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INTRODUCTION 
Water quality is critical to the health, well being and economy of the region.  In 2005, the Finger 
Lakes Institute initiated a water quality survey of the eastern Finger Lakes, Otisco (since 2008), 
Skaneateles, Owasco, Cayuga, Seneca, Keuka, Canandaigua and Honeoye Lakes.  The survey’s 
annual water quality ranking indicated that Cayuga Lake moved from a middle ranking in 2005 
to 2nd worst in 2006, and remained 2nd worst in 2007 and 2008 (Fig. 1; Halfman and O’Neill, 
2009).  The ranking is based on monthly secchi disk depths and surface water analyses for total 
coliform and E. coli bacteria (only in 2005), chlorophyll-a (algae concentrations), nutrient 
concentrations (total phosphates since 2006, soluble reactive phosphates, nitrates and dissolved 
silica), and suspended sediment concentrations from at least two mid-lake, deep-water sites in 
each lake.  The water quality degradation in Cayuga Lake is disturbing and consistent with 
documented impairment of the lake’s southern end.   

The water quality ranking was based on 
surface water data, and ignored bottom water 
data.  Including bottom water data would 
further decrease water quality in Cayuga Lake 
because hypolimnetic (bottom-water) data 
revealed more total phosphates (~10 μg/L, P), 
nitrates (~1.5 mg/L, N), soluble reactive 
phosphates (SRP, ~10 μg/L, P) and total 
suspended sediments (TSS, ~3 mg/L), than 
bottom water results from the other lakes.  
This dichotomy was especially prominent for 
SRP and TSS (Fig. 2).  The elevated 
phosphate concentrations are a concern 
because algal and macrophyte growth will be 
promoted when these bottom waters are 
exposed to the sunlit surface waters.   

Natural and human-induced mechanisms bring bottom water to the surface.  For example, fall 
and spring overturn mix the entire water column.  Internal seiche activity, initiated by strong 
axial winds, can bring hypolimnetic (bottom) water to the lake’s surface at the northern and 
southern ends of the lake.  Cornell’s Lake Source Cooling Project also draws hypolimnetic water 
and returns the water, albeit warmer, back to the epilimnion of the lake.  Thus, a two year study 
was initiated in 2007 to understand the sources of phosphates and suspended sediments to the 
hypolimnion (bottom waters) of southern Cayuga Lake.  This report summarizes our 2007 and 
2008 findings, substantiates and expands on the initial hypotheses outlined in our preliminary 
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Fig. 1.  Mean of annual water quality rankings 
from2005 to 2008 (Halfman and O’Neill, 2009). 
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report (Halfman et al., 2008), and recommends a number of future projects to answer questions 
initiated by this investigation.   

BACKGROUND: 
Nutrients, phosphates (PO4

-3) and nitrates 
(NO3

-), are essential for life because they are 
required for critical life-sustaining compounds 
including amino acids, proteins, cell tissue, 
RNA and DNA.  In a basic aquatic nutrient 
cycle (Fig. 3), dissolved nutrients enter the 
food chain through assimilation and 
incorporation by plants, phytoplankton (algae, 
microscopic, free-floating, aquatic plants) and 
macrophytes (nearshore rooted vegetation).  
When the algae and other plants are eaten, 
these nutrients are passed up the food chain. 
When any of these organisms die, bacteria 
complete the final step of the nutrient cycle by 
decomposing the organic material and 
releasing the nutrients back into the water 
column where they are available for plant 
assimilation once again.   

Excessive nutrient loading leads to impaired 
water bodies and transforms an oligotrophic 
(poorly productive) lake to a eutrophic (highly 
productive) lake.  The extra nutrients stimulate 
additional algal and macrophyte growth, and 
increase the amount of material in each box of 
the nutrient cycle over time.  Other, typically 
undesirable but related impairments occur.  
For example, a foul smelling/tasting scum of 
blue-green algae typically dominates the algal 
community and covers the surface of the lake 

with a green slime in eutrophic systems.  The increase in algae decreases water clarity (e.g., 
transparency), as the extra algae impede the transmission of light through water.  The increased 
algal concentrations also increase the cost of water filtration for municipal water supplies.  Thus 
nutrient concentrations are indicators of water quality.   

Dissolved oxygen concentrations also measure water quality.  When the algae die (algae live for 
only a few days), bacterial respiration consumes dissolved oxygen and releases carbon dioxide.  
As a lake becomes more productive, bacterial decomposition of the excess organics removes 
additional dissolved oxygen from the summer-time hypolimnion (water mass below the 
thermocline). When the removal decreases dissolved oxygen concentrations to 6 mg/L or below, 
each species has its own level of tolerance, respiratory stress is placed on all aquatic animals like 
lake trout, crawfish and worms.  Complete de-oxygenation of the bottom waters happens in 
eutrophic lakes.   

2005-2008 Mean Soluble Reactive Phosphate
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Fig. 2.  Annual mean SRP and TSS data from the FLI 

Finger Lake survey (Halfman and O’Neill, 2009).
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Algal concentrations are another indicator of lake productivity and the ecological health of a 
lake, as larger concentrations of algae are typically indicative of more productive systems.  Algal 
concentrations are measured directly by the concentration of chlorophyll, and indirectly by 
fluorometer, total suspended solids and secchi disk depths.  The secchi disk is a weighted disk, 
20 cm in diameter, and painted with two black and two white quadrants.  It is slowly lowered 
into the water until it disappears, and this water depth is noted.  The disk is lowered some more, 
and then slowly pulled up until it reappears, and this second depth is noted.  The secchi disk 
depth is the average of these two depths.  In very ultra-oligotrophic (low productivity) systems 
thus very transparent waters, secchi disk depths can be 100 feet (30 m) or more.  In eutrophic 
(highly productive) lakes and ponds, secchi disk depths can be as shallow as a few centimeters.   

