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Abstract

The four-dimensional theory of a 1-form abelian gauge field A coupled to a 2-form

(antisymmetric tensor) potential B is studied. The two gauge invariances of the theory

admit a coupling mB∧F where F is the field strength (F = dA) of A. It is shown that this

theory is a unitary, renormalizable theory of a massive spin-one field with no additional

degrees of freedom. In this sense it is a generalization to four dimensions of topological

mechanisms in two dimensions (the Schwinger model) and three dimensions (Chern-Simons

theory). The issue of spontaneous symmetry breaking is also examined.
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1. Introduction

Although gauge-invariance is usually associated with masslessness of the correspond-

ing gauge field there are several mechanisms known for generating massive gauge fields

consistent with gauge invariance. In two dimensions the Schwinger model of quantum

electrodynamics coupled to a massless fermion yields a massive photon through the axial

anomaly. In three dimensions the addition of a Chern-Simons term to the Lagrangian also

results in a massive spin-1 vector field, with the mass arbitrary in the abelian case and

quantized in the non-abelian case. The mass generation in these models may be viewed as

resulting from non-trivial underlying topology [1].

In four dimensions a fundamentally different mechanism – the Higgs mechanism – is

usually invoked to generate a mass gap whilst preserving the gauge invariance needed to

ensure renormalizability of the theory. This involves arranging the arbitrary couplings of

a scalar field coupled gauge-invariantly to the gauge field so that the vacuum expectation

value of a physical scalar (the Higgs) is non-zero. The angular excitations of the scalar field

combine with the two transverse degrees of freedom of the spin-one field to form a massive

spin-one field. The arbitrariness of the scalar sector of the Higgs Lagrangian has long been

a source of discomfort. In addition quadratic divergences in the mass renormalization of

scalar fields force an unnatural fine-tuning of the parameters in the Lagrangian. There has

been much effort to solve these latter two problems. One direction is to generate the scalar

field dynamically as a bound state of a new set of strongly interacting fermionic matter

fields. No completely realistic model of this sort has yet been found although it remains

an attractive idea. Another direction is to supersymmetrize the model. This constrains

the scalar couplings by embedding the scalar fields in a multiplet with fermion fields whose

couplings are dictated by gauge invariance. Supersymmetry also eliminates the quadratic

mass divergences. There is, however, no economy in the supersymmetric models as the

Higgs field cannot be made the superpartner of any known fermion. The matter content of

the theory is more than doubled and one must address the very difficult issue of realistic

supersymmetry breaking to get a model consistent with the observed particle spectrum.

There is also known a topological-type gauge-invariant mechanism for generating mass

for an abelian gauge field in four dimensions. It involves introducing a 2-form potential

(Kalb-Ramond field) B [2] into the theory and coupling it to the gauge field through a

B ∧ F term. This theory has two types of gauge invariance and has therefore highly

constrained couplings and is very geometrical. In this paper we examine this mechanism
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of mass generation and show that it is renormalizable and unitary and yields the spectrum

of a single massive spin-one field with no remnant degrees of freedom.

The outline of the paper is as follows. In section 2 the theory of a Kalb Ramond

field coupled to an abelian gauge field with the B ∧ F mass term is introduced as a

generalization of the Chern-Simons mass term in 2+1 dimensions. The detailed derivation

of the propagator and the proof of renormalizability of the theory appear in section 3, and

the Higgs mechanism is reviewed in section 4 for comparison. Finally in section 5 we look

at the issue of symmetry breaking in the B ∧ F theory.

2. A Topological Lagrangian in Four Dimensions

A well-known example of topological mass generation is the 2+1 dimensional Chern-

Simons theory [3]. In this theory the relevant terms in the Lagrangian are

Lcs = −1
2
F ∧ ∗F − µ

2
A ∧ F −A ∧ ∗j, (2.1)

where A is the gauge field, F = dA and jµ = eψγµψ. The equations of motion for A are

d ∗F = µF + ∗j. (2.2)

We also have the Bianchi identity

dF = 0, (2.3)

which can be thought of as the equation of motion for ∗F . These two equations are called

the London equations. Applying d ∗ to both sides of (2.2) we get

( + µ2)F = −µ ∗j − dj, (2.4)

which is the equation of motion for a field F with mass µ in the presence of a coupled

current j.

