1.2 Observational Techniques

The interpretation of an exoplanet’s internal structure begins with a small set of

measurable physical properties: mass (Mp), radius (Rp), equilibrium temperature

(Teq), and, when available, atmospheric composition via spectroscopy. These

observables are not direct products of a single method, but rather arise from

the combination of several detection and characterization techniques. In this

section, we focus on the methods most relevant to this work—those that yield the

parameters used as inputs to our interior structure models.

Radial Velocity (RV): The radial velocity method detects the periodic Doppler

shifts in a star’s spectral lines induced by the gravitational pull of an orbiting

planet. As the star moves toward and away from us, the resulting redshift and

blueshift allow measurement of the stellar velocity semi-amplitude K, which can

be related to the planet’s minimum mass (Mp sin i), the orbital period (P ), and

eccentricity (e) through Keplerian dynamics (Mayor and Queloz, 1995; Wright and

Gaudi, 2013). Though RV only provides a lower limit on Mp without knowledge of

inclination (i), it becomes especially powerful when combined with transits, which

may provide i from geometry.
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RV sensitivity increases with planet mass and proximity to the star, making it

well-suited to detecting massive, short-period planets (e.g., hot Jupiters). However,

improvements in spectrograph precision—down to ∼1 m/s—have enabled the

detection of small planets around low-mass stars, including Earth-mass planets

like Proxima Centauri b (Fischer et al., 2016; Anglada-Escudé et al., 2016). Since

mass is a critical input to structure models, RV is foundational to any interior

inference effort.

Transit Photometry: The transit method detects planets by observing the

periodic dimming of a star as a planet passes in front of it. The depth of this flux

decrement yields the ratio of planet to star radius (Winn, 2010):

δ =

(
Rp

R∗

)2

.

When combined with accurate stellar parameters, the planetary radius Rp can

be extracted. Transit surveys like Kepler and TESS have dramatically expanded

the known planet population, particularly for close-in, sub-Neptune-sized planets

(Borucki et al., 2010; Ricker et al., 2015).

Because the probability of transit is inversely proportional to the orbital separation,

transit detections are biased toward close-in planets. However, these are also the

planets most amenable to atmospheric characterization and thus form the core of

our sample. Radius is one of two key quantities (alongside mass) used to constrain

interior composition, and thus forms a cornerstone of our modeling framework.

Transmission and Emission Spectroscopy: For transiting planets, follow-up

spectroscopic observations can reveal the composition and thermal structure of

the atmosphere. During a transit, starlight filters through the planetary limb,

allowing for the detection of molecular absorption features—a technique known as

transmission spectroscopy. Similarly, during secondary eclipse, emission spectra

can be obtained by measuring the planet’s thermal contribution.
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These spectra provide constraints on the presence of molecules (e.g., H2O, CO2,

CH4), atmospheric metallicity, and the mean molecular weight (MMW) (Kempton

and Knutson, 2024). The MMW, in particular, is vital to this work: it acts as a

proxy for the envelope composition, enabling us to constrain the bulk composition

of our target exoplanets. Additionally, observations from HST and JWST play a

central role in bridging atmospheric data with interior structure models.

Equilibrium Temperature (Teq): Though not directly measured, Teq is calcu-

lated from the stellar flux incident on the planet, using known stellar parameters

and the orbital distance inferred from transits or RV. This quantity sets the outer

boundary temperature in our models and influences the atmospheric scale height

and thermal profile. We assume a Bond albedo (typically 0 unless otherwise stated)

and full redistribution to estimate Teq for each planet in our sample.a

Together, these techniques yield the physical parameters—Mp, Rp, Teq, and

MMW—used as inputs to the SMILE structure solver. Understanding how each

of these quantities is derived, and the limitations and biases of the methods that

produce them, is essential for interpreting the internal structures of sub-Neptune

planets.
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Summary of Observable Parameters

Interior models rely on the following observables:

• Mass (M) — from Radial Velocity (RV)

• Radius (R) — from Transit Photometry

• Equilibrium Temperature (Teq) — from stellar flux and orbital

separation

• Mean Molecular Weight (MMW) — from Atmospheric Spec-

troscopy

These form the key inputs to the SMILE structure solver.

1.2 Exoplanet Demographics

1.2.1 Diversity of Exoplanets

The discovery of exoplanets over the past three decades has revealed a staggering

diversity in planetary systems. The first confirmed exoplanet orbiting a Sun-like

star—51 Pegasi b—was discovered in 1995 via the radial velocity method (Mayor

and Queloz, 1995). This hot Jupiter, orbiting its star every 4.2 days, was unlike

anything in the Solar System, immediately highlighting the surprising variety of

planetary system architectures. Since then, thousands of exoplanets have been

detected, with radii ranging from smaller than Earth to more than twice that

of Jupiter, and with orbital periods spanning from a few hours to several years.

The known exoplanet population now includes massive gas giants, rocky planets,

and volatile-rich sub-Neptunes. Many of these planets have no clear Solar System

analogue—especially those in the intermediate radius regime between Earth and

Neptune, where sub-Neptunes dominate the population.

This diversity is apparent in both the radius–period and mass–radius parameter
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spaces (Figures 1 and 2). These distributions demonstrate that exoplanets occupy

a wide range of physical and orbital regimes, although their detectability is strongly

shaped by observational biases. Detection techniques such as transits and radial

velocities are most sensitive to planets with large sizes or masses and short orbital

periods, leading to an overrepresentation of close-in, gas-rich planets in current

exoplanet catalogs. As a result, occurrence rates derived from these samples must

be interpreted carefully (Youdin, 2011; Cassan et al., 2012).

Figure 1: Radius–period distribution of known exoplanets, color-coded by detection
method. NASA Exoplanet Science Institute (2025).

Despite these biases, it is still possible to categorize exoplanets into several broad,

phenomenologically motivated classes:

Gas giants: These planets have masses and radii comparable to Jupiter and

Saturn. Many are located on short-period orbits and are therefore subject to intense

stellar irradiation, earning the designation “hot Jupiters.” Others occupy wider

orbits and are cooler, more akin to the Solar System’s giant planets. Some massive

objects exceed 13 Jupiter masses and blur the boundary with brown dwarfs.

Ice giants: Analogous in size and mass to Uranus and Neptune, these planets tend

to have significant volatile content but lower H/He fractions than gas giants. While
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most detected ice giants reside on short orbits (P ≲ 100 days), future missions

like Roman are expected to expand our ability to detect longer-period analogues

(Spergel et al., 2015).

This diversity is further illustrated by the mass–radius distribution (Figure 2),

which reveals a wide spread in bulk density and highlights the compositional

continuum from rocky to gas-rich planets.

Figure 2: Mass–radius distribution of confirmed exoplanets up to 40M⊕, with
composition curves for pure iron, silicates (MgSiO3), and water. The broad scatter
reflects the diversity in bulk composition among similarly sized planets. NASA
Exoplanet Science Institute (2025).

Sub-Neptunes: This class includes planets with radii between roughly 1 and

4 R⊕, and is the dominant population in the size range probed by Kepler and TESS.

These planets exhibit a wide range of compositions—from rocky cores with thin

hydrogen atmospheres to volatile-rich water worlds. They are often divided into

super-Earths (1–1.5 R⊕) and mini-Neptunes (2–4 R⊕), depending on their likely

bulk structure, as inferred from their radius and density. (Mulders, 2018; Rogers

and Owen, 2021). Sub-Neptunes are particularly abundant around M dwarfs and

are the focus of this study.
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Rocky planets: Planets with radii below ∼1.5 R⊕ and high bulk densities are

inferred to be primarily rocky. These include true Earth analogues, though their

detection is challenging due to their small size and low signal-to-noise ratios in both

RV and transit data. Interestingly, the population exhibits a deficit of planets near

1.5–2 R⊕, known as the radius valley, which may reflect divergent evolutionary

pathways driven by atmospheric loss (see figure 4, Rogers and Owen (2021)).

Whether rocky exoplanets resemble the terrestrial planets of the Solar System in

structure and composition remains an open question.

Beyond these size-based groupings, exoplanets also orbit an extraordinary range

of stellar hosts—from cool M dwarfs to hot, massive O- and A-type stars. Host

star properties can influence planetary formation, retention of volatiles, and the

likelihood of atmospheric loss. For instance, metal-rich stars have been linked to

an increased likelihood of hosting giant planets (Quirrenbach et al., 2011; Fischer

and Valenti, 2005), and high-energy radiation from young or active stars can strip

away lightweight atmospheres—particularly for low-mass planets in close-in orbits

Overall, the combination of these observational biases, stellar dependencies, and

compositional diversity motivates the development of flexible, physics-based interior

models capable of disentangling this complexity—one of the primary aims of this

thesis. We will focus on characterizing the interiors of sub-Neptunes, since their

ubiquity and lack of solar system analogues makes them particularly interesting

targets for further study.

1.2.2 Bulk Composition of sub-Neptunes

For planets with well-measured masses and radii, it is possible to constrain their

bulk densities and thereby gain insight into their interior compositions. These

quantities serve as critical inputs to planetary interior structure models like SMILE

(see Section 2.2), which use them to infer plausible combinations of core, mantle,

water, and gas envelope components. A first-order interpretation involves com-
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paring observed properties to theoretical mass–radius relations for planets of pure

composition—iron, silicate rock (MgSiO3), water, or hydrogen–helium. While such

models are admittedly idealized, they offer valuable baselines for interpreting the

diversity of planetary interiors.

This diversity is further illustrated in Figure 3, which shows the mass–radius

distribution for sub-Neptune to Neptune-sized planets orbiting M dwarfs (Rogers

et al., 2023). Overlaid are theoretical curves for Earth-like, water-rich, and H/He-

enveloped planets, highlighting the wide range of plausible compositions among

small planets. The light orange band denotes the range of sizes consistent with thin

H/He atmospheres atop rocky cores, while some low-density planets lie above even

these curves—suggesting significant water content. However, degeneracies remain:

planets with intermediate densities can often be fit by either water-rich interiors or

rocky compositions enveloped in thin hydrogen atmospheres (Mousis et al., 2020;

Turbet et al., 2020; Aguichine et al., 2021). The equilibrium temperature also

plays a key role, influencing atmospheric retention and escape.

Figure 3: Mass–radius diagram of planets orbiting M dwarfs, overlaid with com-
position models for rocky, water-rich, and H/He-enveloped interiors. Orange
shading marks the regime of low-density planets consistent with H/He atmospheres.
Adapted from Rogers et al. (2023).
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The interpretation of sub-Neptune compositions is particularly complex. These

planets exhibit a wide range of densities and interior makeups, suggesting that

their cores, water layers, and atmospheres can vary greatly from one planet to

another. Figure 4 illustrates one of the most striking population-level features: the

so-called radius valley, a dearth of planets between 1.5 and 2 R⊕ that separates

rocky super-Earths from larger mini-Neptunes (Fulton et al., 2017). This feature

is thought to arise from evolutionary processes such as photoevaporation (Owen

and Wu, 2013) or core-powered mass loss (Gupta and Schlichting, 2019), which

preferentially strip atmospheres from low-mass, close-in planets—leaving behind

smaller, denser cores. The valley therefore encodes valuable information about

atmospheric retention and the thermal history of exoplanets.

Figure 4: Completeness-corrected histogram of planet radii for short-period planets,
showing a bimodal distribution with peaks near 1.3 R⊕ and 2.4 R⊕. The deficit
near 1.7 R⊕ is known as the radius valley. Adapted from Fulton et al. (2017).

While mass and radius provide first-order constraints on planetary compositions,

equilibrium temperature and atmospheric metallicity can influence a planet’s

interior structure and what is observable from spectral retrievals. Benneke et al.

(2024) proposed a temperature-dependent classification scheme for sub-Neptunes,

distinguishing three distinct interior regimes: Hycean worlds (hydrogen-rich planets
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with potential subsurface oceans), Stratified mini Neptunes (planets with hydrogen-

rich low metallicity atmosphere above denser volatile layer), and miscible-envelope

sub-Neptunes (where volatiles remain well mixed with hydrogen throughout the

envelope, Benneke et al., 2024). Volatiles, in this context, refer to molecules like

water (H2O), methane (CH4), and carbon dioxide (CO2) that can exist in gas or

liquid form and easily respond to changes in temperature and pressure.

These regimes differ in whether water and other volatiles condense out of the

upper atmosphere or remain well-mixed with hydrogen, which in turn affects the

atmospheric composition accessible to transmission spectroscopy, as shown in

Figure 5. In colder, stratified (layered) interiors, heavy volatiles may be hidden

beneath the observable atmosphere, making the planet appear more hydrogen-rich

than it truly is. In contrast, warmer planets with fully mixed envelopes allow

volatiles to remain suspended throughout the atmosphere, enabling a more accurate

retrieval of the bulk envelope composition. In the population-level study presented

in this study, we model the planets assuming a mixed envelope scenario.

Figure 5: Temperature-dependent interior structure of sub-Neptunes driven by
the phase changes of H2O. For example, TOI-270d’s high atmospheric metal mass
fraction indicates that high-molecular-weight volatiles (H2O, CH4, CO, CO2) are
well-mixed with the H2/He in a warm miscible envelope (right scenario). Adapted
from Benneke et al. (2024).

Nonetheless, compositional inference remains highly degenerate. Many observed

planets are consistent with a range of interiors, depending on assumptions about

temperature, composition, and formation history. For example, the same bulk
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density can correspond to either a rocky planet with a thin H/He envelope or

a water-rich world with little to no gas (Lozovsky et al., 2018). Atmospheric

metallicity, temperature, and host star activity all further modulate observable

properties and must be accounted for in any robust interior model (Thorngren et al.,

2016, 2019). The presence of volatile-rich “water worlds” is especially intriguing,

particularly around M dwarfs, where ice-rich material can be accreted even in

close-in orbits due to the proximity of the snow line (Kimura and Ikoma, 2022).

Indeed, some studies suggest that low-mass stars may preferentially host planets

with water-dominated envelopes (Luque and Pallé, 2022).

As more precise mass and radius measurements become available, alongside spec-

troscopic observations with JWST to measure atmospheric composition, the ability

to distinguish between rocky, water-rich, and gas-enveloped planets will improve.

In the meantime, models like SMILE (more details on section 2.2) are essential

tools for interpreting this structural diversity. They allow us to move beyond bulk

density alone and extract more meaningful inferences about the internal structure

of planets like TOI-270d (see Section 3) within the broader context of the exoplanet

population.

1.2.3 Habitability

The broader search for life remains one of the core motivations behind exoplanet

science. A planet is often considered potentially habitable if it resides within the

“habitable zone” of its host star—the region where stellar insolation allows for

liquid water to exist on the surface (Dressing and Charbonneau, 2015). However,

this orbital definition alone is not sufficient. A planet’s atmosphere, interior

composition, and the activity of its host star all strongly influence its surface and

subsurface conditions (Meadows and Barnes, 2018). Particularly around M dwarfs,

flare activity and atmospheric erosion pose challenges to habitability, even for

planets within this nominal zone.
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In recent years, the concept of habitability has expanded to include exotic config-

urations such as Hycean worlds—sub-Neptunes with hydrogen-rich atmospheres

overlying high-pressure liquid water layers (Madhusudhan et al., 2021). While these

planets may not have solid surfaces, they could still offer stable, temperate environ-

ments shielded from harmful radiation. The James Webb Space Telescope (JWST),

already operational, is actively characterizing the atmospheres of small exoplanets,

including several Hycean candidates. Meanwhile, the upcoming Extremely Large

Telescope (ELT), expected to begin science operations around 2028, will push

the frontier even further by enabling high-resolution ground-based spectroscopy

(Observatory, 2024). Together, these observatories provide our best opportunity yet

to detect atmospheric biosignatures and probe the limits of planetary habitability

beyond the Solar System.

1.3 Motivation for This Study

Sub-Neptune exoplanets, planets with radii between Earth and Neptune, represent

the most common class of exoplanets in our galaxy. Yet, their composition

and formation histories remain poorly understood. Unlike the terrestrial or gas

giant planets of our solar system, sub-Neptunes have uncertain interior structure

properties. This presents a major modeling challenge: multiple compositions can

produce the same mass and radius, a problem known as compositional degeneracy.

Although thousands of sub-Neptunes have been discovered, most existing models

struggle to resolve this degeneracy. Many rely on oversimplified assumptions, such

as isothermal interiors or stratified, unmixed volatile layers, and often neglect

constraints from atmospheric observations. As a result, key questions remain

unanswered: What is the true compositional diversity of sub-Neptunes? Are they

water-rich, hydrogen-rich, a combination of sub-populations, or something else?