Thus, these parameters are typically used in combination to define the trophic status and/or water 
quality of aquatic systems (Table 1).  In New York, the Department of Environmental 
Conservation (NYS DEC) focuses on total phosphate concentrations to measure water quality 
impairment because phosphate is the limiting nutrient for algal growth in most New York lakes.  
Impaired (i.e., eutrophic) water bodies contain at least 20 μg/L of phosphate.   

Table 1.  Typical concentrations for oligotrophic (low productivity) and eutrophic (high productivity) lakes (EPA). 
Trophic Status Secchi Depth Total Nitrogen Total Phosphate Chlorophyll a Oxygen 

 (m) (N, mg/L, ppm) (P, μg/L, ppb) (μg/L, ppb) (% saturation) 
Oligotrophic > 4 < 2 < 10 < 4 > 80 
Mesotrophic 2 to 4 2 to 5 10 to 20 4 to 10 10 to 80 

Eutrophic < 2 > 5 > 20 (> 30) > 10 < 10 
 

 
 

Fig. 3.  A nutrient cycle for lake ecosystems (yellow boxes).  Natural and human-induced additions (green boxes), 
their impact (orange box), and natural sinks (red boxes) from the nutrient cycle are also shown. 
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Thermal Stratification:  The seasonal cycle of thermal stratification complicates this story.  In 
the early spring when the entire water column is isothermal and cold, 4º C (39º F), the lake “turns 
over” and the entire water column mixes with a minimal amount of wind stress.  The physical 
mixing also distributes nutrient and other constituents uniformly throughout the water column.   

Moving forward into the summer, the lake warms.  Warming is restricted to the upper portion of 
the water column because the intensity of light decreases exponentially with water depth as 
sunlight is either scattered or absorbed by the water.  Warmer water is progressively less dense 
than the colder bottom water, thus the warmer water “floats” buoyantly at the lake’s surface.  
The hypolimnion of most deep lakes remains at 4º C, because it is the temperature of maximum 
density in freshwater.  For a while winds may be strong enough to mix the water column and 
warm the hypolimnion by a few degrees, especially in shallow lakes, but eventually the surface 
water becomes too warm and too buoyant to completely mix with the colder water below.  Thus, 
the warmer water “floats” at the surface of the lake and gradually warms to 20 to 30º C (70 to 90º 
F) by the end of summer as it absorbs more energy from the sun than the lake radiates away or it 
loses by evaporation to the atmosphere.   

The thermal stratification of the summer season isolates the sunlit and warm epilimnion (surface) 
waters from the dark and cold hypolimnion (bottom) waters (Fig. 4).  The occasional wind 
events and surface currents will keep the epilimnion well mixed and isothermal.  The magnitude 
and duration of the wind events defines the extent of mixing and depth of the epilimnion.  
Between the epilimnion and hypolimnion, water temperatures decrease exponentially with depth 
and define the metalimnion (Fig. 4).  The planar surface corresponding to the depth of maximum 
temperature decrease defines the thermocline.  The depth of the photic (sunlit) zone corresponds 
to the base of the metalimnion.   

As solar inputs decline and the weather cools into the fall, the epilimnion cools as well.  The 
epilimnion mixes to greater depths as the density difference between the epilimnion and 
hypolimnion declines.  The process mixes metalimnetic water into the epilimnion.  The depth of 
mixing continues to deepen as the surface temperatures decline.  Once surface waters cool to 
hypolimnetic temperatures (typically 4º C in deep lakes), the entire water column can “turn 
over”.  As the atmosphere cools even more, the surface water continues to cool until it typically 
freezes during a very calm and cold night.  Water colder than 4º C and more importantly ice are 
less dense than water at 4º C, thus the colder water “floats” on the surface of the lake but the 

 

Fig. 4.  Thermal stratification of a typical small lake.  Left: Summer stratification, and the resulting epilimnion, 
metalimnion and hypolimnion.  Center: Surface water mixing by winds created the isothermal epilimnion.  Right: 

Fall isothermal conditions and overturn after the autumnal decay of the surface warmth (from www.OurLake.org/). 
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density differences for the water masses are small, thus the winter water stratification is not as 
intense as the summer stratification.  Seneca and Cayuga Lakes typically are too turbulent to cool 
a thin surface water layer down to 0º C, and have it remain at the lake’s surface to remove 
sufficient latent heat to then freeze.  The entire water column in these lakes typically continues to 
mix through out the winter season except for some ice near the shore and/or either end.   

Algae & Nutrient Seasonal Profiles:  The water column mixing and summer stratification 
complicate the distribution of algae and nutrients.  During spring overturn, algae are mixed with 
the circulating water, thus spend only a small portion of the day in the sunlit surface waters and 
the rest in the dark bottom waters.  Thus, algal photosynthesis and growth is typically light 
limited.  When the lake becomes stratified, algae are no longer mixed through the entire water 
column, and remain in the sunlit epilimnion (or metalimnion if enough sunlight is available).  A 
spring bloom results from the excess sunlight and nutrients.  The amount of algae depends on the 
amount of light and concentration of nutrients.  Algae quickly assimilate the available nutrients 
in the epilimnion and the bloom of algae eventually declines to the summer standing crop due to 
the lack of new nutrients to support larger populations and increased predation pressures by 
herbaceous zooplankton.   