Now we look for a Lagrangian in four dimensions that gives us a generalization of the

London equations. We will consider an abelian gauge field coupled to an antisymmetric

tensor field. This coupling is a natural generalization of the 2+1 dimensional Chern-Simons

term and, as we will see, also leads to a topological theory with an effective mass for the

gauge field. Classically an antisymmetric tensor field is dual to a scalar – a propagating

2-form field has only one degree of freedom. This leads to the interesting possibility of a

mechanism where the only degree of freedom of an uncharged 2-form field is ‘eaten up’ by
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the gauge field to give the latter an effective mass. First we make a digression to look at

the free 2-form field and count its degrees of freedom.

Consider the Lagrangian for the free propagating antisymmetric tensor field,

L = 1
2H ∧

∗H, (2.5)

where H is a 3-form derived from a 2-form potential B, H = dB; in components Hµνλ =

∂[µBνλ]. This Lagrangian is invariant under the abelian gauge symmetry B → B + dΛ

where Λ is a 1-form.

The equations of motion derived from this Lagrangian are

d ∗H = 0. (2.6)

We can solve this equation by the ansatz ∗H = dη where η is a scalar field (0-form).

Then the equation of motion for H is an identity for exterior derivatives and the Bianchi

identity for H, dH = 0, becomes the free Klein-Gordon equation for η. We can see via this

‘dualization’ that we are left with one degree of freedom for B. When we couple B to some

other field, we cannot use this method of counting. If our Lagrangian, however, is invariant

under the gauge transformation B → B + dΛ, we can see that out of the six components

of B, only three are left free (we should note that there is a gauge transformation of Λ as

well, Λ→ Λ + dχ). For the freely propagating B, the transverse modes are always zero, as

can be seen from (2.6). For the Lagrangian we will consider now, this comment will still

hold true.

Now we consider a Lagrangian where the B field couples to a massless gauge field and

gives an effective mass to the latter. Such a Lagrangian is well-known [4,5],

L = LG + LM + LI , (2.7)

where
LG =1

2
H ∧ ∗H − 1

2
F ∧ ∗F +mB ∧ F,

LM =ψ(i/∂ −m)ψ

LI =−A ∧ ∗j = −Aµjµ.

(2.8)

Under the gauge variations A→ A+ dχ and B → B+ dΛ the first two terms of L remain

invariant, while the last term has a variation dΛ∧F , which is a total divergence. The action

is, of course, invariant. (The condition of gauge invariance prevents terms like B∧ ∗F from

appearing in the Lagrangian.) The stress-energy tensor is the same as that in a theory of
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two free fields A and B because the interaction term can be written without invoking a

metric. This is the reason the term is called ‘topological’. The equations of motion are

now modified,
d ∗H = mF

d ∗F = mH.
(2.9)

Operating on both sides of the second equation with d ∗ and using the first equation, we

get

( +m2)F = 0. (2.10)

This shows that the fluctuations of the field strength F are massive. It should be noted that

H is also massive by the same analysis. On the other hand, one can choose a gauge in which

the gauge field A itself has massive excitations and B (or H) is not in the spectrum any

more. To show this, we solve the first equation of (2.9) by the ansatz ∗H = dη+mA. Then

the second equation implies d ∗dA = (m ∗dη + m2 ∗A). With a gauge choice ∗d ∗A = −mη
(equivalently, divA = mη) we get

( +m2)A = 0, (2.11)

which is the Klein-Gordon equation for a massive vector field A. We should note here that

the massiveness is not a gauge artifact, because F obeys the massive Klein-Gordon equation

[5] independent of gauge choice, as can be seen by substituting the second equation of (2.9)

into the first. Another point of interest is that the field η is not a Higgs.

It should be noted here that a similar analysis in a different gauge shows that it is

B which is massive in a different gauge. The mathematics is independent of whether we

prefer to call A or B a massive field. In either case, however, we are left with a massive

spin-one field (a massive antisymmetric tensor field has three degrees of freedom), and the

physics may force us to choose between a massive gauge field and a massive axion.† In

particular, it is more natural to view this as a theory with a massive gauge field in flat

space in the presence of fermionic matter, while near a black hole with large closed strings

present, this may be treated as a theory of a massive Kalb-Ramond field [6].