How do these objects form and evolve?

This study addresses these challenges by developing interior structure models
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that incorporate temperature-dependent equations of state, isothermal–adiabatic

thermal profiles, and mixed H/He–H2O envelopes. Importantly, this work connects

interior structure models to observable quantities such as atmospheric mean molec-

ular weight (MMW), enabling direct comparison with JWST spectral retrievals.

The analysis begins with TOI-270d, a well-characterized sub-Neptune with new

JWST constraints, and expands to a broader population of planets selected for

upcoming or ongoing atmospheric observations. Through this combined case-

study and population-level approach, the goal is to demonstrate that detailed

interior structure modeling—when done carefully—can yield meaningful insights

into planetary composition, even in the absence of detailed atmospheric spectra.

As high-precision observations become more common, frameworks like this will be

essential for interpreting the growing diversity of small exoplanets.

2 Modeling Framework and Physical Founda-

tions

2.1 Initial Steps to Interior Structure Modeling

Understanding a planet’s internal structure requires linking physical laws with

material properties. At the heart of this connection is the equation of state

(EOS), which describes how material’s density responds to change in pressure and

temperature:

ρ = ρ(P, T ) (1)

Each planetary material-such as iron, silicates, water, or hydrogen-helium, has its

own EOS, which determines how compressible it is under planetary conditions.

The EOS is essential for evaluating the planet’s internal density structure and,
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ultimately, its radius.

Once the EOS provided a way to get the local density, the stage was set to

numerically integrate the structure equations that shape a planet’s interior layer

by layer.

The first equation I used to integrate was the mass continuity equation, which

ensures that mass is correctly distributed throughout the planet’s volume. It

describes how the radius changes with increasing enclosed mass:

dR

dM
=

1

4πR2ρ
(2)

At each step of the integration, the local density ρ is required. This value is

obtained using the equation of state (EOS), which defines density as a function of

pressure and temperature. Once ρ is known, the mass continuity equation provides

the next value of the radius.

The second key equation is hydrostatic equilibrium, which ensures that the inward

force of gravity is balanced by the pressure gradient at each layer:

dP

dM
= − GM

4πR4
(3)

This equation is evaluated using the current radius (from mass continuity) and the

mass enclosed up to that layer. Together, these two differential equations describe

the planet’s interior structure when linked by the provided EOS.

The equation of state (EOS) describes how materials compress under pressure

and temperature—directly determining the planet’s internal density structure

and, ultimately, its radius. During this initial step, my work didn’t consider the

temperature part from the EOS. For rocky interiors (iron and silicate), I adopted

isothermal EOS models from Seager and et al. (2007), as thermal effects in these

layers have minimal influence on the mass–radius relation (Grasset et al., 2009;
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Howe et al., 2014).

To solve this coupled system, I applied Euler’s method, which propagates the

solution forward using a first-order approximation. At each mass increment ∆M ,

the radius and pressure are updated according to:

Ri+1 = Ri +

(
dR

dM

)
i

·∆M , Pi+1 = Pi +

(
dP

dM

)
i

·∆M (4)

Mass increases step-by-step as ∆M is added at each layer:

Mi+1 = Mi +∆M

Here:

• The subscript i denotes the current step in the numerical integration, corre-

sponding to a shell at a given depth inside the planet.

• Mi is the total mass that has been accumulated up to the current step.

• Ri and Pi are the radius and pressure at step i (the current shell).

• Ri+1 and Pi+1 are the updated values at the next shell, after adding a small

mass increment ∆M .

•
(
dR
dM

)
i
and

(
dP
dM

)
i
are the derivatives evaluated at step i.

This method allows the structure to be built up incrementally from the surface

inward, keeping track of how radius and pressure evolve as more mass is enclosed.

The integration proceeds from a known surface pressure and an initial guess for

the planet’s surface radius Rp. To find the correct planetary radius, I began by

setting a plausible range of surface radii that spans the expected size for Earth-like

planets. I then calculated the midpoint of this range and used it as an initial guess
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for Rp. This radius guess was passed to the integration routine, which computed

the resulting total mass. I compared the integrated mass to the observed mass of

the target planet.

If the integrated mass was too large, it meant the radius was underestimated, so I

increased the guess. If the integrated mass was too small, the radius was too large,

and I decreased it. This process was repeated until the computed mass matched

the observed mass to within one part in a million. We call this a bisection method.

The program evaluates the radius and pressure profiles as it accumulates mass,

and terminates when the total enclosed mass equals the target planet mass.

To validate this method, I first modeled an Earth-mass planet with a pure silicate

(MgSiO3) and then a pure iron (Fe) composition. I adopted isothermal EOS models

from Seager and et al. (2007) for both MgSiO3 and Fe, interpolated density as a

function of pressure, and implemented the structure equations as described above.

I extended the model to planets ranging from 1 to 10 Earth masses to examine

how the radius changes with mass. As shown in Figure 6, pure silicate consistently

yield larger radii than pure iron planets at a given mass, which shows the lower

density of silicate relative to iron. For example, at 5 Earth mass, a silicate planet

has a radius of around 1.6, while a pure iron planet is closer to 1.2 Earth radii. My

model successfully reproduced the radius of a pure silicate and pure iron Earth to

within a few percent of published mass–radius relations (Seager and et al., 2007).

Figure 6 is modeled on an Isothermal temperature profile assumption. An isother-

mal profile assumes a constant temperature throughout the planet’s interior. While

this is a simplification compared to real planetary interiors, which typically have

temperature gradients, this assumption removes temperature as a variable in the

EOS and allows the use of a pressure-dependent tabulated EOS. As a result, it

provides a computationally simple and physically reasonable baseline for initial

validation.
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Figure 6: Mass–radius relationship from initial modeling work. The curves represent
my calculated results for planets composed of pure iron and pure silicate, compared
to known theoretical models.

Although these initial models offered useful insights into how planetary radius

responds to mass and composition, they were limited in several key ways. They

assumed a single, uniform material throughout the planet, neglected the effects

of temperature gradients, and could not account for layered structures or phase

transitions. As such, they could not capture the full physical complexity of exo-

planets—particularly those with volatile-rich envelopes or differentiated interiors.

To overcome these limitations, I transitioned to a more sophisticated modeling

framework: SMILE1. While it builds on the same physical principles and structure

equations as my initial model, SMILE expands the scope considerably—it supports

multiple compositional layers, temperature-dependent equations of state, and more

realistic thermal structures, including isothermal–adiabatic profiles and fully mixed

H/He–H2O envelopes.

An isothermal–adiabatic profile assumes that the outermost part of the atmosphere

1Structural Model of Internal Layers of Exoplanets
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is at constant temperature (isothermal), anchored to the planet’s equilibrium tem-

perature, while deeper layers transition into a convective region where temperature

increases with pressure along an adiabatic gradient (Nixon and Madhusudhan,

2021). This two-part structure reflects the physical conditions expected in sub-

Neptune atmospheres, where stellar irradiation dominates the upper layers and

internal heat transport drives convection below.

This framework forms the foundation for the interior structure modeling presented

in this thesis.

2.2 SMILE

While my initial structure models (see Section 2.1) focused on single-layer planets

using simplified assumptions, more realistic exoplanet interiors require a flexible

framework that incorporates layered compositions, temperature gradients, and

temperature-dependent material properties. For this purpose, I utilized the publicly

available SMILE package (Nixon and Madhusudhan, 2021), developed by Nixon et

al., which is designed to simulate the internal structure of exoplanets with arbitrary

layerings and thermal profiles.

SMILE builds on the same fundamental structure equations introduced earlier—mass

continuity and hydrostatic equilibrium—but extends the approach to accommodate

complex, multi-material interiors and self-consistent thermal stratification. Instead

of solving for radius using a fixed composition and isothermal profile, SMILE

supports up to four fully differentiated layers:

• An iron (Fe) core,

• A silicate (MgSiO3) mantle,

• A water (H2O) layer,

• An optional hydrogen–helium (H/He) envelope.
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Each layer is defined by a mass fraction, and the sum of the layers must equal the

total planet mass.

Model Inputs: Figure 7 summarizes the key inputs required by SMILE. These

include:

• The total planetary mass (Mp), surface pressure (P0), and surface temperature

(T0) as boundary conditions,

• Mass fractions for each of the four potential layers,

• A pressure–temperature profile (e.g., isothermal–adiabatic) to describe the

thermal structure,

• Equations of state (EOS) for each material, interpolated from tabulated data.

Figure 7: Inputs to the SMILE model include layer mass fractions, boundary
conditions, a pressure–temperature profile, and material equations of state.

Thermal Structure: Isothermal–Adiabatic Profiles

To accurately model the internal structure of a planet, it is essential to specify

how temperature changes with depth. The thermal profile directly influences the

equation of state (EOS) and, in turn, the resulting pressure and density profiles.

In this study, we adopt a two-layer temperature structure consisting of an isothermal

layer at the top of the atmosphere, transitioning to an adiabatic gradient deeper

in the envelope. This isothermal–adiabatic profile offers a physically motivated

yet computationally tractable approach to representing the thermal structure of

sub-Neptune atmospheres (Nixon and Madhusudhan, 2021).
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The isothermal region is anchored to the planet’s equilibrium temperature Teq,

defined by stellar and orbital properties:

Teq = T⋆

√
R⋆

2a
· (1− AB)

1/4 (5)

where T⋆ is the effective temperature of the host star, R⋆ is the stellar radius, a

is the planet’s semi-major axis, and AB is the Bond albedo. The Bond albedo,

ranging from 0 (absorbs all energy) to 1 (perfectly reflective), is the fraction of total

incident stellar energy that a planet reflects back into space across all wavelengths

(Carroll and Ostlie, 2007).

We compute Teq for each planet using Equation 5, assuming zero Bond albedo and

full heat redistribution. The resulting equilibrium temperature defines the upper

isothermal boundary condition in all SMILE simulations.

The transition between the isothermal and adiabatic layers is set by the pressure at

the radiative–convective boundary, Pad, which marks where radiative transport be-

comes inefficient and convection dominates. Below this boundary, the temperature

increases with pressure according to the adiabatic gradient:

(
dT

dP

)
S

=
αT

ρcP
(6)

where α is the thermal expansion coefficient, ρ is the local density, and cP is the

specific heat capacity at constant pressure. For mixed H/He and H2O envelopes,

the adiabatic gradient is computed using entropy-weighted mixing (Chabrier et al.,

2019; Nixon et al., 2024).

To ensure physical consistency, Pad is selected so that water remains in the vapor or

supercritical phase at the base of the isothermal layer. This prevents condensation

near the radiative–convective boundary, as shown in Figure 8. The same methods

are used for all the planets in this study to calculate the Teq and,Pad.
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Figure 8: Phase diagram of water adapted from Nixon et al. (2024), showing
vapor, liquid, supercritical, and solid regimes. The white lines indicate how the
equilibrium temperature constrains the maximum radiative–convective boundary
pressure (Pad) to prevent condensation for TOI-270d, with Teq = 387 K,Pad = 1.33
barr.

In contrast to the rocky layers, temperature substantially affects how pressure

and density evolve in volatile-rich layers. For water, we implement a temperature-

dependent EOS from Thomas and Madhusudhan (2016) that captures transitions

between vapor, liquid, supercritical, and high-pressure ice phases. For hydro-

gen–helium, we adopt the EOS from Chabrier et al. (2019), which accounts for

thermal and compositional variations relevant to sub-Neptunes.

Figure 9 shows representative EOS curves used in this study, illustrating how

density varies with pressure for the major planetary materials modeled in SMILE.

The hydrogen-helium EOS (red) shows lower densities at low pressures, highlighting

its strong contribution to inflating planetary radii even when present in small mass

fractions. Water shows a notable density jump corresponding to phase transitions.
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Figure 9: Schematic of representative EOS curves used in this study, showing how
density varies with pressure for key planetary materials. Curves are plotted at
fixed temperatures around 300 K.

With the compositional and thermal structure specified, SMILE proceeds to solve

the structure equations numerically, using an iterative approach to determine the

planetary radius.

Numerical Integration and Convergence: SMILE uses a shooting method

with bisection to solve for the planet’s radius. Similar to my initial model, an

initial guess for surface radius Rp is made. The code then integrates the structure

equations inward using a fourth-order Runge–Kutta method, updating pressure,

radius, density, and temperature at each step based on the current EOS. The

process repeats, adjusting Rp until the integration reaches the center of the planet

(i.e., R(M = 0)) within a small numerical tolerance.

Figure 10: Flowchart of the SMILE model’s internal loop for solving planetary
radius. A bisection algorithm adjusts the radius until the integration reaches the
planetary center within a small tolerance.
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The use of Runge–Kutta rather than Euler’s method allows for greater numerical

stability and accuracy, particularly important when modeling stratified planets

where density can change steeply across interfaces.

Model Outputs: Once convergence is reached, SMILE outputs the final planetary

radius Rp along with interior profiles for pressure, temperature, density, and compo-

sition. The internal structure is resolved layer-by-layer, allowing direct visualization

of the material stratification and the thermal behavior of each component.

Figure 11: Example SMILE output showing the interior layering (Fe, MgSiO3, H2O,
H/He) and corresponding pressure–temperature profile over a water phase diagram.
While this shows a fully stratified configuration, the models in this research assume
a fully mixed H/He–H2O envelope, which significantly alters both radius and
thermal structure (see also Benneke et al. 2024 and Section 3.4).

Key Advancements Over the Initial Modeling Approach (see Section 2.1):

• SMILE supports layered compositions, whereas my model assumed a single

uniform material.

• SMILE includes temperature-dependent EOS, while my model assumed an

isothermal interior.

• SMILE incorporates Runge–Kutta integration and bisection convergence, im-

proving numerical accuracy.

• SMILE can model fully mixed envelopes and track phase transitions (e.g., water

vapor to supercritical), which are not possible in the simplified approach.
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Together, these capabilities make SMILE an essential tool for realistic interior mod-

eling, enabling the analysis of planets with complex compositions and observational

constraints (e.g., from JWST). It forms the foundation for all structure models

used throughout the remainder of this thesis.

2.3 Accelerating SMILE with Multiprocessing

Typically, SMILE has been used to generate a small number of interior models with

a fixed composition, often in the context of analyzing a single exoplanet. However,

the aim of my research is to explore the internal structure of an entire population of

sub-Neptunes. This requires generating thousands of models that span a wide and

continuous parameter space, including planetary mass, atmospheric composition,

boundary pressures, and temperature profiles. Although each individual SMILE

model runs in just a few seconds, evaluating millions of parameter combinations

becomes computationally challenging without further optimization.

To address this, I developed a custom multiprocessing framework that parallelizes

SMILE evaluations across multiple CPU cores. Instead of computing each model

sequentially, the system constructs a full grid of parameter combinations—such as

mass, Pad, equilibrium temperature, envelope mass fraction, and mean molecular

weight (MMW)—and distributes them among all available processing cores. Each

core executes SMILE independently, calculating the planetary radius and internal

structure for its assigned batch of models. Once the calculations are complete,

results are aggregated and saved for downstream analysis.
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Figure 12: Architecture of the multiprocessing system used for SMILE-based grid
modeling for multiple target Exoplanets.

To enhance both physical realism and computational efficiency, the system filters out

models deemed unphysical or unstable. In particular, we exclude cases where the

hydrogen–helium (H/He) mass fraction exceeds 30%. Such high volatile contents are

unlikely to be retained by sub-Neptunes due to a combination of photoevaporative

mass loss and limitations set by planet formation theory. Low-mass planets exposed

to strong stellar irradiation can lose much of their primordial hydrogen through

atmospheric escape, while core accretion models predict that planets in this size

regime rarely acquire thick H/He envelopes in the first place (Owen and Wu,

2013; Lee and Chiang, 2015). Additionally, the framework dynamically detects the

number of available CPU cores and parallelizes the workload accordingly, ensuring

optimal utilization of computational resources across large model grids.

This parallel framework improved computational efficiency by a factor of 5–10,

depending on the model grid resolution and hardware. It made high-resolution grid
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searches feasible, enabling robust exploration of the mass–radius–composition space.

This tool proved especially useful in population-level studies where thousands of

planetary models are required to interpret observational trends across exoplanet

samples.