During the summer, epilimnetic recycling of nutrients is intense.  As individual plankton die 
and/or excrete organic wastes, bacteria decompose the organic matter and release nutrients back 
into the water column. These recycled nutrients are quickly assimilated by new algae.  Some of 
the biomass however, sinks below the epilimnion before bacterial decomposition, and therefore 
some nutrients are released to the hypolimnion, where it is too dark for photosynthesis.  Thus, 
nutrients are slowly transferred from the sunlit and algal-rich epilimnion to the dark hypolimnion 
through the stratified summer season.   

Two mechanisms can increase algal populations during the stratified season, (1) increase the 
supply of nutrients (“bottom up” ecosystem mechanisms) as described above, and/or (2) decrease 
herbaceous pressures by zooplankton (“top down” ecosystem pressures).  For example, “top 
down” pressures result from exotic carnivorous zooplankton grazing on herbaceous zooplankton 
(e.g., Brown & Balk, 2008).  When herbaceous zooplankton populations decline, algal 
populations bloom without the predation pressures.  The “bottom-up”, nutrient stimulation, 
pressures are most relevant to this study because the hypolimnion of Cayuga Lake is 
significantly more enriched with nutrients than any other Finger Lake.  Thus, any mechanism to 
transport nutrient rich bottom water to the surface would stimulate faster algal growth and 
promote a larger mid-summer bloom in Cayuga Lake than any other Finger Lake.   

A number of natural mechanisms transport nutrient-rich bottom water to the surface (Fig. 5).  
Autumnal cooling mixes nutrient-rich metalimnetic water into the epilimnion.  Thus a fall bloom 
naturally occurs during the autumnal decay of the summer stratification.  Surface currents 
flowing past an irregular shoreline and other bathymetric features may induce localized 
upwelling as well.  Finally, strong wind events induce internal seiche activity, which upwells 
nutrient-rich bottom water to the surface.  The process is simple.  Strong, lake-parallel winds, 
due to a passing weather system, push and pile the epilimnion towards the downwind end of the 
lake.  The thermocline tilts downward by a few 10s of meters from the upwind to downwind end.  
Once the winds stop, the epilimnion then sloshes back to the other end of the lake, tilting the 
thermocline downward towards the other end.  The back and forth sloshing continues for a few 
more days, tilting the thermocline up and down like a seesaw along the long axis of the lake.  
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Nutrients are introduced to the epilimnion because turbulence along the thermocline mixes 
bottom water nutrients into the epilimnion, and the tilt in the thermocline can be severe enough 
to expose bottom waters at the lake’s surface on the upwind side.   

Cornell’s Lake Source Cooling (LSC) is a human-induced mechanism to bring nutrient-rich 
bottom water to the surface (Fig. 5, www.utilities.cornell.edu).  Bottom water is pumped from 75 
m (250 ft) below the surface of the lake to a heat exchanger facility on the shore.  This cold 
water absorbs the heat from the refrigerant used for air conditioning at Cornell and Ithaca High 
School.  The warmer lake water is then released back to the surface of the lake.   

Other significant nutrients sources exist in the Finger Lakes region.  Agricultural land use 
activities, both plant and animal agriculture, dominate (46%) the rural landscape.  Forested land 
(38%), lakes (9%) and urban areas are the other major land use practices.  Water quality 
impairment of the Finger Lakes correlates to agricultural land use, in that the most impaired 
lakes contain the larger percentage of agricultural land in the watershed (Easton et al., 2007; 
Markarewicz et al., 2007; Evans, 2008; Sharpley et al., 2008; Halfman et al., 2008; Halfman & 
Franklin, 2008; Halfman & O’Neill, 2009).  The treatment of human wastes from the rural and 
urban areas by on-site (individual septic) or urban municipal waste water treatment facilities can 
also add nutrients to lakes and streams (Halfman et al., 2008).   

METHODS: 
The 2007 and 2008 field seasons utilized nine sites within the southern end of Cayuga Lake (Fig. 
6, Table 2).  Sites 1 & 2 were used in the Finger Lake water quality survey.  Site 1 sampled the 
bathymetric basin north of the AES Cayuga coal plant.  Site 2 sampled the bathymetric basin 
offshore of Taughannock and Salmon Creeks.  Sites A & C were located directly offshore of 
Taughannock and Salmon Creeks to assess potential fluvial inputs of suspended sediments to the 

 
Fig. 5.  Seiche activity (left; Wetzel, 2001) and Cornell’s Lake Source Cooling (right; www.utilities.cornell.edu/).  Both 

mechanisms bring nutrient-rich bottom water to the epilimnion of the lake.   
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lake.  Four more sites, B, D, E, F & G, were located along a mid-lake transect from Site 2 
southward to the shelf-break offshore of the southern end of the lake to assess concentration 
gradients along the axis of the lake.  Site F, located at the shelf-break, was used on the first few 
sample dates in 2007 and subsequently replaced with the slightly deeper site G.  Surveys were 
performed every two weeks starting in late May through the early part of the summer and less 
frequently later in the summer and into the fall.  We also wanted to survey immediately after 
major precipitation and/or wind events in 2008, but major precipitation events were lacking in 
2008.   