† The terminology is a little confusing here. A massive B has three degrees of freedom,
while conventionally an axion is a scalar field that couples derivatively to other fields.
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3. The Physical Propagator and Renormalizability

The full Lagrangian of a Kalb-Ramond field coupled to QED including fermion cou-

plings and gauge fixing terms is

L = 1
2H ∧

∗H − 1
2F ∧

∗F +mB ∧ F + ψ̄(i /D −M0)ψ − 1
2ξ

(divA)2 − 1
2ζ

(divB)2, (3.1)

where D is the gauge covariant derivative. The bare propagators (fig. 1) are given by

∆A
µν(k) = −gµν − (1− ξ)kµkν/k2

k2
, (3.2)

∆B
µν,ρλ(k) = −

gµ[ρgλ]ν − (1− ζ)gµ[ρkλ]kν/k
2

k2
, (3.3)

for A and B, respectively, and the B −A vertex (fig. 2) is given by

ξµνV
µν,λ(k)ξλ = imεµνρλkρξµνξλ, (3.4)

where ξµν and ξλ are polarization tensors for the B and A fields, respectively. (We will

also write S(p) for the fermion propagator 1

/p−M0+iε
.) The gauge we have chosen makes

the subsequent calculations simple, but of course the same results will follow by choosing

any other gauge. We find the ‘combined’ propagator (fig. 3) with the help of the above,

∆̃A
µν(k) = ∆A

µν(k) + ∆A
µµ′(k)V ρλ,µ

′
(k)∆B

ρλ,ρ′λ′(k)V ρ
′λ′,ν′(k)∆A

ν′ν(k) + · · · . (3.5)

To compute this, we first note that

V ρλ,µ(k)∆B
ρλ,ρ′λ′(k)V ρ

′λ′,ν(k) = −m2(gµν − kµkν/k2) =: θµν(k). (3.6)

Then (3.5) implies that

∆̃A
µν(k) =∆A

µν(k) + ∆A
µµ′(k)θµ

′ν′(k)∆A
ν′ν(k)

+ ∆A
µµ′(k)θµ

′ν′(k)∆A
ν′ρ(k)θρλ(k)∆A

λν(k) + · · ·

=− gµν − kµkν/k2

k2
(1 +

m2

k2
+
m4

k4
+ · · ·) + ξ

kµkν
k4

=− gµν − kµkν/k2

k2 −m2
+ ξ

kµkν
k4

.

(3.7)

After we set ξ to zero, we are left with a propagator that has a pole at k2 = m2. There

also seems to be a pole at k2 = 0, but this pole is a gauge artifact. This can be seen in

the dual (scalar field) formulation very easily by choosing the gauge divA = mη.
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Now that we have obtained the ‘combined’ propagator, we look at the renormalizability

of this theory. We note that this propagator has the same divergence structure as the

photon propagator in usual quantum electrodynamics. This means that by arguments

similar to those in the usual massless QED we can conclude that all divergences can be

taken care of by introducing counterterms at the one-loop level. We proceed to calculate

the one-loop divergent diagrams – these are essentially the one-loop divergent diagrams of

usual QED with the photon propagator replaced by the ‘massive’ photon propagator ∆̃A
µν .

The electron self-energy diagram (fig. 4 ) is

ie2
0Σ(p) =

e2
0

(2π)4

∫
d4k ∆̃A

µνγ
µS(p− k)γν . (3.8)

This has the same degree of divergence as the corresponding diagram in usual QED. The

divergent photon self-energy diagram (fig. 5) is proportional to ∆̃A
µα(k)e2

0Παβ(k)∆̃A
βν(k),

with

Παβ ∼ 1
(2π)4

Tr
∫
d4p γαS(p+ k)γβS(p) (3.9)

which is, in fact exactly the same expression as is obtained for the self-energy of the

massless photon. The vertex correction comes from (fig. 6) and is given by

e2
0Λµ(p, p′) ∼ 1

(2π)4

∫
d4k γαS(p′ − k)γµS(p− k)γβ∆̃A

αβ(k). (3.10)

This has no infra-red divergence, and the ultra-violet divergence is logarithmic as in usual

quantum electrodynamics. The counterterms induced by these three diagrams cancel all

higher order divergences, and the theory is renormalizable.