3 Analyzing the Internal Structure of TOI-270 d

3.1 Introduction and Scientific Motivation

TOI-270d is a temperate sub-Neptune discovered in 2019 using the transit method

by the Transiting Exoplanet Survey Satellite (TESS) (Günther et al., 2019). It

orbits a bright M3V-type star with an apparent magnitude of J = 9.1 (Mikal-

Evans et al., 2023). The planet has a mass of 4.78 ± 0.43M⊕ and a radius of

2.113± 0.065R⊕, placing it in the sub-Neptune category (Van Eylen et al., 2021).

It completes one orbit every 11.4 days at a distance of 0.0721 AU (Günther et al.,

2019).

At the time we began studying TOI-270d, it was considered one of the most promis-

ing small exoplanets for atmospheric characterization using transit spectroscopy,

due to its relatively low bulk density and temperate equilibrium temperature

(Mikal-Evans et al., 2023). These properties suggested that the planet could host a

volatile-rich envelope, potentially composed of water vapor or other high–molecular-

weight species, making it a strong water-world candidate (Luque and Pallé, 2022;

Van Eylen et al., 2021). These traits made TOI-270d an ideal prototype for interior

structure modeling.

Initial work exploring the internal structure of TOI-270d simplified its composition

by excluding water layers and modeling the planet as a rocky core with a H/He

envelope only (Van Eylen et al., 2021). A more recent study by Luque and

Pallé (2022) included water as a compositional component, but assumed a purely
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isothermal temperature profile throughout the envelope. These simplifications

highlighted the need for more physically motivated interior models that incorporate

thermal gradients, realistic volatile compositions, and observational constraints

such as mean molecular weight (MMW) retrieved from spectra.

TOI-270d was the first planet I analyzed using models generated with the SMILE

framework. It served as a critical testbed for validating the pipeline, exploring

structural degeneracies, and eventually expanding the modeling effort to a larger

population of sub-Neptunes.

3.2 First Attempt: Pure H2O Envelopes

To begin my research exploring sub-Neptune interiors, I explored the hypothesis

that TOI-270d could be a pure water world. In this preliminary study, I constructed

models assuming a rocky interior (iron core + silicate mantle) overlaid with a pure

H2O envelope. These were the first SMILE models I computed.

The key parameters varied in this initial grid were the water mass fraction (WMF)

and surface pressure (P0). The thermal structure was modeled using an adiabatic

temperature profile anchored at the equilibrium temperature of the planet.

In these pure water models, the envelope consisted entirely of H2O vapor, corre-

sponding to a fixed atmospheric mean molecular weight (MMW) of 18.02 g/mol;

pure H2O envelope. Figure 13 and figure 14 illustrate some of the results from this

initial analysis.

Note that, to identify physically consistent models, I used a chi-squared-like filtering

criterion that compares the modeled mass and radius to the observed values. Models

were retained only if they fell within the 1σ observational uncertainties in both

mass and radius, satisfying:
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χ2 =

(
Mmodel −Mobs

σM

)2

+

(
Rmodel −Robs

σR

)2

≤ 1 (7)

where Mobs and Robs are the observed mass and radius of TOI-270d, Mmodel

and Rmodel are the corresponding model predictions, and σM and σR are their

respective uncertainties. This same filtering criterion was applied consistently

across all models, including those with layered and mixed volatile envelopes (see

Sections 3.3 and 3.4).

Figure 13: Mass–radius relationships for TOI-270d assuming pure H2O envelopes
with varying water mass fractions and surface pressures. The observed mass and
radius of TOI-270d are indicated in blue.

As illustrated in Figure 13, a range of water mass fractions and surface pressures

yield models that are consistent with the mass and radius of the planet.
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Figure 14: Water mass fraction vs. surface pressure for pure H2O envelope models
of TOI-270d that match its observed radius.

Figure 14 shows the range of envelope water mass fractions and corresponding

surface pressures that yield models consistent with TOI-270d’s measured mass

and radius. As the surface pressure increases, we can see the range of water mass

fractions that are consistent with the measured mass and radius of TOI-270d.

In the plots above, the water mass fraction (WMF) refers to the fraction of the

entire planet’s mass made up of water—that is, the bulk WMF. In this pure H2O

envelope scenario, all volatile mass is water, so the envelope WMF is equal to

the total WMF. Later sections will distinguish more clearly between these two

quantities. Ultimately, we found that a range of WMF values were consistent with

the mass and radius of the planet. However, in this preliminary study, we assumed

a purely adiabatic temperature profile, rather than setting the radiative-convective

boundary at a location appropriate for the planet’s equilibrium temperature. Our

later work used more realistic temperature profiles, leading to some differences

between results.

This first modeling phase served as both a learning experience and a foundational

validation of the SMILE framework. It also underscored the importance of surface

pressure and thermal structure in shaping planetary radii. These early results

pointed toward key directions for future modeling—namely, the need to refine the
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thermal profile using self-consistent atmospheric models and to incorporate the

effects of a hydrogen–helium (H/He) envelope for a more realistic treatment of

volatile-rich atmospheres.

3.3 Layered H/He–H2O Envelopes (Prior to MMW Con-

straints)

Following this early work, I began incorporating hydrogen and helium into the

envelope structure. This marked a shift from the pure H2O hypothesis to a more

realistic two-component envelope model composed of H2O and H/He. This also

introduced the concept of the total envelope mass fraction—the fraction of the

planet’s total mass assigned to the volatile envelope, separate from the solid interior.

The envelope was modeled as layered rather than mixed, meaning H2O and H/He

occupied distinct regions within the volatile layer.For each model, I independently

varied the envelope mass fraction (from 0 to 1) and the envelope’s water mass

fraction (WMF, also from 0 to 1). Here, envelope WMF refers specifically to

the mass fraction of water within the envelope alone, that is the fraction of the

envelope’s mass composed of H2O.

The total mass of water and H/He in the planet was calculated as:

Total water mass fraction = envelope fraction×WMF

Total H/He mass fraction = envelope fraction× (1−WMF)

These models were still constrained only by mass and radius within 1σ of the

observed values, with no atmospheric or spectral information incorporated at this

stage. The envelope components were not yet treated as miscible, and no mean

molecular weight (MMW) constraints were applied.

While useful for initial exploration, these layered-envelope models carried inher-
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ent limitations. Recent observations and theoretical work suggest that in warm

sub-Neptunes like TOI-270d, hydrogen, helium, and water are likely to exist as a

homogeneous, miscible mixture under the planet’s high-pressure, high-temperature

conditions (Benneke et al., 2024). In such regimes, phase separation is unlikely, and

efficient convection promotes compositional mixing throughout the envelope. More-

over, transmission spectra from JWST will provide constraints on the atmospheric

mean molecular weight (MMW), enabling a direct link between modeled envelope

composition and observables. These insights motivated the transition to fully

mixed H/He–H2O envelopes, guided by MMW-based sampling. This approach not

only reflects a more physically realistic interior structure but also enables forward

modeling compatible with spectroscopic data.

3.4 Mixed H/He–H2O Envelopes: Transitioning to MMW-

Based Sampling

Recent theoretical and observational advances suggest that many sub-Neptunes

possess atmospheres where hydrogen, helium, and water remain well-mixed rather

than separated into distinct layers. This configuration is supported by both high-

pressure miscibility studies Soubiran and Militzer (2015) and the expectation of

strong vertical mixing in volatile-rich envelopes. In particular, steep temperature

gradients in sub-Neptune atmospheres-driven by stellar irradiation and internal

heat-can trigger deep convection and inhibit the formation of stable, layered

structures (Pierrehumbert, 2023). As a result, fully mixed envelopes are now

considered a physically realistic configuration for many volatile-rich exoplanets,

including recent studies of TOI-270d and GJ 1214b (Benneke et al., 2024; Nixon

et al., 2024).

Motivated by this, I transitioned from layered-envelope models to a framework

that assumes fully mixed H/He–H2O envelopes in all SMILE simulations. In this

setup, the gaseous envelope is treated as a single, well-mixed fluid composed of
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hydrogen, helium, and water, under the assumption of fully mixed envelopes.

3.4.1 Exploring Mixed Envelopes with WMF Sampling and MMW

Constraints

The atmospheric mean molecular weight (MMW) of TOI-270d’s atmosphere was

recently determined to be 5.47+1.25
−1.14 g/mol (Benneke et al., 2024). Assuming that

the envelope consists primarily of hydrogen, helium, and water, it is possible to map

this MMW constraint to an envelope water mass fraction (WMF). At this stage,

the envelope was assumed to be fully mixed, but sampling was still conducted in

terms of water mass fraction (WMF), rather than directly in MMW space. To

bridge the two, I constructed a numerical mapping between WMF and MMW for

H/He–H2O mixtures, as shown in Figure 15.

Assuming a solar hydrogen-to-helium mass ratio of 27.5% He (Asplund et al., 2009),

I varied the envelope’s WMF from 0 to 1, distributing the remaining mass between

H2 and He, (MHe and MH2 , respectively):

MHe = (1−WMF) · 0.275, MH2 = (1−WMF) · 0.725

These mass fractions were then converted to mole counts via ni =
Mi

µi
, and used to

compute the mole fractions xi =
ni∑
j nj

. These mole fractions were then used to

compute the mean molecular weight:

µatm =
∑
i

xi · µi

This process yielded a continuous mapping between WMF and MMW, enabling

me to determine which WMF values would correspond to atmospheres consistent

with TOI-270d’s observed MMW range. The results are shown in Figure 15.
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Figure 15: Relationship between atmospheric mean molecular weight (MMW)
and water mass fraction (WMF). Left: Full curve from MMW = 2 to 18 g/mol,
with red dashed lines marking WMF thresholds of 0.53 and 0.75. Vertical blue
lines indicate the JWST-retrieved MMW range for TOI-270d (4.33 to 6.72 g/mol).
Right: Zoomed-in view focusing on the observationally allowed MMW range.
This panel reveals that TOI-270d’s envelope water mass fraction must lie between
approximately 0.53 and 0.75 to remain consistent with the measured MMW.

As shown in the figure 15, only models with envelope WMFs between approximately

0.53 and 0.75 are consistent with TOI-270d’s observed atmospheric MMW. The

steep slope of the MMW–WMF curve in this range highlights the diagnostic

power of MMW as an observable: even small changes in MMW translate to

significant differences in envelope composition. Note that this refers specifically to

the envelope—not the total planetary water fraction, which must also account for

the envelope mass fraction.

Using this mapping, I filtered a precomputed grid of models (originally sampled in

WMF space) to retain only those with MMW values within the JWST-retrieved

range of 4.33–6.72 g/mol. In this sense, the models were MMW-consistent by

construction, even though MMW was not the primary sampling variable.

At this stage, I also explored a wide range of radiative–convective boundary

pressures (Pad), including 0.1 bar, 1 bar, 10 bar, and 100 bar. However, these

values were chosen arbitrarily and not yet constrained by the water phase diagram.

As a result, some models permitted condensation in the envelope, potentially

inflating the plausibility of high-water-fraction solutions.
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Figure 16 shows how these WMF-sampled models populate the mass–radius space,

including compositions that match TOI-270d’s measured radius across a wide

range of Pad assumptions. While the figure demonstrates the flexibility of the

WMF-based models, it also underscores the need for tighter thermal constraints.

Figure 16: Mass–radius relationships for best-fitting compositions of TOI-270d,
constrained to the observed MMW range (µ = 5.47+1.25

−1.14 g/mol). These models
were generated before switching to MMW-based sampling and do not yet apply a
condensation-aware cutoff on Pad.

Figure 17 further illustrates how the best-fitting envelope, water, and H/He mass

fractions vary across the allowed MMW range. As MMW increases, both the

water mass fraction and the overall envelope mass increase steeply, while the H/He

fraction remains relatively low. These results reflect the compositional degeneracy

present before applying condensation-aware filtering and motivate the need for

further refinement in later modeling stages.
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Figure 17: Best-fitting envelope, water, and H/He mass fractions as a function of
MMW for TOI-270d. These results were obtained without restricting Pad to values
that prevent H2O condensation, and therefore differ from the final, condensation-
aware grid models.

Subsequent modeling phases addressed this shortcoming by imposing physically

motivated upper limits on Pad, using the planet’s equilibrium temperature and the

water phase curve to ensure that all models remained in the vapor or supercritical

regime (see Section 2.2). This refinement, informed by studies such as Gupta et al.

(2025), eliminated condensation-permitting models and brought the framework

into full physical consistency with thermal expectations for close-in sub-Neptunes.

3.4.2 Final MMW-Based Modeling and Constraints on TOI-270d’s

Composition

Can interior structure modeling alone, without the aid of atmospheric constraints-

yield meaningful insights into the bulk composition of a sub-Neptune exoplanet

like TOI-270d? This question served as the foundation for my final modeling phase.

By systematically exploring a broad grid of compositions, I tested how interior

modeling alone could narrow down TOI-270d’s possible structure.
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To explore the full range of plausible interior compositions for TOI-270d, I generated

models across a two-dimensional grid of envelope mass fraction (ranging from 0.01

to 1.0) and atmospheric mean molecular weight (MMW, ranging from 2.35 to

18). This spans compositions from pure H/He to pure water vapor. The grid was

computed using a custom multiprocessing framework built on top of SMILE (see

Section 2.3), enabling efficient evaluation of thousands of composition models.

For each MMW value, the corresponding envelope water mass fraction (WMFenv)

was computed using the prescription from Nixon et al. (2024):

xH2O,env =
µH2O(µatm − µH/He)

µatm(µH2O − µH/He)
(8)

where µH2O = 18.02 g/mol, µH/He = 2.34 g/mol, and µatm is the sampled MMW.

The implied H/He and H2O mass fractions were then scaled by the total envelope

mass fraction to compute the total mass fraction of each volatile component

for each model. All envelopes were assumed to be fully mixed and followed an

isothermal–adiabatic temperature profile.

To identify physically plausible solutions, I evaluated each model using SMILE

and applied the same chi square filtering criterion described in Equation 7, which

requires the model’s mass and radius to fall within the 1σ observational uncertainties

of TOI-270d. Only models with χ2 ≤ 1 were retained. Additionally, I fixed (Pad =

1.32), the highest value that avoids water condensation at TOI-270d’s equilibrium

temperature.
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Figure 18: Best-fitting water mass fraction (blue), envelope mass fraction (green),
and H/He mass fraction (red) for TOI-270d, plotted as a function of mean molecular
weight (MMW). These models were generated using MMW-based sampling and
filtered using the criteria listed above, but without applying the 50% WMF cutoff.
The H/He Ratio in this plot represents the Hydrogen Helium Mass Fraction

Figure 18 illustrates how the envelope composition evolves across the sampled

MMW grid. At low MMW values (near 2.35 g/mol), the envelope is composed

almost entirely of hydrogen and helium, with negligible water content. As MMW

increases, the required water mass fraction rises steeply to maintain consistency

with TOI-270d’s observed radius. These results demonstrate the steep degeneracy

between H/He and H2O in the mixed-envelope regime: many combinations can

match the observed mass and radius, but only a subset are chemically and physically

realistic.

To further constrain the solution space, I applied an upper limit on the planet’s

total water mass fraction, excluding all models exceeding 50%. Luque and Pallé

(2022) This filtering step is motivated by formation and evolution considerations:

extremely water-rich planets are likely rare in close-in orbits due to limited icy

accretion and long-term atmospheric loss (Rogers and Owen, 2021).

Imposing this cutoff narrows the space of acceptable models, excluding water-
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dominated atmospheres and setting an upper limit of µatm ≈ 15.4. Figure 19 shows

the distribution of best-fitting H/He mass fractions across the remaining MMW

range.

Figure 19: H/He mass fraction vs. mean molecular weight (MMW) for TOI-270d
after applying a 50% WMF cutoff. The physically plausible region excludes water-
dominated atmospheres (MMW ≳ 15.4 g/mol) and reveals a peak in allowable
H/He fraction near MMW = 9.1 g/mol.

After filtering, we find that the allowed MMW range is reduced to approximately

2.35–15.4 g/mol. The maximum allowable H/He mass fraction is 4.27%, occurring

at MMW = 9.06 g/mol. The minimum viable H/He mass fraction is 0.2%,

corresponding to MMW = 2.35 g/mol (a nearly pure H/He atmosphere). Solutions

at low MMW (2.35–4.5 g/mol) are H/He-dominated, while those at intermediate

MMW (6–12 g/mol) contain mixed envelopes with varying H/He–H2O ratios.

High-MMW models (MMW > 15.4 g/mol) are eliminated due to exceeding the

water fraction limit.