A secchi disk depth, plankton tows and a 
water-column CTD profile were collected at 
each site.  Our SeaBird SBE-25 CTD was 
lowered from the surface to approximately 
two meters above the lake floor and collected 
water profiles of conductivity (specific 
conductance, μS/cm), temperature (ºC), pH, 
dissolved oxygen (ml/L), turbidity (WetLabs 
ECO-FLU, suspended sediment by 
backscattering NTUs), photosynthetic active 
radiation (Biospherical PAR, μE/cm2-s) and 
fluorescence (WetLabs ECO-FLU, algal 

concentrations, mg/m3, ~ppb).  At each mid-lake site, surface (< 1 m depth), mid-depth (40 m 
above the lake floor), and bottom water (within 2 m of the lake floor) water samples were 
collected by Niskin bottles and analyzed onsite for pH, conductivity, temperature, dissolved 
oxygen and alkalinity, and back in the laboratory for total phosphate, soluble reactive phosphate, 
nitrate, dissolved silica, chlorophyll-a, and total suspended sediment (TSS) concentrations.  This 
configuration positioned the mid-depth sample in the hypolimnion at Sites 1, 2, B, & D, but in 
the metalimnion for Site E and G.   

The laboratory analyses followed standard limnological techniques (Wetzel and Likens, 2000).  
Total suspended solids (TSS) were determined by weight gain after filtration (0.45 μm filtration) 
of 3 to 4 liters of water and subsequent drying at 90º C overnight using pre-weighed glass-fiber 
filters.  Another liter of lake water was filtered through a Gelman HA 0.45 μm membrane filter.  
The filtered residue was kept frozen until chlorophyll analysis, where the chlorophyll pigments 
were extracted in 90% acetone for 6 to 24 hours and analyzed at 750, 664, 647, 630, 510 and 480 
nm using a 1-cm cell in a spectrophotometer.  The filtrate was analyzed for soluble reactive 
(dissolved) phosphate (SRP), nitrate and dissolved silica by spectrophotometer.  Samples were 
treated in an acidic molybdate reagent and analyzed using a 10-cm cell at 885 for phosphates and 
a 1-cm cell at 810 nm for silica.  Nitrates were prepared with a Hach Low Range Nitrate Kit 
(Model NI-14) and concentrations were detected using a 1-cm cell at 540 nm.  A third unfiltered 
water sample was analyzed for total phosphates.  The particulate organic matter was digested in 
potassium persulfate at 100ºC for 1 hour to release all particulate phosphates into solution, which 
was subsequently analyzed by the SRP procedure.  Laboratory precision was determined 
annually by replicate tests on the same water sample, and typically was 0.2 mg/L for total 
suspended solids, 0.1 μg/L for phosphate, 0.1 mg/L for nitrate, and 5 μg/L for silica.  All water 
samples were kept at 4°C until analysis and typically analyzed within a week of collection.  The 
plankton and major ion analyses were performed but not elaborated on in this report.   

Table 2.  Site Locations 
Site 

# 
Latitude 

(ºN) 
Longitude 

(ºW) 
Water 

Depth (m) 
Sample 
Depths 

1 42.63195 76.67222 122 S, M & B 
2 42.55417 76.59167 110 S, M & B 
A 42.55000 76.59833 55  
B 42.53333 76.55500 88 S, M & B 
C 42.53683 76.55383 50  
D 42.51667 76.53667 90 S, M & B 
E 42.49167 76.52500 73 S, M & B 
F 42.47500 76.51667 5 S 
G 42.48333 76.55383 54 S, M & B 
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Fig. 6.  Sample sites for the survey.  Site 1, the northernmost site, is only shown in the map insert, and is 
almost halfway to the northern end of the lake. 

 
During the course of the 2007 field season, over 100, randomly selected sample splits were 
analyzed by a commercial laboratory for total phosphate (TP), soluble reactive phosphate (SRP) 
and nitrate concentrations within a few weeks of sample collection for quality control.  The 
results from both labs were statistically the same (r2 = 0.84 for nitrate, 0.93 for SRP, and 0.76 for 
TP), and hampered by the time delay between sample collection and analysis, a few TP outliers, 
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and more importantly the detection limits for each lab.  The detection limits for the commercial 
laboratory were 0.2 mg/L for nitrate and 3 μm/L for phosphate, and thus unfortunately, the 
commercial laboratory could not detect over 70% of the SRP, 40% of the TP, and 15% of the 
nitrate sample splits.  The commercial laboratory’s unacceptable detection limit and analogous 
results between both labs convinced us to abandon commercial laboratory analysis of splits in 
2008.   
 
RESULTS: 
CTD Profiles (Figs. 7 & 8):  The water temperature profiles were typical for any relatively deep, 
temperate lake and were consistent between sites on any specific day.  Surface water 
temperatures rose from ~10º C to ~ 25º C from late spring to the mid to late summer and 
subsequently cooled by the fall, and bottom water temperatures stayed very close to 4º C through 
out the survey.  The thermocline typically developed at 15 to 20 meters.  The thermocline depth 
varied from day to day, and was related to the onset or decay of thermal stratification and/or 
internal seiche activity.   