The gauge dependence of the counterterms can be seen by using arguments simi-

lar to the ones used for massive quantum electrodynamics [7]. Writing the gauge-fixed

Lagrangian in terms of renormalized quantities,

L = −1
2Z3F ∧ ∗F + 1

2H ∧
∗H +mB ∧ F +

1
2ζ

(divB)2 +
1
2ξ

(divA)2 −A ∧ ∗j, (3.11)

we get after some algebra

Z3( − d ∗d ∗)A+
1
ξ

d ∗d ∗A+m ∗H − j =0,

i.e.,
1
ξ

∗d ∗A =0,
(3.12)
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since j = Z2ψγ
µψ is a conserved current. The Ward identity corresponding to (3.12) can

be obtained by using

1
ξ

∂ ·A = ∂µ
∆S

∆Aµ
− ieψ∆S

∆ψ
+ ie

∆S
∆ψ

ψ (3.13)

and

〈0|T ∆S
∆Aµ

X|0〉 = i〈0|T ∆X
∆Aµ

|0〉, etc. (3.14)

Then it follows that

1
ξ
〈0|T∂ ·A(x)X|0〉 = i

δgauge
δω(x)

〈0|TX|0〉, (3.15)

where the gauge variation is computed using renormalized quantities.

This shows that ∂ · A is a free field and therefore decouples from the theory. In

particular, we can use transverse polarization (ε · k = 0) which picks out only the k2 = m2

pole in the ‘photon’ propagator (3.7) when we look at the gauge dependence of the S-

matrix. The unitarity of the theory remains intact, as can be seen with the help of a

simple argument. In the absence of the B ∧ F term the ghosts decouple and the only

propagating modes of the various fields are the transverse modes of A and the scalar mode

of B. After the introduction of the interaction term we still have only these three modes

propagating. As we said above, there is only one physical pole and therefore only one

physical particle, the massive photon, with its three propagating modes. Therefore, no

unphysical modes are propagated, and unitarity is unbroken.

4. Higgs Mechanism

The most popular mechanism of generating mass for a vector boson is the so-called

Higgs mechanism. We will want to compare our proposed model with the Higgs model,

so let us stop and examine the latter for a moment. We shall consider the Abelian Higgs

model,

L = −1
4FµνF

µν + (DµΦ)†(DµΦ) + V (Φ) (4.1)

where Φ is a complex scalar, D is the gauge covariant derivative Dµ = ∂µ − ieAµ, V (Φ) is

the usual Higgs potential V (Φ) = µ2Φ†Φ− λ(Φ†Φ)2 and we have suppressed the fermion

couplings to Φ. This Lagrangian is invariant under the local gauge transformations

Φ→ exp(−iθ)Φ

Aµ →Aµ −
1
e
∂µθ

(4.2)
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It is useful to introduce ‘angular’ variables and parametrize Φ as

Φ =
1√
2

(ρ+ v) exp(−iη/v)

=
1√
2

(v + ρ− iη + · · ·),
(4.3)

where v = (µ2/λ)
1
2 , µ2 > 0. Here we have made a choice of vacuum by choosing 〈0|η|0〉 = 0,

and thus broken the global U(1) symmetry.

The scalar meson ρ is usually called the ‘Higgs’ particle. Let us change the values of

the parameters λ and µ such that µ, λ→∞ but v = (µ
2

λ )
1
2 remains finite. We see that ρ

becomes infinitely massive in this limit, and all terms involving ρ are therefore decoupled

in an effective low-energy theory. The effective Lagrangian is then

L =− 1
4FµνF

µν + 1
2∂µη∂

µη + 1
2v

2e2AµA
µ + evAµ∂

µη

=− 1
4FµνF

µν + M2

2 (Aµ + 1
M ∂µη)2.

(4.4)

The ‘gauge’ nature of η is now evident. In particular, in the ‘unitary’ gauge AUµ = Aµ +
1
M ∂µη, the Lagrangian becomes

L = −1
4F

U
µνF

Uµν + M2

2 AUµA
Uµ. (4.5)

The action resulting from the decoupling of the massive Higgs particle in (4.4) is the

well-known Stückelberg action. Except for their zero modes, the classical fields η and Bµν
describe the same physics, as we will now argue.

In deriving the equation (2.11) † we made an ansatz

∗H = dη +mA (4.6)

to solve the first equation and then used the second equation of (2.9) to find the (second

order) equation of motion for A

∗d ∗F = m(dη +mA). (4.7)

In this picture, we have essentially replaced the single degree of freedom of B by a scalar

field η. The Bianchi identity, dH = 0, must then be considered as a separate second order

equation for η;

0 = dH = d ∗(dη +mA). (4.8)

† Assuming trivial topology for spacetime
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This displays the duality between the fields η and Bµν. The equation of motion for B

becomes the defining relation for η. This defining equation is just a Bianchi identity for

η. The Bianchi identity for B becomes the equation of motion for η. One would hope

that the equations for η come from an action principle. In fact, because the field strength
∗H satisfies the massive Klein-Gordon equation, it should be that the action for the gauge

invariant vector dη +mA is exactly the massive vector action

Lη,A = −1
2F ∧

∗F + 1
2(dη +mA)2. (4.9)

That this is indeed the case is easy to verify, if we treat η as a Lagrange multiplier enforcing

the constraint dH = 0. Thus the field equations for the two Lagrangians are identical once

the identification (4.6) is made.