The release of JWST spectra for TOI-270d then provided a concrete atmospheric

constraint. Benneke et al. (2024) reported a measured mean molecular weight (in

g/mol) of:

µatm = 5.47+1.25
−1.14
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This value allowed me to formally restrict the MMW sampling range to 4.33–6.72

g/mol and rerun the model grid within this window. Since the models had already

been filtered for physical viability, the addition of this MMW constraint allowed for

a much tighter constraint on TOI-270d’s bulk composition. Only models within this

MMW range—and consistent with observed mass, radius, and water condensation

limits—were retained. We found that the total envelope mass fraction ranges

from 8%-17%, with the H2O fraction ranging from 5%-14%. This led to a narrow

constraint on the H/He fraction of 2%-4%.

Even prior to the JWST atmospheric measurement, this detailed interior structure

modeling placed an upper limit of MMW ≈ 15.4 g/mol, effectively ruling out

highly water-dominated envelopes. The observed MMW of 5.47± 1.2 g/mol falls

well within this predicted range, confirming that the planet lies in the moderate

H/He regime. This demonstrates that interior structure modeling alone can yield

meaningful composition constraints, even in the absence of atmospheric data.

This result—grounded in detailed interior structure modeling—provided the mo-

tivation to extend this approach to a population-level analysis. Even without

atmospheric spectra, detailed interior structure modeling can place physically

meaningful bounds on the bulk composition of sub-Neptunes. Then, when MMW

measurements do become available (as with TOI-270d), they can be layered onto

the model grid to further constrain the bulk composition of the target exoplanet.

TOI-270d emerged as a prototypical case study for the SMILE framework—guiding

the structure modeling approach used across the 18 JWST Cycle 1–3 sub-Neptunes

presented in Section 4. Unlike the low envelope mass fractions (∼0.5–1%) proposed

in early sub-Neptune formation models (Owen and Wu, 2013), TOI-270d exhibits

a significantly more massive volatile envelope, with a constrained H/He fraction of

2–4% and a total water fraction as high as 14%. This finding confirms TOI-270d’s

status as a mixed-envelope sub-Neptune and provides direct constraints on its bulk

water content. The elevated water fraction suggests that TOI-270d must have
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formed or evolved in a way that enabled substantial water enrichment—whether

through migration from beyond the snow line, reduced atmospheric escape, or

water-rich accretion. More broadly, these results point to greater diversity in the

atmospheric and interior structures of sub-Neptunes than previously assumed, mo-

tivating future studies into the physical mechanisms that govern water enrichment

in volatile-rich planets.

4 Exoplanetary Population Study: Interior Struc-

tures of Sub-Neptunes

4.1 Method

Building on the detailed modeling of TOI-270d, I expanded the analysis to a

broader population of sub-Neptune exoplanets. The goal of this population-level

study is to explore the diversity of internal structures across planets with similar

sizes but potentially very different compositions and thermal environments. All

targets selected for this study are confirmed transiting sub-Neptunes with well-

characterized masses and radii and are scheduled for atmospheric observations by

JWST during Cycles 1 through 3.

This selection ensures that the targets are not only observationally accessible but

also among the most promising candidates for connecting atmospheric data to

interior structure. The final sample comprises 27 exoplanets, of which 20 have been

fully analyzed with SMILE as of this writing. The remaining systems are pending

analysis due to either missing parameters or shortage of time.
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4.1.1 Sample Overview

The planets in this population span a wide range of equilibrium temperatures,

from temperate environments (e.g., LHS-1140b and LP-791-18c) to more irradiated

planets such as TOI-824b and WASP-47e. Their radii fall between 1.6 and 3.7

Earth radii, and their masses span from approximately 3 to 20 Earth masses. Bulk

densities vary widely, reflecting underlying diversity in envelope composition and

thickness (see Table 1 and Figure 20).

Figure 20: Mass–radius diagram for the 27 JWST Cycle 1–3 sub-Neptune targets.
Color corresponds to the calculated equilibrium temperature, and point size scales
with bulk density.

Figure 20 illustrates the diverse structural landscape occupied by sub-Neptunes.

Some, like LHS-1140b and TOI-1685b, exhibit compact, high-density structures

while others, like TOI-270d and TOI-1231b, have lower bulk densities. Notably,

several targets occupy similar positions in the mass–radius diagram but differ

significantly in equilibrium temperature or density, suggesting possible differences

in atmospheric loss, envelope metallicity, or formation history.
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Name Mass (M⊕) Radius (M⊕) Teq (K) Cycle

TOI-836 b** 4.5 ± 0.9 1.70 ± 0.07 871 ± 36 1

LHS 1140 b** 5.6 ± 0.2 1.73 ± 0.03 226 ± 4 1

TOI-776 b** 4.0 ± 0.9 1.85 ± 0.13 514 ± 17 1

K2-18 b** 8.92 +1.7
−1.6 2.37 ± 0.22 284 ± 15 1

LP 791-18 c** 7.1 ± 0.7 2.44 ± 0.10 324 ± 2 1

TOI-836 c** 9.6 +2.7
2.5 2.59 ± 0.09 665 ± 27 1

TOI-421 b** 7.2 ± 0.7 2.68 +0.19
−0.18 981 ± 16 1

GJ 1214 b** 8.4 ± 0.4 2.73 ± 0.03 567 ± 8 1

TOI-1685 b** 3.1 ± 0.6 1.70 ± 0.70 1069 ± 16 2

WASP-47 e** 6.8 ± 0.6 1.81 ± 0.03 2208 ± 40 2

GJ 9827 d** 3.0 ± 0.6 1.89+0.16
−0.14 600 ± 17 2

TOI-1468 c 6.6 ± 0.7 2.06 ± 0.04 338 +4
−3 2

GJ 3090 b 3.3 ± 0.7 2.13 ± 0.11 693 ± 18 2

TOI-270 d** 4.8 ± 0.4 2.13 ± 0.06 387 ± 10 2

LTT 3780 c 8.04 ± 0.5 2.39 +0.10
−0.11 359 ± 10 2

TOI-125 b** 9.5 ± 0.9 2.73 ± 0.08 1037 ± 11 2

TOI-125 c** 6.6 ± 1.0 2.76 ± 0.10 828 ± 9 2

TOI-824 b** 18.5 +1.8
−1.9 2.93 +0.20

−0.19 1253 +38
−37 2

TOI-1130 b** 19.3 ± 1.0 2.56 ± 0.13 632 ± 13 2

TOI-1231 b** 15.4 ± 3.3 3.65 +0.16
−0.15 330 ± 4 2

TOI-4336 b 5.1* 2.12+0.08
−0.09 308 ± 9 3

HD 207496 b** 6.1 ± 1.6 2.25+0.12
−0.10 743 ± 26 3

TOI-2076 b 6.9* 2.52 ± 0.04 797 ± 12 3

TOI-4010 b 11.0 ± 1.3 3.02 ± 0.08 1441 +14
−13 3

TOI-451 c 9.8* 3.10 ± 0.13 875 +13
−11 3

TOI-2076 d 10.5* 3.23 ± 0.06 530 ± 8 3

TOI-2076 c 12.0* 3.50 ± 0.04 630 ± 9 3

Table 1: List of JWST Cycle 1–3 sub-Neptune targets selected for interior structure
modeling. Columns show planetary name, mass, radius, equilibrium temperature,
and JWST observation cycle. A total of 27 planets are listed, of which 18 (high-
lighted in the main analysis) were fully modeled in this study using the SMILE

framework. Systems with incomplete or pending analysis are included here for
completeness. Planets marked with ⋆* are those fully modeled in this study using
the SMILE framework. The remaining systems are pending due to incomplete data
or time constraints.
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4.1.2 Modeling Procedure

Having defined the target sample, I applied a uniform interior modeling approach

across all planets. Each planet was modeled with a differentiated interior (iron

core, silicate mantle) and a fully mixed H/He–H2O envelope, following an isother-

mal–adiabatic temperature profile anchored to the equilibrium temperature (Teq).

These equilibrium temperatures were computed directly from stellar parameters

using the expression in Equation 5. These calculated values were then used to

interpolate the radiative–convective boundary pressure (Pad), ensuring thermal

consistency across all targets.

To prevent water condensation at the top of the atmosphere, we constrained Pad

to remain within the vapor or supercritical regime for each planet’s equilibrium

temperature. This constraint was based on the phase diagram of H2O (Figure 8),

following the methodology of Nixon et al. (2024). For each target, we computed

the maximum allowable Pad such that the isothermal layer remained above the

vapor–liquid boundary at the corresponding temperature.

For each planet, a grid of models was run, varying the total envelope mass fraction

between 0.001 and 1.0, and scanning over mean molecular weights (MMWs) from

2.35 to 18 g/mol. The water mass fraction (WMF) corresponding to each MMW

was computed using the relation Equation 5.

To constrain the modeled compositions, I filtered the outputs to include only models

that matched the observed mass and radius of each planet within 1σ uncertainties.

Additionally, I applied an upper limit of 50% on the total water mass fraction to

be consistent with planet formation theory.
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4.2 Results and Discussion

4.2.1 Exoplanetary Population Trends

Following the methodology outlined in Section 4, we analyzed the interior structure

of 18 sub-Neptune exoplanets using the SMILE modeling framework. Each target

was selected for having well-characterized mass and radius measurements and

scheduled JWST atmospheric observations.

In this section, we present the population-level trends in hydrogen–helium enve-

lope fractions, atmospheric mean molecular weights (MMWs), and composition

degeneracies. For clarity, we first describe global correlations across the sample

(e.g., between density and maximum H/He content), then highlight several case

studies illustrating unique structural outcomes.

TOI-270d appears in both Table 2 and Table 3 for consistency with the rest of the

population. Although its modeling is discussed in detail in Section 3, we include

its key metrics here to enable direct comparison with other sub-Neptunes in the

sample.

4.2.2 Hydrogen–Helium Mass Fractions

One of the main goals of this study was to constrain the maximum hydrogen–helium

(H/He) mass fraction that each planet in our sample could retain while remaining

consistent with observed mass and radius measurements.

The analysis reveals a wide diversity in atmospheric retention across the sub-

Neptune population. The most H/He-rich planet in our sample is TOI-1130b,

which supports a maximum hydrogen–helium (H/He) mass fraction of 13.18%,

consistent with its large radius (3.66R⊕) and low-to-moderate density (2.22 g/cm3).

In contrast, high-density planets like TOI-836b and LHS-1140b place some of the

tightest constraints on volatile retention, with H/He mass fractions limited to just
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Name Max H/He (%) MMW @ Max H/He (g/mol)

WASP-47e < 0.1 —

TOI-836b 0.57 11.61

LHS-1140b 0.62 11.29

TOI-1685b 0.80 11.29

K2-18b 2.20 10.97

TOI-125b 2.50 9.06

TOI-776b 3.02 9.38

GJ 9827d 3.58 9.6959

HD-207496b 3.98 9.38

TOI-270d 4.27 9.06

TOI-824b 5.27 7.4602

TOI-836c 6.38 8.10

LP 791-18 c 6.53 7.46

TOI-421b 6.96 8.74

TOI-125c 8.23 7.7796

GJ 1214b 8.43 7.46

TOI-1231b 10.76 8.10

TOI-1130b 13.18 6.502

Table 2: Maximum hydrogen–helium (H/He) mass fractions and associated mean
molecular weights (MMW) before applying the 50% water mass fraction (WMF)
constraint. These values represent the most radius-inflating compositions allowed
under unconstrained modeling. The table is sorted in order of increasing H/He
mass fraction.
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Name Max H/He (%) MMW @ Max H/He Max MMW (g/mol)

TOI-1130b 13.18 6.502 7.7796

TOI-125c 8.23 7.7796 10.9735

GJ 1214b 8.43 7.46 9.70

TOI-1231b 10.76 8.10 9.38

TOI-421b 6.96 8.74 14.17

LP 791-18 c 6.53 7.46 13.53

TOI-270d 4.27 9.06 15.44

TOI-836c 6.38 8.10 15.76

TOI-776b 3.02 9.38 18.00

LHS-1140b 0.62 11.29 18.00

K2-18b 2.20 10.97 18.00

HD-207496b 3.98 9.38 18.00

TOI-836b 0.57 11.61 18.00

TOI-125b 2.50 9.06 18.00

TOI-1685b 0.80 11.29 18.00

GJ 9827d 3.58 9.6959 18.00

TOI-824b 5.27 7.4602 18.00

WASP 47e < 0.1 — —

Table 3: Same as Table 2, but after applying the 50% WMF constraint. The
final column shows the maximum allowable atmospheric MMW consistent with
water-rich envelopes (WMF ≤ 50%). Planets with Max MMW = 18 g/mol are
unconstrained by this filter.
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0.57% and 0.62%, respectively.

These constraints are visualized in Figure 21, which shows strong anticorrelation

between bulk density and maximum H/He mass fraction (left panel). Low-density

planets like TOI-1231b and GJ 1214b accommodate up to 8–11% H/He, while

compact, dense planets sharply restrict hydrogen-rich envelopes. The trend rein-

forces the interpretation that high-density planets have either lost their primordial

atmospheres through photoevaporation or never accreted significant H/He during

formation (Owen and Wu, 2013).

Figure 21: Left: Maximum hydrogen–helium (H/He) mass fraction versus bulk
density. Right: Maximum constrained (at 50% wmf) mean molecular weight
(MMW) as a function of bulk density. Together, these plots highlight the inverse
relationship between hydrogen helium mass fraction and density across the sub-
Neptune sample.

The right panel of Figure 21 further illustrates how the maximum constrained

MMW increases with planetary density. While low-density planets can reach a

compositional ceiling at MMW ∼ 9–10 g/mol, denser planets such as TOI-836b,

TOI-1685b, and LHS-1140b allow MMW values up to 18 g/mol, even though the

corresponding H/He content remains negligible. This combination of low H/He

and high MMW offers a useful diagnostic: it implies that, if atmospheres exist at

all, they are likely composed of heavier molecules (e.g., water, CO2, or outgassed

species) rather than hydrogen-dominated mixtures.
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4.2.3 Maximum Mean Molecular Weight and Composition Degeneracy

In addition to constraining hydrogen–helium (H/He) mass fractions, our mod-

eling framework also reveals how atmospheric mean molecular weight (MMW)

shapes—and limits—plausible envelope compositions. For each planet, we com-

puted the maximum MMW allowed before the total water mass fraction (WMF)

exceeds 50%, our upper bound for physical viability.

Several planets—such as TOI-776b, TOI-824b, and K2-18b—remain unconstrained

by this filter, with their maximum MMW pinned at 18 g/mol, the upper limit of

our model grid. This suggests that even fully water-dominated envelopes remain

consistent with observed mass and radius for these targets. While degenerate,

these planets remain prime candidates for atmospheric characterization, which

may rule out extreme compositions.

By contrast, other planets exhibit tighter constraints. When the maximum allowed

MMW falls below 18 g/mol (e.g., in the range of 9–15 g/mol), high-MMW, water-

dominated solutions are ruled out by the WMF cap. GJ 1214b and TOI-1231b, for

instance, permit MMWs up to only 9.7 and 10.8 g/mol, respectively—beyond which

water content becomes implausibly high. TOI-270d similarly shows a constrained

maximum MMW of 15.4 g/mol, excluding the most water-rich cases.

Figure 21 visualizes this trend: denser planets tend to support higher maximum

MMWs, since heavier molecular compositions are needed to reproduce small radii.

However, this is not a simple one-to-one relationship. Planets like TOI-421b, with

intermediate density, are more constrained than expected—likely due to thermal

structure and radiative–convective boundary limits (i.e., Pad) that further restrict

the envelope.

These results show that, even in the absence of spectral retrievals, physically moti-

vated MMW–WMF mappings enable us to isolate realistic atmospheric scenarios,

rule out extreme compositions, and guide future observations with JWST and
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beyond.

4.2.4 Thermal Limits and Water Mass Fractions

Beyond matching observed mass and radius, our interior models were filtered using

two physically motivated constraints designed to eliminate unphysical or implau-

sible configurations. These constraints—one thermal, one compositional—play

complementary roles in shaping the range of allowable envelope structures.

First, we enforced a temperature-dependent cap on the radiative–convective bound-

ary pressure (Pad), requiring that the top of the envelope remain in the vapor or

supercritical phase. This constraint was imposed to prevent condensation of water

near the upper atmosphere, following the phase data of H2O. It primarily affects

cooler planets, such as LP-791-18c and K2-18b, which can only support modest

convective zones before intersecting the vapor–liquid boundary. As a result, the

allowed H/He fractions for these planets are more conservative, but grounded in

realistic thermal structure assumptions.

