Class 12: Selected Answers

1. a) **Reading**: Chapter 5. Later in the week, look ahead to Chapter 6.
 b) See the Web page www.hws.edu/PEO/faculty/mitchell/math375/index.html for previous answers and lecture notes.
 c) Gallian page 107ff: #1, 3, 5, 9, 11, 13, 21 Assigned earlier: Gallian: page 80-81 #17, 21, 25, 31, 43, 51

2. a) Let \(G \) be a group. Let \(a \) be a fixed element of \(G \). Prove that \(\phi : G \to G \) by \(\phi(g) = ag \) is one-to-one.
 b) Prove that \(\phi \) is onto.
 c) What is the mapping \(\phi^{-1} \)?

3. Write each of the following permutations as a product of disjoint cycles. What is the order of each. Find the inverse of each. Write each as a product of transpositions. Determine which are odd and which are even.
 a) \(\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = (123)(45) \), so \(|\alpha| = \text{lcm}(3, 2) = 6\). \(\alpha^{-1} = (54)(21) \). Finally, \(\alpha = (13)(12)(45) \), so it is odd.
 b) \(\beta = (1358) \), so \(|\beta| = 4\). \(\beta^{-1} = (8531) \). Finally, \(\beta = (18)(15)(13) \), so it is odd.
 c) \(\gamma = (15367) \), so \(|\gamma| = 5\). \(\gamma^{-1} = (76531) \). Finally, \(\gamma = (17)(16)(13)(15) \), so it is even.
 d) \(\omega = (13)(24)(12) = (14)(23) \), so \(|\omega| = \text{lcm}(2, 2) = 2\). \(\omega^{-1} = (32)(41) \). Finally, \(\omega = (14)(23) \), so it is even.

4. Let \(\alpha = (1, 2, 3)(4, 5) \) and let \(\beta = (1, 2, 5) \).
 a) \(\alpha\beta = (13)(245) \) and \(\beta\alpha = (154)(23) \).
 b) \(|\alpha\beta| = \text{lcm}(2, 3) = 6\). \(|\beta\alpha| = \text{lcm}(3, 2) = 6\).

5. Label the vertices of a rhombus 1, 2, 3, and 4. Write each motion of the rhombus as an element of \(S_4 \).

![Diagram of a rhombus with vertices labeled 1, 2, 3, and 4.]

Solution: \(r_0 = (1) \), \(r_{180} = (13)(24) \), \(v = (24) \), and \(h = (13) \).

6. Use the table for \(A_4 \) on page 101 to:
 a) \(C(A_4) = \{ \alpha_1 = (1) \} \).
 b) \(C((123)) = \{ (1), (123), (132) \} \).
 c) Extra Credit: Let \(G \) be any group and \(x \in G \). The **centralizer** of \(x \) is \(C(x) = \{ a \in G \mid ax = xa \} \). Prove that \(C(x) \) is a subgroup of \(G \). **Solution**: Closure: Let \(a, b \in C(x) \). Show \(ab \in C(x) \). But

\[
abx = a(bx) = a(xb) = (ax)b = (xa)b = xab.
\]

Inverses: Let \(a \in C(x) \). Then

\[
\begin{align*}
ex = x e & \Rightarrow (a^{-1}a)x = x(a^{-1}a) \\
& \Rightarrow (a^{-1}(ax) = x(a^{-1}a) \\
& \Rightarrow (a^{-1}(xa) = x(a^{-1}a) & \Rightarrow (a^{-1}x)a = (xa^{-1}a) & \Rightarrow a^{-1}x = xa^{-1}.
\end{align*}
\]
7. a) Let \(\alpha = (a_1 a_2 \ldots a_k) \) be a \(k \)-cycle. Prove that \(\alpha \) is odd if and only if \(k \) is even. **Solution:** We saw in class that \(\alpha = (a_1 a_2 \ldots a_k)(a_3 a_4 \ldots a_1) \) is a product of \(k - 1 \) transpositions. Therefore, \(\alpha \) is odd if and only if \(k - 1 \) is odd if and only if \(k \) is even.

b) Prove that \(\alpha \) is odd if and only if \(|\alpha| \) is even. **Solution:** As seen in class, the order of a \(k \)-cycle is just its length. So \(|\alpha| \) is even if and only if \(k \) is even and from the previous part \(k \) is even if and only if \(\alpha \) is odd.

c) OK, here’s the hard part on the homework: Now let \(\beta \) be any element of \(S_n \). Prove that if \(\beta \) is odd, then \(|\beta| \) is even. Hint: First use Theorem 5.1. Then show at least one of the cycles must be even in length. Then use Ruffini’s Theorem. **Solution:** We can write \(\beta \) as a product of \(n \) disjoint cycles, say \(\beta = \alpha_1 \alpha_2 \cdots \alpha_n \). First use a proof by contradiction to show that some \(k \) is even in length. Assume not. Then by part (a), all the \(k \) are odd, so all the \(\alpha_i \) are even. So \(\beta \in A_n \) and therefore \(\beta \) is even. This contradicts that we are given that \(\beta \) is odd. So some \(k \) must be even. But then by Ruffini’s Theorem,

\[
|b| = \text{lcm}(k_1 k_2 \cdots k_n)
\]

must be even since \(k_i \mid \text{lcm}(k_1 k_2 \cdots k_n) \) and \(k_i \) is even.