Specific conductance in the epilimnion ranged from 400 to just over 425 μS/cm in 2007 and just 
under 400 to 425 μS/cm in 2008, and conductivities decreased through the summer season.  
Hypolimnion specific conductivities ranged from 430 to 440 μS/cm in 2007 and up to 450 μS/cm 
in 2008, and conductivities increased with water depth within 20 meters of the lake floor.  The 
increase was progressively more pronounced through the stratified season at the deepest site 
(Site 1).  The small surface water decrease in salinity is interpreted to reflect the input of slightly 
less saline river water into more saline lake water through the summer.  The even smaller 
deepwater increase in salinity is interpreted to reflect the seepage of ions through the sediments 
from the underlying evaporite and carbonate bedrock and/or decomposition of organics by 
bacteria.  Interestingly, the lake was slightly less saline in 2008 than 2007.  A similar year-to-
year freshening was also observed over the past few decades in Seneca Lake, and suggests that 
the inputs of salts have decreased over this time frame (Halfman & Franklin, 2008).   

Algae, by fluorescence, were detected throughout the epilimnion and into the metalimnion.  
Algal concentrations ranged from near 0 to almost 8 μm/L (mg/m3) in 2007 and up to 7 μm/L in 
2008.  The largest concentrations occurred during spring (5/22/07, 6/6/07), mid-summer 
(7/18/07, 7/19/08, 7/28/08), and late summer (8/26/08) blooms.  The peak in algal density was 
typically 10 to 20 m below the lake surface.  Algal concentrations typically declined to below 1 
μm/L by 40 m.  This depth range is concurrent with the photic zone.  Specifically, PAR profiles 
revealed 1% surface light intensities (the lower limit for net algal production) at water depths of 
15 to 25 meters, the specific depth on any given day reflecting the density of algae, suspended 
sediments, cloud cover, and lake surface roughness.   

Dissolved oxygen (DO) and pH profiles were typical for an oligotrophic-mesotrophic lake.  
Epilimnetic DO concentrations remained near saturation, and were supersaturated during algal 
blooms.  Hypolimnetic DO concentrations remained near saturation, 12 ml/L (> 16 mg/L), and 
declined slightly, by 3 ml/L (4 mg/L), within 20 to 30 m of the lake floor.  Dissolved oxygen 
concentrations steadily decreased from saturated conditions 10 to 20 meters above the lake floor 
by 1 to 2 ml/L within 2 m of the lake floor.  Profiles of pH revealed more basic water in the 
epilimnion (pH ~ 9) than the hypolimnion (pH ~8.2).   
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Fig. 7a.  2007 CTD temperature, fluorescence and turbidity profiles from each survey date and each site. 
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Fig. 7b.  2008 CTD temperature, fluorescence and turbidity profiles from each survey date and each site. 
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Fig. 8a.  CTD Profiles from each site on 8-1-07. 
  

Total suspended sediment concentrations ranged from near 0 to 9 NTUs in 2007 and 0 to almost 
12 NTUs in 2008.  Concentrations up to 2 NTUs were detected in the epilimnion.  The surface 
water turbidity probably corresponds to the population of algae.  The largest turbidities were 
detected just above the lake floor.  The bottom water turbidity, when developed, depicted a 
classic nepheloid layer.  Suspended sediment concentrations exponentially increased from 
background concentrations of just below 1 NTU about 20 m above the lake floor to the largest 
turbidities in the profile just above the lake floor.  Sites 2, B and D revealed the best developed 
nepheloid layers in both years.  On two sample dates, a turbid, thermocline-depth, plume was 
detected offshore of Salmon Creek on 9/29/07 and 7/8/08.  The geometry suggests that turbid but 
warm stream water entered the lake from Salmon Creek and extended lakeward just above the 
colder but less turbid and presumably denser bottom waters.   
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Fig. 8b.  CTD Profiles from each site on 7-28-08. 
 

Secchi Disk, Chlorophyll-a, Total Suspended Solids and Nutrient Concentrations (Fig. 9):  
Annual mean secchi disk depths were near 4 m, and were slightly deeper at the northernmost 
site, Site 1, and got shallower towards the southernmost site, Site G by a few tenths of a meter in 
both 2007 and 2008.  Variability between sample dates at any site corresponds to changes in the 
algal density described above.   

Chlorophyll-a data were larger in the epilimnion than the hypolimnion. Annual mean 
concentrations ranged from 2.6 to 4.0 μg/L in the surface vs. always below 1.1 and typically 
below 0.5 μg/L, in the hypolimnion in 2007 and 3.2 to 5.2 μg/L in the surface vs. always below 
1.1 and typically below 0.5 μg/L, in the hypolimnion in 2008.  The observed changes from day to 
day and between sites are consistent with the fluorescence results.   
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Annual mean total suspended solids concentrations ranged from 1.1 to 2.6 mg/L in 2007 and 1.4 
to 4.2 mg/L in 2008.  The surface mean TSS concentrations were similar across the lake from 1.6 
to 1.7 mg/L, except for smaller concentrations at Site G in both years.  The largest TSS 
concentrations were detected in the bottom water at Sites 2, B and D in both years, 2008 slightly 
exceeding 2007 concentrations.  One exceptionally large result of 15.9 mg/L from Site B on 
7/3/07 was excluded from the site average due to the possible collection of CTD disturbed 
sediments in the sample.  Decaying leaf matter and other sediments were collected in this bottom 
water sample.  In contrast, the bottom water TSS concentrations at other sites (1, A, C, E, F & G) 
were less turbid than the surface water in both years, except for Site 1 in 2008.   