Second, we imposed a maximum total water mass fraction (WMF) of 50% to

remain consistent with planet formation theory, which disfavors highly water-

dominated compositions for close-in sub-Neptunes. This compositional filter proved

particularly useful for differentiating plausible envelope scenarios. For instance,

GJ 1214b and TOI-1231b allow mean molecular weights (MMWs) up to ∼9–10

g/mol while remaining within the WMF limit. In contrast, denser planets such

as TOI-824b and HD-207496b support somewhat heavier envelopes (MMW ∼14

g/mol) without exceeding the cap.

Together, these thermal and compositional constraints help eliminate physically

unrealistic models—such as those with condensed water layers or extreme volatile

content—thereby refining the space of plausible envelope structures across the

sub-Neptune population.
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4.2.5 Case Studies and Edge Cases

While global trends reveal broad correlations between planetary properties and

interior compositions, several individual systems in the sample stand out for their

atypical structural characteristics. These edge cases help illustrate the physical

limits of our modeling framework and highlight the diversity of sub-Neptune

interiors beyond average trends.

TOI-270d: As detailed earlier (Section 3), TOI-270d lies near the center of the

observed sub-Neptune distribution in both radius and temperature. Prior to the

release of JWST spectra, interior modeling constrained its maximum MMW to

approximately 15.4 g/mol, already ruling out the most water-rich configurations.

The observed value of 5.47+1.25
−1.14 g/mol from transmission spectroscopy falls well

within the predicted range. TOI-270d serves as a benchmark for validating MMW-

based interior models and exemplifies how bulk properties can yield meaningful

composition constraints, even in the absence of spectroscopic data.

K2-18b: K2-18b is one of the few planets in the sample whose atmosphere has

been observed with JWST, revealing a H2-dominated atmosphere containing CH4

and CO2 (Madhusudhan et al., 2023). However, the low temperature of this planet

(Teq ∼ 284K) means that the assumption of a mixed envelope may not hold at

low pressures, as H2O may have condensed out of its upper atmosphere, resulting

in a stratified structure (e.g., Benneke et al., 2024). It has even been suggested

that this planet could host a liquid water ocean beneath its H2-rich atmosphere

(Madhusudhan et al., 2020; Nixon and Madhusudhan, 2021). However, our current

observations of this planet can be explained either by a liquid ocean or by a mixed

envelope (Shorttle et al., 2024; Wogan et al., 2024). Our work assumes a mixed

envelope for the planet, and places an upper limit on the H/He mass fraction of

2.2%. If it is eventually determined that the planet is indeed stratified, follow-up

work will be required to revise its bulk composition.
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TOI-1130b: TOI-1130b supports one of the highest H/He mass fractions in the

sample, with a maximum value of 13.2%. This is consistent with its large radius

(2.56R⊕) and low-to-moderate density. The planet exemplifies a volatile-rich sub-

Neptune in which a thick primordial atmosphere is retained. Its position near the

low-density tail of the mass–radius diagram highlights the capacity for substantial

hydrogen–helium envelopes in extended sub-Neptunes.

WASP-47e: WASP-47e is a compact sub-Neptune whose high density effec-

tively excludes any significant volatile envelope. Interior models consistently

return negligible H/He content, and no well-defined atmospheric mean molecular

weight (MMW) can be assigned. These results support a scenario in which the

planet has undergone complete atmospheric loss or formed with minimal gas accre-

tion—consistent with expectations for photoevaporated or impact-stripped cores

in high-irradiation environments (Rogers and Owen, 2021; Owen and Wu, 2013).

These examples illustrate that the relationship between density, temperature, and

interior composition is nontrivial. While high-density planets tend to restrict

volatile envelopes, some temperate, low-density planets can still accommodate high-

MMW, water-rich solutions. Conversely, there exist targets where the 50% WMF

constraint imposes meaningful upper bounds on MMW, excluding steam-dominated

atmospheres. These findings reinforce that detailed structure modeling—including

realistic equations of state, phase-aware thermal constraints, and envelope com-

position limits—is essential for distinguishing between degenerate solutions and

isolating physically viable planetary interiors.

5 Conclusion

In this thesis, I developed and applied a physically motivated modeling method

to understand the interior structure of sub-Neptune exoplanets. Sub-Neptunes

are one of the most abundant exoplanets in the exoplanet population, without a
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solar system analogue. Using the equations of planetary structure, i.e., the mass

continuity equation and hydrostatic equilibrium equation, coupled with equations

of state, I developed a simple planetary interior model, which I validated against

published results. I subsequently transitioned to a more comprehensive model

(SMILE, Nixon and Madhusudhan, 2021) which enabled detailed simulations of

layered and mixed composition interiors with temperature–dependent equations of

state.

The modeling considers different key parameters to make sure that our results are

consistent with the measured mass and radius of the exoplanet being analyzed.

By incorporating appropriate temperature profiles, taking into account the likely

location of the radiative-convective boundary in the atmosphere, I constructed a

modeling framework that analyzed thousands of model evaluations to find planetary

interior parameters which align with the measured mass and radius of a given

exoplanet.

TOI-270d served as the primary test for the modeling framework. I have modeled

TOI-270d exploring pure water, layered, and fully mixed H/He/H2O envelope

scenarios, to demonstrate that detailed interior structure modeling alone can

place meaningful constraints on the composition, even in the absence of spectro-

scopic constraints. I found that the maximum mean molecular weight (MMW)

of TOI-270d is 15.44 g/mol. A subsequent measurement of the MMW by JWST

found µ = 5.47+1.25
−1.14 g/mol, within the range suggested by my models. These

JWST measurements in turn allowed for more accurate constraints on the interior

structure.

Building on this foundation, I extended the analysis to a population of 18 sub-

Neptune exoplanets selected for observation during the first 3 cycles of JWST

observations. There is a clear relationship between bulk density and volatile content,

showing that relatively low density planets can support up to 10-13% hydrogen-

helium mass fractions, while high density planets are consistent with minimal
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or no primordial gas. By filtering models with a 50% water mass fraction limit,

I identified the most physically consistent interiors across the diverse sample of

exoplanets. Additionally, we were able to recognize the exoplanets of which MMW

is not affected by the 50% constraints as potential exoplanets with high likelihood of

envelopes mostly consisting of heavier molecules rather than hydrogen-dominated

mixtures.

Together, these results provide a roadmap for integrating interior and atmospheric

data to constrain exoplanet compositions. As transmission spectroscopy yields a

more precise measurement of the atmospheric MMW, the methods presented here

will become very important for interpreting and constraining the bulk composition

of exoplanets. Even without direct spectral detections, detailed interior structure

modeling can significantly narrow the space of viable planetary compositions. In

this way, interior structure modeling becomes not just a tool for interpreting

observations, but a framework for guiding them.
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Appendix: Code Listings

The full code for the SMILE package can be found at:

https://github.com/mcnixon/smile

grid search.py – Multiprocessing Framework

1

2 import sys

3 import os

4 import logging

5 import pandas as pd

6 import numpy as np

7 import time

8 from datetime import datetime

9 import multiprocessing as mp

10 from scipy.interpolate import interp1d

11 import smile

12

13 # Path to SMILE Package

14 sys.path.insert(0, "/Users/biruknardos/a_UMD_Research/smile")

15

16 # Setup logging to see progress on the Jupyter notebook

17 logging.basicConfig(level=logging.INFO , format='%( message)s',

handlers =[

18 logging.FileHandler("Parallel_grid.log"),

19 logging.StreamHandler(sys.stdout)

20 ])

21

22 # Function that gives insight about what pad values to use

23 """

24 - The function reads in the target file from target path that will

be provided

25 - The user provides the path , the codes checks if it is csv or

excel and reads in the data
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26 - From the data it get the temprature equlibrium (teq_val) of the

planet that the user is interested in

27 - Taking the phase diagram of h20 it will math the teq to the pad

to get the max pad that could like in the

28 - phase line without becoming liquid. Then it will tell the user

the advised pad max value

29 -

30 """

31

32 # Load liquid -vapor data from the txt file

33

34 def load_phase_data(file_path):

35 """

36 Load the phase boundary data from the liquid_vapour_bd.txt

file

37

38 Args:

39 - file_path (str): Path to the liquid_vapour_bd.txt file.

40

41 Return:

42 - DataFrame with temperature and pressure boundaries

43 """

44

45 phase_data = pd.read_csv(file_path , delim_whitespace=True ,

header=None , names=["Pressure_Pa", "Temprature_K"])

46 return phase_data

47

48 # Function to calculate max Pad (pressure) given an equilibrium

temprature

49 # Automatically load phase data when the module is imported

50

51 PHASE_DATA = load_phase_data('/Users/biruknardos/a_UMD_Research/

General/liquid_vapour_bd.txt')

52

53
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54 def find_max_pad(Teq_val , extrapolate=False):

55 """

56 Find the maximum allowable Pad (pressure) for a given

equilibrium temperature (Teq).

57

58 Args:

59 - Teq_val (float): The equilibrium temperature of the planet (

in K).

60 - extrapolate (bool): If True , allows extrapolation for Teq

values outside data range.

61

62 Returns:

63 - max_pad (float): The maximum pressure (Pad) in Pa before

transitioning to vapor.

64 """

65

66 # Set up interpolation function

67 interp_fun = interp1d(

68 PHASE_DATA["Temprature_K"],

69 PHASE_DATA["Pressure_Pa"],

70 fill_value="extrapolate" if extrapolate else None ,

71 bounds_error=not extrapolate

72 )

73

74 # Check if the Teq_val is within the data range

75 min_temp , max_temp = PHASE_DATA["Temprature_K"].min(),

PHASE_DATA["Temprature_K"].max()

76

77 if Teq_val < min_temp or Teq_val > max_temp:

78 if not extrapolate:

79 print(f"Error: Teq value {Teq_val} K is outside the

interpolation range ({ min_temp} K - {max_temp} K).

Set extrapolate=True to see an extrapolated

result.")

80 return None
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81 else:

82 print(f"Warning: Teq value {Teq_val} K is outside the

data range. Result will be extrapolated.")

83

84 # Calculate max pad using the interpolated function

85 max_pad = interp_fun(Teq_val)

86

87 max_pad_bar = max_pad / 1e5

88 print(f"The maximum Pad value for Teq = {Teq_val} K is {

max_pad :.3f} Pa or {max_pad_bar :.4f} bar.")

89

90 if Teq_val < min_temp or Teq_val > max_temp:

91 print(f"Note: This value is extrapolated. The maximum

reliable Teq range is {min_temp} K to {max_temp} K.")

92

93 return max_pad # Return Max pad in Pa

94

95 # Function to calculate WMF from MMW (Nixon et al., 2024)

96 def derive_wmf(mmw , h2_mw =2.016 , he_mw =4.003 , h2o_mw =18.015):

97

98 """

99 Derives the Water mass fraction (WMF) from the given MMW using

formula from Nixon et al., 2024

100 """

101

102 he_maf = 0.275 # 27.5% of H/He is helium

103 h2_maf = 1 - he_maf # The rest is hydrogen

104

105 # The average molecular weight of the H/He mixture

106 total_hhe = h2_maf/h2_mw + he_maf/he_mw

107

108 h2_mof = (h2_maf/h2_mw) / total_hhe

109 he_mof = (he_maf/he_mw) / total_hhe

110

111 # Hydrogen/Helium
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112 hhe_mw = h2_mof*h2_mw + he_mof*he_mw

113

114 # Using the equation from Nixon et al., 2024

115 wmf = (h2o_mw * (mmw -hhe_mw))/ (mmw * (h2o_mw - hhe_mw))

116

117 return wmf

118

119 def calc_mmw(h2_maf , he_maf , h2o_maf):

120 h2_mw = 2.016

121 he_mw = 4.003

122 h2o_mw = 18.015

123

124 # Convert mass fractions to mole fractions

125 total_moles = h2_maf/h2_mw + he_maf/he_mw + h2o_maf/h2o_mw

126

127 if total_moles == 0 or np.isnan(total_moles):

128 return np.nan # Return NaN to indicate an invalid case

129

130 h2_mof = (h2_maf/h2_mw) / total_moles

131 he_mof = (he_maf/he_mw) / total_moles

132 h2o_mof = (h2o_maf/h2o_mw) / total_moles

133

134 # Calculate MMW using mole fractions

135 mmw = h2_mof * h2_mw + he_mof * he_mw + h2o_mof * h2o_mw

136

137 return mmw

138

139 def validate_mmw(x_env_w , x_env_g):

140 """

141 Validate teh MMW by recalculating it from x_env_w (Water mass

fraction) and

142 x_env_g (H/He mass fraction)

143 """

144

145 # Split the H/He into He and H2
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146 he_maf = 0.275 * x_env_g

147 h2_maf = x_env_g - he_maf

148 h2o_maf = x_env_w

149

150 # Compute MMW

151 mmw = calc_mmw(h2_maf , he_maf , h2o_maf)

152 return mmw

153

154 def error_calc(file_path , mass_val , mass_unc , rad_val , rad_unc ,

pname , save_files=True):

155 """

156 This function calculates chi -squared error for a given dataset

based on pre -calculated MMW.

157

158 Parameters:

159 - df: DataFrame containing the full grid of models (from the

grid search), including the MMW

160 - mass_val: observed mass

161 - mass_unc: uncertainty in mass

162 - rad_val: observed radius

163 - rad_unc: uncertainty in radius

164 - pname: name of the planet or specific dataset , used for

filenames

165 - save_files: If True , saves CSV files for both full data and

filtered data (default: True)

166

167 Returns:

168 - filtered_df: DataFrame filtered by error <= 1 sigma.

169 """

170

171 df = pd.read_csv(file_path)

172

173 # Calculate error metric (chi -squared)

174 df['mass_diff '] = df['Mass'] - mass_val

175 df['radius_diff '] = df['Radius '] - rad_val
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176 df['error '] = ((df['mass_diff '] / mass_unc)**2 + (df['

radius_diff '] / rad_unc)**2)

177

178 if save_files:

179 # Save all data (with error)

180 all_data_file = f"all_data_error_{pname}_{datetime.now().

strftime('%Y%m%d_%H%M%S')}.csv"

181 df.to_csv(all_data_file , index=False)

182 print(f"All data with error saved to: {all_data_file}")

183

184 # Filter the results where error <= 1

185 filtered_df = df[df['error '] <= 1]. copy()

186 filtered_df = filtered_df.sort_values('error ').reset_index(

drop=True)

187

188 if save_files:

189 # Save the filtered results (with error) to a CSV

190 filtered_file = f"filtered_with_error_{pname}_{datetime.

now().strftime('%Y%m%d_%H%M%S')}.csv"

191 filtered_df.to_csv(filtered_file , index=False)

192 print(f"Filtered data saved to: {filtered_file}")

193

194 print(f"Number of rows with error <=1: {len(filtered_df)}")

195

196 return filtered_df

197

198

199 def single_run(m, pad , mmw , env_fraction , temp):

200

201 # Skip calculation if env_fraction is too small or zero

202 """

203 - The envelope fraction (env_fraction) represents the fraction

of the planet 's mass that is made up of the gaseous

envelope ,

204 which includes water (H2O), hydrogen (H2), and helium (He).
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205 - If the env_fraction is 0, both the water mass fraction (

x_env_w) and the H/He mass fraction (x_env_g) must also be

0.

206 This is because the envelope doesn't exist , so these

components cannot contribute to the planet 's mass.

207 - Instead of calculating the radius using the SMILE package ,

the code skips the radius calculation and sets radius_full

to 0 directly.