Optional Mastery and Review Exercises

8. Let \(G \) be a group and let \(H \) be a subgroup of \(G \). Let \(a \) be some fixed element of \(G \). Define the set \(aHa^{-1} \) to be \(\{aha^{-1} \mid h \in H \} \). Show that \(aHa^{-1} \) is a subgroup of \(G \). **Solution:** Closure: Let \(ah_1a^{-1}, ah_2a^{-1} \in aHa^{-1} \). Then \(h_1, h_2 \in H \). So

\[
(ab_1a^{-1})(ab_2a^{-1}) = a(b_1b_2)a^{-1} \in aHa^{-1}.
\]

because \(H \) is a subgroup so \(h_1h_2 - 2 \in H \). Inverses: Let \(aha^{-1} \in aHa^{-1} \). Must show \((aha^{-1})^{-1} \in aHa^{-1} \).

But \(h^{-1} \in H \). So

\[
(aha^{-1})^{-1} = ah^{-1}a^{-1} \in aHa^{-1}.
\]

9. Suppose \(G \) is a group of order 16. If \(G \) has 5 elements for which \(x^4 = e \), can \(G \) be cyclic? Explain. **Solution:** If \(G \) were cyclic of order 16, the elements whose order were were 4, 2 and 1 would satisfy this condition. Now if \(y^2 = G \), then these elements would be \(y^4, y^{12}, y^8 \), and \(e \). So it is impossible.

10. Let \(P \) be the set of polynomials in \(x \). Define \(\phi : P \rightarrow P \) by \(\phi(f) = f' \), where \(f' \) denotes the derivative of \(f \). Why is \(\phi \) not one-to-one? However, \(\phi \) is onto. Can you prove this? **Solution:** Note that \(\phi(x) = \phi(x + 1) = 1 \). So \(\phi \) is not injective. It is onto. Let \(f \in P \). Let \(F = \int f \, dx \). Then \(F \) is a polynomial and \(F' = f \) by the Fundamental Theorem of Calculus.

11. Let \(\phi : X \rightarrow Y \) be a mapping. For \(a, b \in X \), define \(a \sim b \) to mean that \(\phi(a) = \phi(b) \). Is \(\sim \) an equivalence relation on \(X \)? **Solution:** Reflexive: For any \(a \in X \), we have \(\phi(a) = \phi(a) \), so \(a \sim a \). Symmetric: Given \(a \sim b \), Show \(\sim a \). But

\[
a \sim b \iff \phi(a) = \phi(b) \iff \phi(b) = \phi(a) \iff b \sim a.
\]

Transitive: Given \(a \sim b \) and \(b \sim c \). Show \(a \sim c \). But \(a \sim b \Rightarrow \phi(a) = \phi(b) \) and \(b \sim c \Rightarrow \phi(b) = \phi(c) \). Therefore, \(\phi(a) = \phi(c) \), so \(a \sim c \). Note that we have used the reflexive, symmetric, and transitive properties of equality in successive steps.

12. Let \(G \) be a group of order \(p \), where \(p \) is a prime.

a) Suppose that \(x \in G \) and \(|x| = p \). Prove that \(G \) is cyclic. **Solution:** Consider the set \(\{e = x^0, x, x^2, \ldots, x^{p-1} \} \). If these \(p \) elements are distinct, then \(< x > = G \) because \(G \) has order \(p \) and by closure \(< x > \subseteq G \). Assume they are not distinct. Then \(x^j = x^k \) where \(k \neq j \). WMA 0 \(\leq j < k \leq p - 1 \). Then \(x^j = x^k \Rightarrow e = x^{k-j} \Rightarrow |x| < k - j \leq k \leq p - 1 \). This contradicts the fact that \(|x| = p \). So the elements were distinct.

b) Prove even more: That \(G \) has exactly \(p - 1 \) elements of order \(p \). **Solution:** Just apply Sylow’s Theorem. If \(1 \leq k \leq p - 1 \), then \(|x^k| = \frac{p}{\text{gcd}(p, k)} = p \) since \(p \) is prime. So every non-identity element of \(G \) generates the group.