Mean nutrient concentrations were typically smaller in the epilimnion than the hypolimnion, 
except at Sites E and G.  Mean nitrate concentrations ranged from 0.8 to 1.0 mg/L in the 
epilimnion to 1.1 to 1.3 mg/L in the hypolimnion in both years.  Mean dissolved silica 
concentrations ranged from 289 to 410 μg/L in the epilimnion to 936 to 1011 μg/L in the 
hypolimnion.  Mean total phosphate concentrations ranged from 5.3 to over 13 μg/L in both 
years.  Largest concentrations were in the bottom water samples, and decreased to approximately 
5 to 10 μg/L in the surface and mid-depth samples in both years.  The exceptions were the mid-
depth sample at Site E which revealed lower total phosphates than other depths, and all three 
depths at Site G, which were nearly identical to each other.  These exceptions are probably the 
result of the shallower depths at these sites, where the mid-depth samples actually sampled the 
metalimnion rather than sampling the dark upper hypolimnion as the other sites.  Mean soluble 
reactive phosphate concentrations ranged from ~0.3 to over 11 μg/L in both years.  Largest 
concentrations were in the bottom water samples, and decreased by approximately 50% at the 
mid-depth sample and decreased again to less than 1.2 μg/L at the surface.   
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Fig. 9.  Site/Depth averaged annual water quality data (± 1σ  standard deviation).   
Left: 2007 – Right:  2008. 
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DISCUSSION 
The observed secchi disk depths, dissolved oxygen, nutrient and chlorophyll-a concentrations 
indicate that Cayuga Lake is a borderline oligotrophic- mesotrophic lake.  The shallower secchi 
disk depths and larger surface water chlorophyll-a and suspended sediment concentrations from 
Site 2 offshore of Taughannack Creek to the southern end of the lake, indicates a parallel 
decrease in water quality along this transect.  The vertical changes in nutrient and chlorophyll-a 
concentrations with water depth are typical for a moderately productive temperate lake, and are 
interpreted to reflect the net algal growth and uptake of soluble nutrients during photosynthesis 
in the epilimnion and net bacterial release of soluble nutrients during decomposition of algae in 
the hypolimnion.  These trends are similar to those reported by other studies (Upstate Freshwater 
Institute, 2000-2007; Callinan, 2001; Cayuga Lake Watershed Restoration and Protection Plan, 
2001).   

However, the vertical concentration differences are more pronounced in Cayuga Lake than the 
other large Finger Lakes (Halfman and O’Neill, 2009).  In addition, CTD profiles from Cayuga 
Lake and bottom water total suspended sediment concentrations reveal the best developed and 
most turbid nepheloid layers among the sampled Finger Lakes.  In our preliminary report, we 
hypothesized a common source for bottom water suspended sediments and nutrients, in 
particular the limiting nutrient phosphate (Halfman et al., 2008).  Here, we expand on this 
hypothesis and develop a more complete scenario for suspended sediments and phosphates in 
Cayuga Lake, and highlights recommendations to more fully understand water quality concerns 
in the southern end of Cayuga Lake.   

Bottom Water Suspended Sediments:  Nepheloid layers can originate from three sources:  
fluvial events, resuspension events, and/or settling of algal remains.  The available evidence 
supports each source, and will be briefly discussed below.   

A fluvial source for the nepheloid layer is supported by the following observations.  A 
thermocline-depth turbid plume was detected offshore of Salmon Creek (9/27/09 & 7/8/08) when 
it rained a day or two before a sample date.  Subsequent particle settling to the lake floor could 
promote the development of the observed nepheloid layers.  We believe additional plumes were 
not detected in 2007 and again in 2008 because both years were dry years, with 2007 rainfall 
totals 65% lower and 2008 totals 43% lower than totals in 2006 during the May-September field 
season (Ithaca Airport data).  Similar decreases in rainfall were observed at Geneva, NY 
(Cornell’s Agricultural Field Station data).   

The nepheloid layer was best developed at Sites 2, B and D located in the southernmost 
bathymetric basin of the lake.  Salmon, Taughannock, Fall, and Virgil Creeks, and the Cayuga 
Inlet all empty into the lake at or south of this basin.  Turbid stream water would naturally flow 
downhill to the closest deep basin in the lake.  Terrestrial organics (twigs and leaves) were 
detected in a bottom water sample at Site B, when the CTD accidently hit the lake floor.  
Research at Owasco Lake during the past two years indicated that the Owasco Inlet was a critical 
source of suspended sediments and phosphates to the lake in 2006, a wet year, but not in 2007, a 
dry year (Halfman et al., 2008).  Flood events impaired lake water quality at the southern end of 
the lake in 2006 with mean annual total suspended sediment concentrations of 1.9 to 4.2 mg/L 
compared to 1.8 mg/L in 2007, and mean annual phosphate concentrations of 75 to 500 μg/L 
compared to 10 μg/L in 2007 at the southern end of the lake.  Other studies investigating the 
impact of storm events on sediment yield provide consistent results (e.g., Nagle et al., 2007).   
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Finally, Cayuga Lake water quality reports, aerial photographs and lakeshore residents concurred 
that spring meltwaters and other significant runoff events generate offshore turbid plumes (Fig. 
10).  We believe that the nepheloid layer reflects this initial spring input, and then waxes and 
wanes through the remainder of the year as fluvial, resuspension and algal sources add and 
particle settling removes nepheloid sediments over time.   