208 """

209 if env_fraction == 0:

210 x_env_w = 0

211 x_env_g = 0

212 radius_full = 0 # Avoid calling smile.get_radius if

envelope fractions are zero

213 logging.info(f"Skipping radius calculation for mass={m},

pad={pad}, env_frac ={ env_fraction :.2f}, Radius ={

radius_full}")

214 else:

215 # Calculate x_env_w (Water mass fraction) from the MMW

216 x_env_w = derive_wmf(mmw) * env_fraction # Water mass

fraction in the whole planet

217 x_env_g = env_fraction - x_env_w # H/He mass fraction in

the whole planet

218

219 # Skip calculation if x_env_g > 0.3

220 if x_env_g > 0.3:

221 logging.info(f"Skipping calculation for H/He Mass

fraction ={ x_env_g :.2f}, which is above 30%")

222 return None

223

224 # Validate the calculated MMW

225 if x_env_w + x_env_g == 0:

226 mmw_calculated = np.nan

227 else:

228 mmw_calculated = validate_mmw(x_env_w , x_env_g)
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229

230 logging.info(f"MMW Validation: Original MMW={mmw :.3f},

Calculated MMW={ mmw_calculated :.3f}")

231

232 # Only calculate radius if there 's a non -zero envelope and

H/He ratio is within the limit

233

234 if x_env_w + x_env_g > 0 and x_env_g <0.31:

235 # Calculate radius using smile

236 radius_full = smile.get_radius(mass=m, P0=1e3, T0=temp

, Pad=pad , x_g=x_env_g , x_w=x_env_w , mixed=True)

237

238 if isinstance(radius_full , list) or radius_full is

None:

239 radius_full = 0

240 else:

241 radius_full = 0

242

243 logging.info(f"Calculated for mass={m}, pad={pad}, MMW={

mmw:.3f}, WMF={ x_env_w}, H/He={ x_env_g}, env_frac ={

env_fraction :.2f}, Radius ={ radius_full}")

244

245 row_data = {

246 'Mass': m,

247 'Radius ': radius_full ,

248 'Pad': pad ,

249 'WMF': x_env_w ,

250 'H/He': x_env_g ,

251 'Env_Fraction ': env_fraction ,

252 'MMW': mmw

253 }

254

255 return row_data

256

257

73



258 # Use parallel Processing to run the grid model

259 def parallel_run(mass_val , mass_unc , rad_val , rad_unc , teq_val ,

pad_list , env_fractions , mmw_list=None , pname="PlanetName"):

260 data = []

261

262 masses = np.linspace(mass_val - mass_unc , mass_val + mass_unc ,

10)

263

264 # If no mmw_list is provided , default to MMW range from 2 to

18

265 if mmw_list is None:

266 mmw_list = np.linspace (2.35 ,18 ,50) # Default range of MMW

values

267

268 # Generate arguments (without executing)

269 args = [

270 (m, pad , mmw , env_fraction)

271 for m in masses

272 for pad in pad_list

273 for mmw in mmw_list

274 for env_fraction in env_fractions

275 ]

276

277 # Count valid combinations by skipping unwanted cases

278 valid_combinations = 0

279 for m, pad , mmw , env_fraction in args:

280 if env_fraction == 0:

281 continue # Skip if env_fraction is 0

282 x_env_w = derive_wmf(mmw) * env_fraction

283 x_env_g = env_fraction - x_env_w

284 if x_env_g > 0.31:

285 continue # Skip if H/He fraction > 0.3

286 valid_combinations += 1

287

288 # Log valid combinations and calculate time estimate
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289 logging.info(f"Total combinations generated: {len(args)}")

290 logging.info(f"Valid combinations after skipping: {

valid_combinations}")

291

292 # Set base timing

293 base_combinations = 10000

294 base_time_in_hours = 0.4167 # 25 minutes in hours

295

296 # Estimate time based on valid combinations

297 num_cores = mp.cpu_count ()

298 cores_to_use = num_cores - 1

299 estimated_time = (valid_combinations / base_combinations) *

(10 / cores_to_use) * base_time_in_hours

300

301 logging.info(f"SMILE :) Starting parallel computation with {

valid_combinations} combinations , Using {cores_to_use} CPU

cores , Estimated total time for computation: {

estimated_time :.2f} hours")

302

303 # Start parallel computation

304 start_time = time.time()

305 with mp.Pool(cores_to_use) as pool:

306 results = pool.starmap(single_run , [(m, pad , mmw ,

env_fraction , teq_val) for m, pad , mmw , env_fraction

in args if env_fraction != 0 and (env_fraction -

derive_wmf(mmw) * env_fraction) <= 0.3])

307

308 # Processing and saving results

309 for result in results:

310 if result is not None:

311 data.append(result)

312

313 result_file = f'{pname}_Model_grid_full_{datetime.now().

strftime ("%Y%m%d_%H%M%S")}.csv'

314 df_full = pd.DataFrame(data)
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315 df_full.to_csv(result_file , index=False)

316

317 # Log runtime

318 total_runtime = time.time() - start_time

319 logging.info(f"Total runtime: {total_runtime / 60:.2f} minutes

({ total_runtime / 3600:.2f} hours)")

320

321 return result_file

322

323

324 def specific_run(m, pad , x_env_w , x_env_g , temp):

325

326 # Ensure the envelope fractions are valid

327 env_frac = x_env_w + x_env_g

328 if env_frac > 1:

329 logging.warning(f"Warning: Envelope fraction exceeds 1.

Total env_frac = {env_frac}")

330

331 # Calculate radius using SMILE with provided x_env_w and

x_env_g

332 radius_full = smile.get_radius(mass=m, P0=1e3, T0=temp , Pad=

pad , x_g=x_env_g , x_w=x_env_w , mixed=True)

333

334 if isinstance(radius_full , list) or radius_full is None:

335 radius_full = 0

336

337 logging.info(f"Calculated for mass={m}, pad={pad}, x_env_w ={

x_env_w :.3f}, x_env_g ={ x_env_g :.3f}, Radius ={ radius_full}"

)

338

339 row_data = {

340 'Mass': m,

341 'Radius ': radius_full ,

342 'Pad': pad ,

343 'WMF': x_env_w ,
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344 'H/He': x_env_g ,

345 'Env_Fraction ': env_frac # Total fraction for reference

346 }

347

348 return row_data

349

350 def specific_parallel_run(mass_list , rad_val , rad_unc , teq_val ,

pad_list , xw_list , xg_list , pname , save_files=True):

351

352 data = []

353

354 # Ensure that the input lists have the same length

355 if not (len(xw_list) == len(xg_list) == len(pad_list) == len(

mass_list)):

356 raise ValueError("All input lists must have the same

length!")

357

358 # Create the list of arguments for each combination

359 args = [

360 (mass , pad , x_env_w , x_env_g , teq_val)

361 for mass , pad , x_env_w , x_env_g in zip(mass_list , pad_list

, xw_list , xg_list)

362 ]

363

364 logging.info(f"SMILE :) Starting specific grid computation

with {len(args)} combinations ...")

365

366 # Use multiprocessing to compute the results

367 with mp.Pool(mp.cpu_count () - 1) as pool:

368 results = pool.starmap(specific_run , args)

369

370 logging.info("Specific grid computation completed , processing

results ...")

371

372 for result in results:
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373 if result is not None:

374 data.append(result)

375

376 # Save the results with a timestamp in the filename

377 result_file = f'{pname}_Specific_grid_{datetime.now().strftime

("%Y%m%d_%H%M%S")}.csv'

378

379 df = pd.DataFrame(data)

380

381 # Check for save_files flag before saving

382 if save_files:

383 result_file = f'{pname}_Specific_grid_{datetime.now().

strftime ("%Y%m%d_%H%M%S")}.csv'

384 df.to_csv(result_file , index=False)

385 logging.info(f"Results saved to {result_file}")

386 return result_file

387 else:

388 return df # Return the DataFrame directly if not saving

389

390 def run_grid_search(planet_name , file_path , pad_list ,

env_fractions , mmw_list=None ,teq_val=None):

391 # Log the start time

392 start_time = datetime.now()

393 logging.info(f"Grid search started at: {start_time.strftime('%

Y-%m-%d %H:%M:%S')}")

394

395 # Track start time in seconds for calculating total runtime

396 time_start = time.time()

397

398 # Get the file extension

399 _, file_extension = os.path.splitext(file_path)

400

401 # Read the file based on its extension

402 if file_extension == '.xlsx' or file_extension == '.xls':

403 planets_df = pd.read_excel(file_path)
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404 elif file_extension == '.csv':

405 planets_df = pd.read_csv(file_path)

406 else:

407 raise ValueError("Unsupported file format , Provide Excel

or CSV file")

408

409 planet_data = planets_df[planets_df['Name'] == planet_name]

410

411 planet_data = planet_data.iloc [0]

412

413 mass_val = planet_data['Mass_value ']

414 mass_unc = planet_data['Mass_unc ']

415 rad_val = planet_data['Radius_value ']

416 rad_unc = planet_data['Radius_unc ']

417

418 # I added this because it helps me in testing for TOI -270d,

but providing it is not mandatory

419

420 if teq_val is None:

421 teq_val = planet_data['Teq_calc ']

422

423 result_file = parallel_run(mass_val , mass_unc , rad_val ,

rad_unc , teq_val , pad_list , env_fractions , mmw_list ,

planet_name)

424

425 # Log the end time

426 end_time = datetime.now()

427 logging.info(f"Grid search finished at: {end_time.strftime('%Y

-%m-%d %H:%M:%S')}")

428

429 # Calculate and log total runtime

430 total_runtime = time.time() - time_start

431 logging.info(f"Total runtime: {total_runtime :.2f} seconds ({

total_runtime /60:.2f} minutes)")

432
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433 return result_file

434

435

436 # Main execution block

437

438 if __name__ == "__main__":

439 logging.info("This script is intended to be imported into

Jupyter Notebook or other script. It doesn't calculate

error")

general.py – Analysis and Utilities

1 # from astropy import units as u

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as plt

5 from scipy.ndimage import gaussian_filter1d

6

7

8 # Function calculating Equilibrium Temperature

9 def Calculate_Teq(file_path , planet_name , albedo=0, f=1):

10 """

11 Calculate equilibrium temperature with given file_path and

planet name

12 """

13

14 data = pd.read_csv(file_path)

15 planet_index = data[data['Name'] == planet_name ].index [0]

16

17 # Extract the values

18 T_star = data.loc[planet_index , 'T_star_(K)']

19 T_star_unc = data.loc[planet_index , 'T_star_unc ']

20
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21 R_star = data.loc[planet_index , 'R_star_(solar_radii)'] *

6.957e+8 # Convert solar radii to m

22 R_star_unc = data.loc[planet_index , 'R_star_unc '] * 6.957e+8

# Convert solar radii to m

23

24 a = data.loc[planet_index , 'sm_axis_(au)'] * 1.496e+11

25 Teq_nasa = data.loc[planet_index , 'Teq(nasa_arch)']

26

27 # Calculating R_star / a with geometric factor

28 Rd = R_star / (2 * a)

29

30 # Calculate Teq with heat redistribution factor

31 Teq = T_star * np.sqrt(Rd) * ((1- albedo)*f) ** 0.25

32

33 # Calculating Uncertainty

34 unc_rd = np.sqrt(( R_star_unc / R_star)**2) * Rd

35 unc_tp = np.sqrt(( T_star_unc / T_star)**2 + (0.25* unc_rd/Rd)

**2)

36 Tp_unc = Teq * unc_tp

37

38 # Calculate the difference from NASA Archive value

39 Teq_diff = Teq - Teq_nasa

40

41 # Print Results

42 print(f"\nCalculated Teq for {planet_name }: {Teq:.2f} K")

43 print(f"Uncertainty in Teq: +/-{ Tp_unc :.2f} K")

44 print(f"NASA Archive Teq: {Teq_nasa} K")

45 print(f"Difference: {Teq_diff :.2f} K")

46

47 # Update the DataFrame with the Calculated Values

48 data.at[planet_index , 'Teq_calc '] = round(Teq , 4)

49 data.at[planet_index , 'Teq_calc_unc '] = round(Tp_unc , 4)

50 data.at[planet_index , 'Teq_diff_nasa '] = round(Teq_diff , 4)

51

52 # Save file

81



53 data.to_csv(file_path , index=False)

54 print(f"Updated file saved at {file_path}")

55

56 return Teq , Tp_unc , Teq_diff

57

58

59 def filter_pad(file_path: str, pad_value: float , pname: str):

60 """

61 Filters the data by a specified Pad value and saves the result

to a new CSV file.

62

63 Parameters:

64 - file_path: str , the path to the CSV file with all Pad values

.

65 - pad_value: float , the Pad value in bars to filter by.

66 - pname: str , a specific name or identifier to include in the

output file name.

67 """

68

69 # Convert pad_value from bars to Pascals

70 pad_value_pa = pad_value * 1e5

71

72 # Read the input file

73 df = pd.read_csv(file_path)

74

75 # Filter by the specified Pad value

76 df_filtered = df[df['Pad'] == pad_value_pa]

77

78 # Check if there are any rows with the specified Pad value

79 if df_filtered.empty:

80 print(f"No data available for Pad value: {pad_value} bar")

81 else:

82 # Create the output file name

83 output_file_path = f"filtered_with_error_pad{pad_value}_{

pname}.csv"
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84

85 # Save the filtered data to the output file

86 df_filtered.to_csv(output_file_path , index=False)

87 print(f"Filtered data for Pad = {pad_value} bar saved to

'{output_file_path}'")

88

89 # Function to plot best fitting vs MMW

90 def analyze_results(file_path: str, pname: str, save_plot: bool =

True , ylim: tuple = (0, 0.15)):

91 """

92 - The function takes a csv file path that contains the grid

models with calculated error and is

93 filtered by one sigma error.

94 - Plots Best fitting vs MMW (Scatter plot)

95 - Plots Best fitting H/He vs MMW (Scatter plot)

96

97 Parameters:

98 - file_path: Path to the CSV file with the filtered data

99 - pname: Name of the planet to include in the plot title and

saved filenames

100 - save_plot: If True , saves the plots as PNG files (default:

True)

101 - ylim: Tuple to set y-axis limits for the "Best Fitting H/He

vs MMW" plot (default: (0, 0.15))

102 """

103

104 df_filtered = pd.read_csv(file_path)

105

106 # Best fitting vs MMW (Scatter) plot

107 plt.figure(figsize =(10, 6))

108 plt.scatter(df_filtered['MMW'], df_filtered['Env_Fraction '],

color='red', alpha =0.7, label='Envelope Fraction ')

109 plt.scatter(df_filtered['MMW'], df_filtered['H/He'], color='

green ', alpha =0.7, label='H/He Mass Fraction ')
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110 plt.scatter(df_filtered['MMW'], df_filtered['WMF'], color='

blue', alpha =0.7, label='Water Mass Fraction ')

111

112 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

113 plt.ylabel('Best Fitting Fractions ', fontsize =14)

114 plt.title(f'Best Fitting Fractions vs Mean Molecular Weight

for {pname}', fontsize =16)

115 plt.grid(True)

116 plt.xticks(fontsize =12)

117 plt.yticks(fontsize =12)

118

119 plt.tight_layout ()

120 if save_plot:

121 plt.savefig(f'best_fitting_vs_mmw_{pname}.png')

122 plt.show()

123

124 # Best Fitting H/He vs MMW (Scatter) plot

125 plt.figure(figsize =(10, 6))

126 plt.scatter(df_filtered['MMW'], df_filtered['H/He'], color='

green ', alpha =0.7, label='H/He Mass fraction ')

127 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

128 plt.ylabel('Best Fitting Fractions ', fontsize =14)

129 plt.title(f'Best Fitting H/He vs Mean Molecular Weight for {

pname}', fontsize =16)

130 plt.grid(True)

131

132 # Apply user -defined ylim or the default

133 plt.ylim(ylim)

134

135 plt.tight_layout ()

136 if save_plot:

137 plt.savefig(f'best_fitting_hhe_vs_mmw_{pname}.png')

138 plt.show()

139

140
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141

142 def fill_between(file_path: str, pname: str, save_plot: bool =

False , pad_value: float = None):

143 """

144 Creates a shaded plot of best fitting mass fractions vs. Mean

Molecular Weight (MMW) for a specific Pad value.

145

146 Parameters:

147 - file_path: str , the path to the CSV file with data.

148 - pname: str , the name of the planet to include in the plot

title and save filenames.

149 - save_plot: bool , if True , saves the plot as a PNG file.

150 - pad_value: float , optional , the specific Pad value in bars

to filter by.

151 """

152

153 # Read the filtered file

154 df_filtered = pd.read_csv(file_path)

155

156 # Check unique Pad values in the data

157 unique_pads = df_filtered['Pad']. unique () / 1e5 # Convert

from Pascals to bars

158 unique_pads = sorted(set(unique_pads))

159

160 # Determine the Pad value to use

161 if pad_value is None:

162 if len(unique_pads) == 1:

163 pad_value = unique_pads [0]

164 print(f"Using the only available Pad value: {pad_value

} bar")

165 else:

166 print(f"Multiple Pad values found: {unique_pads}")

167 print("Please specify a pad_value from the list above.

