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Abstract

We report on the experimental determination of the range of a small metal projectile
that is launched from a device that imparts a known initial speed and direction. We
find that the equations for motion with constant acceleration can predict the range of
the projectile to 3%, which is within the experimental uncertainty.



Introduction

Objects in free fall should move with constant downward acceleration equal to g = 9.80 m/s2.

The motion of a projectile can be predicted by using the kinematic equations for motion with

constant acceleration.

In our experiment we used an ACME catapult that is calibrated to launch a 50 g projectile

with an initial speed of 3.50± 0.05 m/s at an angle of 45◦. We made 100 measurements of

the range and we found that the range was x = 1.212 ± 0.002 m. The theoretical range is

1.25± 0.04 m.

In the theory section we will show how one derives the range of a projectile from the

initial velocity by using the equations for motion with constant acceleration. We present the

analysis of our data in the third section. Finally, we present our conclusions and discussion

in the last section.

Experimental Procedure

The equipment for this experiment consisted of the ACME catapult apparatus, which has

an adjustable angle and a fixed initial projectile velocity, an small brass projectile, a table

that can be adjusted to the same height as the released projectile, large sheets of paper and

some carbon paper that we used to mark the impact point of the projectile, and a meter

stick to measure the range of the projectile.

We adjusted the angle of the ACME catapult to 45◦. We fired the projectile several times

to find its approximate range and then we placed the paper under the carbon paper at the

approximate impact point and fired the projectile one hundred times. Using the meter stick,

we measured the range of each of the impacts.

Theory

A projectile moves with constant downward acceleration. The horizontal motion must there-

fore have constant horizontal speed. The equations that express this are

x = x0 + v0xt

y = y0 + v0yt−
1

2
gt2 , (1)

where g is the acceleration of gravity, 9.80 m/s2.

The components of the initial velocity are found by trigonometry from the initial speed

and initial angle:

v0x = v0 cos θ ,
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v0y = v0 sin θ . (2)

In solving for the range of the projectile, it is easiest to find the time that the projectile

is in the air. Because the projectile lands on the table at the same height as it was released,

when the projectile returns to the table, its vertical velocity changes sign. Thus we have

vy = v0y − gt = −v0y , (3)

which we can solve for the time:

t = 2v0y/g = 2v0 sin θ/g . (4)

Substitution of Eq. (4) into Eq. (1) yields the range:

x− x0 = v0xt = 2v2
0 cos θ sin θ/g = v2

0 sin(2θ)/g . (5)

The last equality in Eq. (5) follows from the double angle formula for the sine function.

Analysis

We took one hundred measurements of the range using the ACME catapult. The average

range was x̄ = 1.212 m and the standard deviation was σ = 0.02 m. The error in the mean

is found by the relation [1]

σm =
σ√
N

. (6)

In our case N = 100, which yields the result of our measurement of the mean range:

x̄ = 1.212± 0.002 m . (7)

Application of Eq. (5) with the stated initial velocity of the ACME apparatus,

v0 = 3.50± 0.05 m/s , (8)

and the measured initial angle, θ = 45◦, yields a range of

x =
(3.50 m/s)2 sin(2(45◦))

9.80 m/s2
= 1.25 m . (9)

To find the uncertainty in the theoretical range, we employ the formulas from the propagation

of error appendix in Ref. [1]. (
dx

x

)2

=

(
2
dv0

v0

)2

+

(
dg

g

)2

. (10)
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Note that in Eq. (10) we assume that the angle θ is known precisely. If the angle were not

known precisely, we would have to include its uncertainty as well. The formulas in Ref. [1]

do not seem to apply directly to Eq. (5) because of the trigonometric function. If we assume

that the error in g is in the least significant digit, we have dg = 0.01 m/s2, and the error in

the range follows from Eq. (10):(
dx

1.25 m

)2

=

(
2(0.05 m/s)

3.50 m/s

)2

+

(
0.01 m/s2

9.80 m/s2

)2

, (11)

or,

dx = 0.04 m . (12)

Conclusions

The first conclusion we must draw is that the theoretical and the experimental results agree.

This is obvious because the experimental range, x = 1.212±0.002 m, overlaps the theoretical

range, 1.25±0.04 m, with the experimental average lying wholly within the theoretical range:

1.21 < 1.212 < 1.29. More carefully, we note that the difference in the two values is smaller

than the error in the difference:

(xtheory − xexpt) <
√

(dxtheory)2 + (dxexpt)2 , (13)

or

(1.25− 1.212) <
√

(0.04)2 + (0.002)2 . (14)

The difference between the theoretical result and the experimental result is(
1.25− 1.212

1.25

)
= 3.0% . (15)

Finally, we speculate upon sources of error in this experiment. The main source of error

is likely to be the effect of air resistance, which is very difficult to account for theoretically

at this level and is systematic in that it should decrease the range of all projectiles launched.

Another source of error is likely to be the precision with which the projectile is aimed. We

did not check that angle, except crudely with a protractor.

Despite these sources of error, the results do agree and this seems unlikely to be accidental.

Our experiment confirms the applicability of the equations of projectile motion.
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