Resuspension events due to wave action from strong northwesterly winds are important as well.  
The largest nepheloid turbidities were detected and coincided with sample dates just after major 
wind events.  For example, the largest turbidities at Site 2 were detected on 5/27, 6/24 & 7/8, and 
strong winds occurred on 5/24, 6/22, 7/7 a day or two before the sample date.  Calmer winds 
prevailed the few days just before other sample dates.  Resuspension events influenced water 
clarity on the southern shelf (Upstate Freshwater Institute, 2008).   

A minimal nepheloid layer in the northern basin, Site 1, a site far removed from the fluvial and 
resuspended events at the southern end of the lake, suggests that algal remains are less critical 
than fluvial and resuspension sources but still contribute to the development of the nepheloid 
layers in Cayuga Lake.   

Bottom Water Phosphates:  The delivery of suspended sediments would also bring organically 
bound and attached phosphates to the hypolimnion (e.g., Johnson et al., 1976; Pionke et al., 
1999; Halfman et al., 2008).  Estimates of annual phosphate loads to the lakes in the late 1990s 
confirm this hypothesis.  Fall Creek and Cayuga Inlet provided ~ 10 metric tons of P / year (~60 
lbs P/day, Cayuga Lake Watershed Restoration and Protection Plan, 2001).  Taughannock and 
Salmon Creeks must be important contributors as well but were excluded from the study.  
Community Science Institute reported that phosphate and suspended sediment concentrations 
were larger, at times up to 5 times larger, at Taughannack and Salmon Creeks than the other 
major creeks entering the southern end of the lake in a March, 2008 event (Community Science 
Institute Report, 2008).  Unfortunately, estimates of the phosphate flux to the lake floor by burial 
were not calculated as well.   

The phosphates however probably do not remain attached to the particles and every particle does 
not have bound phosphates.  A comparison of bottom water total phosphate and soluble reactive 
phosphates with total suspended sediment concentrations revealed no correlation (r2 = 0.05 and 
0.01, respectively).  In addition, the high phosphate concentrations were not limited to the 

Fig.10.  Turbid plumes offshore of  Taughannock Creek, left, and offshore the south end, right.   
Photos by Bill Hecht. 

 



 Bottom Water Phosphates and Suspended Sediments in Southern Cayuga Lake, NY - 18 
Halfman & Basnet, 2009 

southern basin but were instead detected throughout the hypolimnion.  We surmise that the 
transported organics are decomposed by bacterial respiration in the nepheloid layers, and soluble 
reactive phosphate is released to the hypolimnion.  Subsequent lake-wide mixing during fall and 
spring overturn and internal seiche activity, distributes the phosphates uniformly throughout the 
lake, only to decline in the epilimnion and increase in the lower hypolimnion during summer 
stratification due to preferential epilimnetic algal uptake and hypolimnetic bacterial release.  The 
multi-step process and eventual mixing dictates that these sediment-attached phosphates are not 
immediately available for algal growth, but are eventually available to stimulate algal growth. 

Other sources of phosphates exist and include the Ithaca and Cayuga wastewater treatment 
facilities, Cornell’s Lake Source Cooling project and geese (Kitchell et al., 1999; Cayuga 
Watershed Restoration & Protection, 2001).  The wastewater and LSC phosphates are typically 
inorganic, soluble reactive forms, more readily available to stimulate algal growth.  Wastewater 
treatment facilities dumped ~ 9 metric tons P/year (~50 lbs/day) and Cornell’s Lake Source 
Cooling project added < 1 metric ton P/year (~2.3 lbs P/day) to the epilimnion of the lake.  Our 
phosphate concentration data combined with Cornell’s Lake Source Project water flow rates 
substantiate the LSC flux.  Since these published estimates, a major tertiary treatment upgrade 
was installed at Ithaca’s wastewater treatment facility reducing its loading from ~ 5 metric tons 
P/year (~34 lbs/day) to ~ 1.5 metric tons P/year (~ 10 lbs/day).  A similar upgrade and phosphate 
reduction is slated for Cayuga wastewater treatment facility.  The loading by geese is unknown.   

All of these quantifiable sources at the southern end add approximately ~ 15 tons of P/year (~85 
lbs/day) to the lake.  This flux underestimates the total loading to the hypolimnion because the 
resuspension flux is unknown, and it ignores additional phosphorus loading at the north end of 
the lake.  Yet even this underestimated flux is significant when compared to the 100 metric tons 
of phosphorus in the lake, assuming a lake volume of 9.4 km3 and mean total phosphate 
concentration of 10 μg/L.  A “back of the envelope” residence time for phosphorus is 
approximately 6 to 7 years (it will decrease as additional influxes are quantified), and is 
consistent with two observations.  Loading at the southern end of the lake impacts water quality 
as observed in the north to south impairment trend.  It also dictates that when these loadings are 
greatly reduced, a few decades are required to significantly reduce and naturally flush out 
phosphates in this lake.  Future research must quantify all of these loadings and pinpoint sources 
in the watershed to clean up the lake.  Focus on fluvial fluxes because they are the most 
significant input of phosphates to the lake.   