")

168 return
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169 else:

170 if pad_value not in unique_pads:

171 print(f"Specified Pad value {pad_value} bar is not in

the data. Available values are: {unique_pads}")

172 return

173

174 # Filter data by the specified Pad value in Pascals

175 pad_value_pa = pad_value * 1e5

176 df_filtered_pad = df_filtered[df_filtered['Pad'] ==

pad_value_pa]

177

178 # Calculate min/max for plotting shaded regions

179 min_max_df = df_filtered_pad.groupby('MMW').agg(

180 min_ef =('Env_Fraction ', 'min'),

181 max_ef =('Env_Fraction ', 'max'),

182 min_wmf =('WMF', 'min'),

183 max_wmf =('WMF', 'max'),

184 min_hhe =('H/He', 'min'),

185 max_hhe =('H/He', 'max')

186 ).reset_index ()

187

188 plt.figure(figsize =(10, 6))

189

190 sigma = 0.7

191

192 min_ef_smooth = gaussian_filter1d(min_max_df['min_ef '], sigma=

sigma)

193 max_ef_smooth = gaussian_filter1d(min_max_df['max_ef '], sigma=

sigma)

194

195 min_wmf_smooth = gaussian_filter1d(min_max_df['min_wmf '],

sigma=sigma)

196 max_wmf_smooth = gaussian_filter1d(min_max_df['max_wmf '],

sigma=sigma)

197
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198 min_hhe_smooth = gaussian_filter1d(min_max_df['min_hhe '],

sigma=sigma)

199 max_hhe_smooth = gaussian_filter1d(min_max_df['max_hhe '],

sigma=sigma)

200

201 # Create shaded areas between min and max values

202 plt.fill_between(min_max_df['MMW'], min_ef_smooth ,

max_ef_smooth , color='red', alpha =0.5, label='Envelope

Fraction ')

203 plt.fill_between(min_max_df['MMW'], min_wmf_smooth ,

max_wmf_smooth , color='blue', alpha =0.5, label='Water Mass

Fraction ')

204 plt.fill_between(min_max_df['MMW'], min_hhe_smooth ,

max_hhe_smooth , color='green ', alpha =0.5, label='H/He Mass

Fraction ')

205

206 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

207 plt.ylabel('Best Fitting Mass Fraction ', fontsize =14)

208 plt.title(f'Best Fitting Mass Fraction vs Mean Molecular

Weight for {pname} (Pad = {pad_value} bar)', fontsize =16)

209

210 plt.grid(True)

211 plt.legend(fontsize =12, loc='upper left')

212 plt.xticks(fontsize =12)

213 plt.yticks(fontsize =12)

214 plt.yscale('log')

215 plt.tight_layout ()

216

217 if save_plot:

218 plt.savefig(f'filled_between_plot_{pname}_pad_{pad_value}

bar.png')

219 plt.show()

220

221
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222 def clean_display(file_path: str, output_file: str = None ,

mmw_range: tuple = None , save_file: bool = False ,

mmw_threshold: float = 10):

223 # Read the CSV file

224 df = pd.read_csv(file_path)

225

226 # Apply MMW range filtering if provided

227 if mmw_range:

228 df = df[(df['MMW'] >= mmw_range [0]) & (df['MMW'] <=

mmw_range [1])]

229 print(f"Filtering MMW between {mmw_range [0]} and {

mmw_range [1]}")

230

231 # Remove duplicates

232 df.drop_duplicates(subset =['MMW', 'Env_Fraction ', 'H/He', 'WMF

'], inplace=True)

233

234 # Save only if save_file is True and output_file is specified

235 if save_file:

236 if output_file is None:

237 raise ValueError("Please provide an output file path

when save_file is True.")

238 df.to_csv(output_file , index=False)

239 print(f"Updated data saved to '{output_file}'")

240

241 # Check and display duplicates

242 num_dup = df.duplicated(subset =['MMW', 'Env_Fraction ', 'H/He',

'WMF']).sum()

243 print(f"The file has {num_dup} duplicates." if num_dup else "

The file has no duplicates.")

244

245 # Display unique Pad values in bars

246 unique_pads = sorted(df['Pad']. unique ())

247 unique_pads_bar = [f"{pad / 1e5} bar" for pad in unique_pads]
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248 print("Available unique Pad values:", ", ".join(

unique_pads_bar))

249

250 # Display min and max for columns of interest

251 min_max_vals = {

252 'WMF': (df['WMF'].min(), df['WMF'].max()),

253 'H/He': (df['H/He'].min(), df['H/He'].max()),

254 'Env_Fraction ': (df['Env_Fraction '].min(), df['

Env_Fraction '].max())

255 }

256 for name , (min_val , max_val) in min_max_vals.items():

257 print(f"{name} - Min: {min_val :.4f}, Max: {max_val :.4f}")

258

259 print("\n")

260 # Display Pad values associated with min and max H/He

261 hhe_max , hhe_min = df['H/He'].max(), df['H/He'].min()

262

263 # Get the rows for max and min H/He

264 max_row = df.loc[df['H/He'] == hhe_max]

265 min_row = df.loc[df['H/He'] == hhe_min]

266

267 # Extract Pad and MMW values for max and min H/He

268 pad_max = max_row['Pad']. values [0] if not max_row.empty else

None

269 pad_min = min_row['Pad']. values [0] if not min_row.empty else

None

270 mmw_max = max_row['MMW']. values [0] if not max_row.empty else

None

271 mmw_min = min_row['MMW']. values [0] if not min_row.empty else

None

272

273 # Print the results for max and min H/He

274 print(f"Pad value for max H/He ({ hhe_max :.4f}): {pad_max :.4f}

Pa or {pad_max / 1e5 if pad_max else None} bar , MMW: {

mmw_max}")
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275 print(f"Pad value for min H/He ({ hhe_min :.4f}): {pad_min :.4f}

Pa or {pad_min / 1e5 if pad_min else None} bar , MMW: {

mmw_min}")

276

277

278 # Find the row with minimum MMW

279 mmw_min_row = df.loc[df['MMW']. idxmin ()] # Row with the

absolute minimum MMW

280 min_mmw_value = mmw_min_row['MMW'] # Minimum MMW

281 hhe_for_min_mmw = mmw_min_row['H/He'] # Corresponding H/He

282 pad_for_min_mmw = mmw_min_row['Pad'] # Corresponding Pad

283 print(f"Absolute Min MMW: {min_mmw_value :.4f}, H/He: {

hhe_for_min_mmw :.4f}")

284 print(f"Pad corresponding to Min MMW: {pad_for_min_mmw :.4f} Pa

or {pad_for_min_mmw / 1e5:.2f} bar")

285

286 # Find the smallest H/He with a reasonable MMW

287 filtered_df = df[df['MMW'] <= mmw_threshold] # Filter rows

with MMW <= threshold

288 if not filtered_df.empty:

289 min_hhe_row = filtered_df.loc[filtered_df['H/He']. idxmin ()

] # Row with smallest H/He

290 smallest_hhe = min_hhe_row['H/He']

# Smallest H/He

291 corresponding_mmw = min_hhe_row['MMW']

# Corresponding MMW for smallest

H/He

292 print(f"Smallest H/He within threshold (MMW <= {

mmw_threshold }): {smallest_hhe :.4f}, Corresponding MMW

: {corresponding_mmw :.4f}")

293

294 # Compare the two rows

295 if min_mmw_value == corresponding_mmw:

296 print("The minimum MMW also gives the smallest H/He

within the threshold.")
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297 else:

298 print("The minimum MMW does NOT give the smallest H/He

within the threshold.")

299 else:

300 print(f"No rows found with MMW <= {mmw_threshold }.")

301

302

303 # def clean_display(file_path: str , output_file: str = None ,

mmw_range: tuple = None , save_file: bool = False):

304 # # Read the CSV file

305 # df = pd.read_csv(file_path)

306

307 # # Apply MMW range filtering if provided

308 # if mmw_range:

309 # df = df[(df['MMW '] >= mmw_range [0]) & (df['MMW '] <=

mmw_range [1])]

310 # print(f"Filtering MMW between {mmw_range [0]} and {

mmw_range [1]}")

311

312 # # Remove duplicates

313 # df.drop_duplicates(subset=['MMW ', 'Env_Fraction ', 'H/He', '

WMF '], inplace=True)

314

315 # # Save only if save_file is True and output_file is

specified

316 # if save_file:

317 # if output_file is None:

318 # raise ValueError (" Please provide an output file path

when save_file is True .")

319 # df.to_csv(output_file , index=False)

320 # print(f"Updated data saved to '{output_file }'")

321

322 # # Check and display duplicates

323 # num_dup = df.duplicated(subset=['MMW ', 'Env_Fraction ', 'H/He

', 'WMF ']).sum()
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324 # print(f"The file has {num_dup} duplicates ." if num_dup else

"The file has no duplicates .")

325

326 # # Display unique Pad values in bars

327 # unique_pads = sorted(df['Pad '].unique ())

328 # unique_pads_bar = [f"{pad / 1e5} bar" for pad in unique_pads

]

329 # print (" Available unique Pad values:", ", ".join(

unique_pads_bar))

330

331 # # Display min and max for columns of interest

332 # min_max_vals = {

333 # 'WMF ': (df['WMF '].min(), df['WMF '].max()),

334 # 'H/He ': (df['H/He '].min(), df['H/He '].max()),

335 # 'Env_Fraction ': (df['Env_Fraction '].min(), df['

Env_Fraction '].max())

336 # }

337 # for name , (min_val , max_val) in min_max_vals.items ():

338 # print(f"{name} - Min: {min_val :.4f}, Max: {max_val :.4f

}")

339

340 # # Display Pad values associated with min and max H/He

341 # hhe_max , hhe_min = df['H/He '].max(), df['H/He '].min()

342

343 # # Get the rows for max and min H/He

344 # max_row = df.loc[df['H/He '] == hhe_max]

345 # min_row = df.loc[df['H/He '] == hhe_min]

346

347 # # Extract Pad and MMW values for max and min H/He

348 # pad_max = max_row['Pad '].values [0] if not max_row.empty else

None

349 # pad_min = min_row['Pad '].values [0] if not min_row.empty else

None

350 # mmw_max = max_row['MMW '].values [0] if not max_row.empty else

None
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351 # mmw_min = min_row['MMW '].values [0] if not min_row.empty else

None

352

353 # # Print the results for max and min H/He

354 # print(f"Pad value for max H/He ({ hhe_max :.4f}): {pad_max :.4f

} Pa or {pad_max / 1e5 if pad_max else None} bar , MMW: {

mmw_max }")

355 # print(f"Pad value for min H/He ({ hhe_min :.4f}): {pad_min :.4f

} Pa or {pad_min / 1e5 if pad_min else None} bar , MMW: {

mmw_min }")

356

357 # # Find the row with minimum MMW

358 # mmw_min_row = df.loc[df['MMW '].idxmin ()]

359 # hhe_for_min_mmw = mmw_min_row['H/He ']

360 # pad_for_min_mmw = mmw_min_row['Pad ']

361 # min_mmw_value = mmw_min_row['MMW '] # The minimum MMW itself

362

363 # print(f"Min MMW: {min_mmw_value :.4f}")

364 # print(f"H/He corresponding to Min MMW: {hhe_for_min_mmw :.4f

}")

365 # print(f"Pad corresponding to Min MMW: {pad_for_min_mmw :.4f}

Pa or {pad_for_min_mmw / 1e5:.2f} bar")

366

367 # # Find the smallest H/He with a reasonable MMW

368 # sorted_hhe = df.sort_values(by='H/He', ascending=True)

369 # reasonable_mmw_threshold = 10

370 # filtered_hhe_mmw = sorted_hhe[sorted_hhe['MMW '] <=

reasonable_mmw_threshold]

371 # smallest_hhe_row = filtered_hhe_mmw.iloc [0] # Get the first

row after filtering

372 # smallest_hhe = smallest_hhe_row['H/He ']

373 # corresponding_mmw = smallest_hhe_row['MMW ']

374

375 # # Print the results for smallest H/He and its corresponding

MMW
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376 # print(f"Smallest H/He with reasonable MMW: {smallest_hhe :.4f

}")

377 # print(f"Corresponding MMW for this H/He: {corresponding_mmw

:.4f}")

378

379 def pad_plot(file_path , pname: str, pad_value=None , save_plot=

False):

380 """

381 Plots best fitting fractions vs. Mean Molecular Weight (MMW)

for a given Pad value (in bars) from the filtered dataset ,

382 and displays a summary of min and max values for H/He , WMF ,

and Env_Fraction for the specific Pad value.

383

384 Parameters:

385 - file_path: str , the path to the filtered CSV file.

386 - pname: str , the name of the planet to include in the plot

title and save filenames.

387 - pad_value: float , optional , the specific Pad value in bars

to filter and plot.

388 - save_plot: bool , if True , saves the plots as PNG files (

default: False).

389 """

390

391 # Read the filtered file

392 df_filtered = pd.read_csv(file_path)

393

394 # Check unique Pad values in the data

395 unique_pads = df_filtered['Pad']. unique () / 1e5 # Convert

from Pascals to bars

396 unique_pads = sorted(set(unique_pads))

397

398 # Determine the Pad value to use

399 if pad_value is None:

400 if len(unique_pads) == 1:

401 pad_value = unique_pads [0]
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402 print(f"Using the only available Pad value: {pad_value

} bar")

403 else:

404 print(f"Multiple Pad values found: {unique_pads}")

405 print("Please specify a pad_value from the list above.

")

406 return

407 else:

408 if pad_value not in unique_pads:

409 print(f"Specified Pad value {pad_value} bar is not in

the data. Available values are: {unique_pads}")

410 return

411

412 # Filter data by the specified Pad value in Pascals

413 pad_value_pa = pad_value * 1e5

414 df_filtered_pad = df_filtered[df_filtered['Pad'] ==

pad_value_pa]

415

416 # Calculate summary statistics for H/He, WMF , and Env_Fraction

417 min_max_summary = {

418 'WMF': (df_filtered_pad['WMF'].min(), df_filtered_pad['WMF

'].max()),

419 'H/He': (df_filtered_pad['H/He'].min(), df_filtered_pad['H

/He'].max()),

420 'Env_Fraction ': (df_filtered_pad['Env_Fraction '].min(),

df_filtered_pad['Env_Fraction '].max())

421 }

422

423 # Find MMW values for min and max H/He

424 hhe_min , hhe_max = min_max_summary['H/He']

425 mmw_min_hhe = df_filtered_pad.loc[df_filtered_pad['H/He'] ==

hhe_min , 'MMW']. values [0]

426 mmw_max_hhe = df_filtered_pad.loc[df_filtered_pad['H/He'] ==

hhe_max , 'MMW']. values [0]

427
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428 # Display summary information with formatted output

429 print(f"Summary for {pname} at Pad = {pad_value :.1f} bar:")

430 for name , (min_val , max_val) in min_max_summary.items ():

431 print(f" {name} - Min: {min_val :.2f}, Max: {max_val :.2f}"

)

432 print(f" MMW corresponding to min H/He ({ hhe_min :.2e}): {

mmw_min_hhe :.2f}")

433 print(f" MMW corresponding to max H/He ({ hhe_max :.2f}): {

mmw_max_hhe :.2f}")

434

435 # Plot 1: Best Fitting Fractions vs MMW

436 plt.figure(figsize =(10, 6))

437 plt.scatter(df_filtered_pad['MMW'], df_filtered_pad['

Env_Fraction '], color='red', alpha =0.7, label='Envelope

Fraction ')

438 plt.scatter(df_filtered_pad['MMW'], df_filtered_pad['WMF'],

color='blue', alpha =0.7, label='Water Mass Fraction ')

439 plt.scatter(df_filtered_pad['MMW'], df_filtered_pad['H/He'],

color='green ', alpha =0.7, label='H/He Ratio ')

440

441 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

442 plt.ylabel('Best Fitting Fractions ', fontsize =14)

443 plt.title(f'Best Fitting Fractions vs. Mean Molecular Weight

for {pname} (Pad = {pad_value} bar)', fontsize =16)

444 plt.grid(True)

445 plt.legend(fontsize =12)

446 plt.tight_layout ()

447 if save_plot:

448 plt.savefig(f'best_fitting_fractions_{pname}_pad_{

pad_value}bar.png')

449 plt.show()

450

451 # Plot 2: H/He vs MMW

452 plt.figure(figsize =(10, 6))
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453 plt.scatter(df_filtered_pad['MMW'], df_filtered_pad['H/He'],

color='green ', alpha =0.7, label='H/He Ratio ')

454

455 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

456 plt.ylabel('H/He Mass Fraction ', fontsize =14)

457 plt.title(f'H/He Mass Fraction vs. Mean Molecular Weight for {

pname} (Pad = {pad_value} bar)', fontsize =16)

458 plt.grid(True)

459 plt.legend(fontsize =12)

460 plt.tight_layout ()

461 if save_plot:

462 plt.savefig(f'hhe_mass_fraction_{pname}_pad_{pad_value}bar

.png')

463 plt.show()

464

465 def wmf_filter(df, pname: str, wmf_cutoff: float , save_plot: bool

= False):

466 """

467 Filters data by WMF cutoff and performs additional analysis

and plotting.

468

469 Parameters:

470 - df: DataFrame , the dataset to analyze.

471 - pname: str , the name of the planet to include in plot titles

and filenames.

472 - wmf_cutoff: float , maximum allowed WMF value for filtering.

473 - save_plot: bool , if True , saves the generated plots.

474 """

475 # Filter rows where WMF exceeds the cutoff

476 df_filtered = df[df['WMF'] <= wmf_cutoff]

477 print(f"Applying WMF cutoff: Excluding rows with WMF > {

wmf_cutoff}")

478

479 # Plot 1: Best Fitting Fractions vs MMW

480 plt.figure(figsize =(10, 6))
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481 plt.scatter(df_filtered['MMW'], df_filtered['Env_Fraction '],

color='red', alpha =0.7, label='Envelope Fraction ')

482 plt.scatter(df_filtered['MMW'], df_filtered['WMF'], color='

blue', alpha =0.7, label='Water Mass Fraction ')

483 plt.scatter(df_filtered['MMW'], df_filtered['H/He'], color='

green ', alpha =0.7, label='H/He Ratio ')

484 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

485 plt.ylabel('Best Fitting Fractions ', fontsize =14)

486 plt.title(f'Best Fitting Fractions vs. MMW for {pname}',

fontsize =16)

487 plt.legend(fontsize =12)

488 plt.grid(alpha =0.3)

489 plt.tight_layout ()

490 if save_plot:

491 plt.savefig(f'best_fitting_fractions_wmf_cutoff_{pname}.

png')

492 plt.show()

493

494 # Plot 2: H/He vs MMW (No dotted lines)

495 plt.figure(figsize =(10, 6))

496 plt.scatter(df_filtered['MMW'], df_filtered['H/He'], color='

green ', alpha =0.7, label='H/He Ratio ')

497 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

498 plt.ylabel('H/He Mass Fraction ', fontsize =14)

499 plt.title(f'H/He Mass Fraction vs. MMW for {pname}', fontsize

=16)

500 plt.grid(alpha =0.3)

501 plt.tight_layout ()

502 if save_plot:

503 plt.savefig(f'hhe_vs_mmw_wmf_cutoff_{pname }.png')

504 plt.show()

505

506 # Additional Summary Information

507 # Maximum H/He and corresponding MMW

508 hhe_max = df_filtered['H/He'].max()
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509 mmw_max_hhe = df_filtered.loc[df_filtered['H/He'] == hhe_max ,

'MMW']. values [0]

510 print(f"Max H/He ({ hhe_max :.4f}) corresponds to MMW: {

mmw_max_hhe :.4f}")

511

512 # Maximum MMW

513 max_mmw = df_filtered['MMW'].max()

514 print(f"Max MMW after cutoff: {max_mmw :.4f}")

515

516 # Minimum MMW and corresponding H/He

517 min_mmw_row = df_filtered.loc[df_filtered['MMW']. idxmin ()]

518 min_mmw = min_mmw_row['MMW']

519 hhe_for_min_mmw = min_mmw_row['H/He']

520 print(f"Min MMW ({ min_mmw :.4f}) corresponds to H/He: {

hhe_for_min_mmw :.4f}")

521

522 # Smallest H/He with a "reasonable" MMW

523 sorted_hhe = df_filtered.sort_values(by='H/He', ascending=True

)

524 reasonable_mmw_threshold = 10

525 filtered_hhe_mmw = sorted_hhe[sorted_hhe['MMW'] <=

reasonable_mmw_threshold]

526

527 if not filtered_hhe_mmw.empty:

528 smallest_hhe_row = filtered_hhe_mmw.iloc [0]

529 smallest_hhe = smallest_hhe_row['H/He']

530 corresponding_mmw = smallest_hhe_row['MMW']

531 print(f"Smallest H/He (MMW <= {reasonable_mmw_threshold }):

{smallest_hhe :.4f}")

532 print(f"Corresponding MMW for this H/He: {

corresponding_mmw :.4f}")

533

534 # Compare Min MMW and Smallest H/He

535 if min_mmw == corresponding_mmw:
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536 print("The absolute minimum MMW gives the smallest H/

He.")

537 else:

538 print("The absolute minimum MMW does NOT give the

smallest H/He.")

539 else:

540 print(f"No rows found with MMW <= {

reasonable_mmw_threshold} for smallest H/He.")

541

542 def best_display(file_path , pname: str, output_file=None ,

mmw_range=None , pad_value=None , wmf_cutoff=None , save_file=

False , save_plot=False):

543 """

544 Merges the functionalities of clean_display and pad_plot

functions with an optional WMF cutoff.

545

546 Displays filtered data , summaries , and plots for a specific

pressure value (Pad), Mean Molecular Weight (MMW) range ,

547 and an optional cutoff for Water Mass Fraction (WMF).

548

549 Parameters:

550 - file_path: str , path to the filtered CSV file.

551 - pname: str , the name of the planet to include in the plot

titles and save filenames.

552 - output_file: str , optional , path to save the filtered data

if save_file is True.

553 - mmw_range: tuple , optional , range of MMW values to filter

the data.

554 - pad_value: float , optional , the specific Pad value in bars

to filter and plot.

555 - wmf_cutoff: float , optional , maximum allowed WMF value to

filter the data.

556 - save_file: bool , if True , saves the filtered data (default:

False).
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557 - save_plot: bool , if True , saves the generated plots (default

: False).

558 """

559 # Read the dataset

560 df = pd.read_csv(file_path)

561

562 # Filter by MMW range if specified

563 if mmw_range:

564 df = df[(df['MMW'] >= mmw_range [0]) & (df['MMW'] <=

mmw_range [1])]

565 print(f"Filtering MMW between {mmw_range [0]} and {

mmw_range [1]}")

566

567 # Remove duplicates

568 df.drop_duplicates(subset =['MMW', 'Env_Fraction ', 'H/He', 'WMF

'], inplace=True)

569

570 # Save the filtered file if required

571 if save_file:

572 if output_file is None:

573 raise ValueError("Please provide an output file path

when save_file is True.")

574 df.to_csv(output_file , index=False)

575 print(f"Updated data saved to '{output_file}'")

576

577 # Check for duplicates

578 num_duplicates = df.duplicated(subset =['MMW', 'Env_Fraction ',

'H/He', 'WMF']).sum()

579 print(f"The file has {num_duplicates} duplicates." if

num_duplicates else "The file has no duplicates.")

580

581 # Display unique Pad values

582 unique_pads = sorted(df['Pad']. unique () / 1e5) # Convert from

Pascals to bars
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583 print("Available unique Pad values:", ", ".join([f"{pad} bar"

for pad in unique_pads ]))

584

585 # Calculate min and max for columns of interest

586 min_max_vals = {

587 'WMF': (df['WMF'].min(), df['WMF'].max()),

588 'Env_Fraction ': (df['Env_Fraction '].min(), df['

Env_Fraction '].max()),

589 }

590 for name , (min_val , max_val) in min_max_vals.items():

591 print(f"{name} - Min: {min_val :.4f}, Max: {max_val :.4f}")

592

593 # Find Pad for max and min H/He

594 hhe_min = df['H/He'].min()

595 hhe_max = df['H/He'].max()

596 mmw_min_hhe = df.loc[df['H/He'] == hhe_min , 'MMW']. values [0]

597 mmw_max_hhe = df.loc[df['H/He'] == hhe_max , 'MMW']. values [0]

598

599 print(f"Min H/He ({ hhe_min :.7f}) corresponds to MMW: {

mmw_min_hhe :.4f}")

600 print(f"Max H/He ({ hhe_max :.4f}) corresponds to MMW: {

mmw_max_hhe :.4f}")

601

602 # Find row for min MMW

603 min_mmw_row = df.loc[df['MMW']. idxmin ()]

604 min_mmw = min_mmw_row['MMW']

605 hhe_for_min_mmw = min_mmw_row['H/He']

606 print(f"Absolute Min MMW: {min_mmw :.4f}, H/He corresponding to

Min MMW: {hhe_for_min_mmw :.4f}")

607

608 # Find the smallest H/He value and its corresponding "

reasonable" MMW

609 sorted_hhe = df.sort_values(by='H/He', ascending=True)

610 reasonable_mmw_threshold = 10
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611 filtered_hhe_mmw = sorted_hhe[sorted_hhe['MMW'] <=

reasonable_mmw_threshold]

612 if not filtered_hhe_mmw.empty:

613 smallest_hhe_row = filtered_hhe_mmw.iloc [0]

614 smallest_hhe = smallest_hhe_row['H/He']

615 corresponding_mmw = smallest_hhe_row['MMW']

616 print(f"Smallest H/He with reasonable MMW: {smallest_hhe

:.4f}")

617 print(f"Corresponding MMW for this H/He: {

corresponding_mmw :.4f}")

618 if min_mmw == corresponding_mmw:

619 print("The absolute minimum MMW gives the smallest H/

He.")

620 else:

621 print("The absolute minimum MMW does NOT give the

smallest H/He.")

622 else:

623 print("No rows found with MMW <= 10 for smallest H/He.")

624

625 # Plot 1

626 plt.figure(figsize =(10, 6))

627 plt.scatter(df['MMW'], df['Env_Fraction '], color='red', alpha

=0.7, label='Envelope Fraction ')

628 plt.scatter(df['MMW'], df['WMF'], color='blue', alpha =0.7,

label='Water Mass Fraction ')

629 plt.scatter(df['MMW'], df['H/He'], color='green ', alpha =0.7,

label='H/He Ratio ')

630 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

631 plt.ylabel('Best Fitting Fractions ', fontsize =14)

632 plt.title(f'Best Fitting Fractions vs. MMW for {pname}',

fontsize =16)

633 plt.legend(fontsize =12)

634 plt.grid(alpha =0.3)

635 plt.tight_layout ()

636 if save_plot:
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637 plt.savefig(f'best_fitting_fractions_{pname}.png')

638 plt.show()

639

640 # Plot 2: H/He vs MMW with vertical and horizontal lines

641 plt.figure(figsize =(10, 6))

642 plt.scatter(df['MMW'], df['H/He'], color='green ', alpha =0.7,

label='H/He Ratio ')

643 plt.axvline(x=corresponding_mmw , color='darkblue ', linestyle='

--', label=f'MMW for Smallest H/He = {corresponding_mmw :.4

f}')

644 plt.axhline(y=smallest_hhe , color='darkred ', linestyle='--',

label=f'Smallest H/He = {smallest_hhe :.4f}')

645 plt.axvline(x=min_mmw , color='red', linestyle='--', label=f'

Min MMW = {min_mmw :.4f}')

646 plt.axhline(y=hhe_for_min_mmw , color='blue', linestyle='--',

label=f'H/He for Min MMW = {hhe_for_min_mmw :.4f}')

647 plt.axvline(x=mmw_min_hhe , color='purple ', linestyle='--',

label=f'MMW for Min H/He = {mmw_min_hhe :.4f}')

648 plt.axhline(y=hhe_max , color='orange ', linestyle='--', label=f

'Max H/He = {hhe_max :.4f}')

649 plt.axhline(y=hhe_min , color='cyan', linestyle='--', label=f'

Min H/He = {hhe_min :.4f}')

650 plt.xlabel('Mean Molecular Weight (MMW)', fontsize =14)

651 plt.ylabel('H/He Mass Fraction ', fontsize =14)

652 plt.title(f'H/He Mass Fraction vs. MMW for {pname}', fontsize

=16)

653 plt.grid(alpha =0.3)

654 plt.tight_layout ()

655 if save_plot:

656 plt.savefig(f'hhe_vs_mmw_{pname }.png')

657 plt.show()

658

659 # Additional Analysis with WMF Cutoff (if provided)

660 if wmf_cutoff is not None:

661 wmf_filter(df, pname , wmf_cutoff , save_plot)
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run target.py – Remote Execution

1

2 # run_target.py

3 import sys

4 import os

5 import numpy as np

6 import grid_search # grid_search.py should import smile

7

8 def run_grid_search_for_target(target_name , mass_val , mass_unc ,

rad_val , rad_unc , teq_val , pad_values):

9 # Convert pad_values from bars to Pascals

10 pad_list = np.array(pad_values) * 1e5

11 env_fractions = np.arange(0, 1, 0.01)

12 mmw_list = np.linspace (2.35 , 18, 50)

13

14 # Define the target path relative to the current file's

directory

15 current_dir = os.path.dirname(__file__)

16 target_path = os.path.join(current_dir , 'Exoplanet_Target_List

.csv')

17

18 result_file = grid_search.run_grid_search(

19 file_path=target_path ,

20 planet_name=target_name ,

21 pad_list=pad_list ,

22 env_fractions=env_fractions ,

23 mmw_list=mmw_list

24 )

25 print(f"Grid search completed for {target_name }. Results saved

in {result_file}")

26

27 if __name__ == "__main__":

28 # Get command -line arguments

29 target_name = sys.argv [1]

30 mass_val = float(sys.argv [2])
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31 mass_unc = float(sys.argv [3])

32 rad_val = float(sys.argv [4])

33 rad_unc = float(sys.argv [5])

34 teq_val = float(sys.argv [6])

35 pad_values = list(map(float , sys.argv [7:])) # Capture

remaining args as pad values

36

37 # Run the grid search with the specified parameters

38 run_grid_search_for_target(target_name , mass_val , mass_unc ,

rad_val , rad_unc , teq_val , pad_values)

TOI-270d Analysis Code

1

2 import sys

3 import os

4 import pandas as pd

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import seaborn as sns

8 from IPython.display import clear_output , Image , display

9

10

11 # Import Path to Import

12 sys.path.insert(0, "/Users/biruknardos/a_UMD_Research/smile")

13 sys.path.append('/Users/biruknardos/a_UMD_Research/General ')

14

15 import smile

16 import grid_search

17 import general

18 import testing

19 # Initial Setup

20 target_path = '/Users/biruknardos/a_UMD_Research/General/

Exoplanet_target_list.csv'

106



21

22 df = pd.read_csv(target_path)

23 print(df.iloc [4])

24 mass_val = 4.8 # Observed mass for TOI -1231b

25 mass_unc = 0.4 # Uncertainty in observed mass

26 rad_val = 2.13 # Observed radius for TOI -270d

27 rad_unc = 0.06 # Uncertainty in observed radius

28

29 grid_search.find_max_pad (387.0975)

30 # Run Grid

31 pad_list = np.array ([0.001 , 0.1])

32 env_fractions = np.arange (0 ,1 ,0.01)

33 mmw_list = np.linspace (2.35 ,18 ,100)

34

35 # grid_search.run_grid_search(

36

37 # file_path = target_path ,

38 # planet_name = 'TOI -1231b',

39 # pad_list = pad_list ,

40 # env_fractions = env_fractions ,

41 # mmw_list = mmw_list ,

42 # )

43

44

45 result1 = 'TOI -270 d_Model_grid_full_20250107_092647.csv'

46 grid_search.error_calc(result1 , mass_val , mass_unc , rad_val ,

rad_unc , 'TOI_270d ', save_files=False)

47 filtered1 = 'filtered_with_error_TOI_270d_20250107_095721.csv'

48

49

50 general.clean_display(filtered1)

51 # general.filter_pad(filtered1 , pad_value= 1.6, pname='TOI_270dNEW

')

52 filtered2 = 'filtered_with_error_pad1 .6 _TOI_270dNEW.csv'
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53 general.best_display(file_path=filtered2 , wmf_cutoff = 0.5, pname=

'TOI_270d ')

54 general.analyze_results(filtered1 , pname='TOI_170d ', ylim =(0 ,0.06)

, save_plot=False)

55 general.clean_display(filtered1)

56 general.pad_plot(filtered2 , pname='TOI_270d ')

57 general.fill_between(filtered2 , pname='TOI_270d ')

58 general.clean_display(filtered2)
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