The southern end of Owasco Lake is also impaired by the Owasco Inlet (Halfman et al., 2008).  
A two year study in 2006 and 2007 determined that various factors, most importantly, runoff 
events and municipal wastewater effluent, influenced the total suspended sediment and total 
phosphate fluxes from the Owasco Inlet to the southern end of the lake.  Stream segment analysis 
pinpointed the Groton wastewater treatment facility as a major source of soluble phosphates to 
the Inlet.  The plant added approximately 2 kg of P/day during 2006 but only 1.4 kg/day in 2007.  
The reduction was due to the addition of a pilot tertiary treatment facility to remove phosphates 
from the effluent.  Runoff over agriculturally-rich landscapes and stream bank erosion added 
additional sediments and phosphates to the lake, especially during peak flow, i.e., major runoff 
events.  The Owasco Inlet provided 3 to 6 kg of P/day, and the next largest stream, Dutch 
Hollow Creek, provided 0.5 to 4 kg of P/day, based primarily on base-flow data.  The high flux 
was from 2006 and lower flux from 2007.  The reduction reflected lower runoff in a drier 2007.  
Water quality at the southern end of the lake greatly improved from 2006 to 2007 as well.  In 
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Owasco Lake’s favor is a water residence time of a year or two, which enabled water quality to 
improve quickly once the supply of phosphates and suspended sediments were turned off in 
2007.  The observed improvement created incentive to remove the sources of suspended 
sediments and phosphates in the future.  Unfortunately, the decade+ water residence time for 
Cayuga Lake implies a much longer cleanup times than Owasco Lake, once the sources of 
phosphates and suspended sediments are curtailed in the southern watershed.   

CONCLUSIONS: 
The results of the 2007 and 2008 fieldwork indicate that southern Cayuga Lake is borderline 
oligotrophic-mesotrophic.  Suspended sediments and phosphates (SRP) are more concentrated in 
the hypolimnion of Cayuga Lake compared to neighboring Finger Lakes and CTD casts revealed 
a classic nepheloid layer in the southern basin of Cayuga Lake.  Suspended sediment sources for 
the nepheloid layers are primarily fluvial and resuspension events, with smaller amounts of 
algae.  However, calculating exact percentages was hampered by low rainfalls in both years.  
These sediment sources can also contribute attached organically-bound phosphorus to the 
hypolimnion of the lake.  Subsequent bacterial decomposition releases the organically bound-P 
as soluble reactive phosphate.  Smaller sources of phosphates include wastewater treatment 
facilities, Lake Source Cooling and geese.  A decade+ water residence time for Cayuga Lake 
implies that a substantial wait is required to observe a cleaner lake once the nutrient loading is 
significantly curtailed.   

FUTURE RECOMMENDATIONS: 
Lake Surveys in Wet Years to Detect Fluvial Contributions:  This project focused on the source 
of the elevated suspended sediment and phosphate concentrations in the hypolimnion of Cayuga 
Lake.  The two years of data delineate fluvial, resuspension and other sources.  However, the 
study spanned two dry years.  We recommend continuing this southern-end lake survey into the 
future to catch fluvial fluxes in the act during wetter years, and substantiate our findings.   

Nutrient Loading from Streams:  The streams draining into the southern end of the lake are the 
primary sources of suspended sediments and phosphates to the lake.  Sediment and nutrient flux 
data must be carefully measured to confirm earlier estimates and pinpoint the actual sources.  
Knowledge of the specific sources enables future remediation efforts to reduce or eliminate these 
sources and eventually clean the lake.  We recommend continuing the existing citizen based 
network and local commercial laboratories to collect and analyze stream samples for suspended 
sediment and nutrient concentrations.  Most importantly, we also recommend simultaneous 
determination of stream discharge to calculate the fluxes (loadings) of these materials from the 
major streams entering the southern end of the lake to evaluate their sources and budgets for the 
southern end of the lake.  Enough sites must be sampled along each stream to isolate the primary 
point and non-point sources of these materials.  Samples must also be collected through out the 
year to assess spring melt, storm event, base flow, and other loads.   

Ecological Impacts and Outcomes:  A direct consequence of excessive nutrient loading is the 
growth and proliferation of macrophytes, nearshore rooted aquatic vegetation like the exotic 
Eurasian milfoil (e.g., Gilman et al., 2008).  Algal blooms can also be the consequence of “top 
down” ecological pressures (e.g., Brown & Balk, 2008).  For example, various forms of exotic 
carnivorous zooplankton graze on herbaceous zooplankton.  When herbaceous zooplankton 
populations decline, algal populations bloom without the predation pressures.  We recommend 
that these ecological impacts/outcomes be investigated at the southern end of the lake.   
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Historical Record of Water Quality:  Historical data suggests that water quality has degraded at 
the southern end of the lake.  The same data suggest that water quality, measured by secchi disk 
depths, nutrient and chlorophyll-a concentrations, has perhaps improved in the past few decades.  
We recommend collecting a suite of short, well-dated (Pb-210 and Cs-137), sediment cores from 
the southern basin to substantiate the historical record of water quality over the past 50 to 100 
years.  The best cores will be analyzed for organic, carbonate, and phosphate concentrations, and 
other indicators of water quality like δ18O and δ13C stable isotope ratios and C/N elemental ratios 
of organic matter.  The data also provide critical nutrient and sediment fluxes to the lake floor to 
establish a more robust nutrient and sediment budget for the lake.   
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