A natural question to ask at this point is whether the theory described by (2.7) the

same as a theory of spontaneously broken symmetry with an infinitely massive Higgs with

the two-form B being no more than a convenient way of describing the angular part of Φ.

The answer to this question is negative and the difference between the two theories can be

seen at the quantum level. This is the question that we address now.

5. Symmetry Breaking

The Stückelberg Lagrangian (4.4) has a global symmetry, that of shifting η → η + c

where c is a constant. This symmetry is present in any theory where a scalar couples to

other matter only through derivative interactions, as does the axion. It is also present in

the Higgs mechanism as a global phase rotation of the complex scalar Higgs field. This

symmetry is ‘spontaneously broken’. That is, while the Lagrangian has the symmetry, the

Noether charge that generates it,

Q =
∫
πη =

∫
η̇ = i(a†~0 − a~0), (5.1)

has an improper action on a ground state. The state Q|0〉, having one zero-momentum

Goldstone boson, is not normalizable. Thus there is no meaning to the would-be unitary

transformation exp(iλQ) which would have related the two vacua 〈0|η|0〉 = 0 and 〈λ|η|λ〉 =

λ.

In dualizing a free 2-form theory to obtain a free scalar theory, we find two ‘conserved

currents’, jµ = ∗Hµ and jµνρ = Hµνρ. The roles of the conservation laws of these currents

as Bianchi identity or equations of motions are interchanged by the duality transformation.
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The current jµ is the Noether current for the symmetry η → η + c while the current jµνρ

leads to the Noether charge

QΩ =
∫

3M
Ωµνjµν0 =

∫
3M

ΩµνΠµν
B (5.2)

generating B → B + Ω. When Ω is exact, QΩ is a constraint and must annihilate all

states. When Ω is closed, QΩ generates a symmetry of the action and the states must form

a representation of this global U(1) generator. The global gauge group is [U(1)]dim H2( 3M).

(Here we must absorb the extra Lorentz indices on the current jµνρ so that the charge is

well-defined. Then, strictly speaking, Ωµνjµνρ is a conserved current only if ∂[ρΩµν] = 0,

that is, [QΩ, H] = Q̇Ω ∝
∫

3M dΩ ∧ ∗H.) If one analyzes dualization in the massive case,

one finds that there are still Noether charges Q =
∫
πη =

∫
H and QΩ =

∫
ΩµνΠµν

B . The

expression of the momenta in terms of fields and their time derivatives changes, while

the canonical expressions do not. The axionic charge Q is conserved as long as there are

appropriate boundary conditions on the momentum Πµν
B . This follows from the equations

of motion

Q̇ = [Q,H] ∝
∫

3M
dΠB =

∫
∂ 3M

ΠB. (5.3)

In the following we address the issue of the relation of these symmetries to the 2-form

action and whether there is global symmetry breaking in the theory written with a 2-form.

Following [8] we may examine the dualization in path integral language. These authors

start with a field strength formulation and insert the condition the H = dB locally by using

a δ function,

Z =
∫
DH δ[dH] exp (i

∫
1
2H ∧

∗H). (5.4)

Then a scalar is introduced to exponentiate the argument of the δ function,

Z =
∫
DηDH exp (i

∫
1
2H ∧

∗H + η ∧ dH). (5.5)

From here it is obvious that η is canonically conjugate to the spatial part of H, Hijk.

A canonical version of this analysis appears in [9]. Writing H = q(t)ωvol + H̃, we find

explicitly that the constant mode of η is conjugate to q(t). The charge QΩ =
∫

ΩµνΠµν
B

generates shifts in q(t) if dΩ = ωvol, but then QΩ is not a conserved charge and does not

generate a symmetry of the action.
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When dΩ = 0 one finds that [Q,QΩ] = i
∫

dΩ = 0. These two charges have actions

which commute. When written in the dual variables of the two-form theory, the axionic

charge Q =
∫

3MH may be seen to have no effect upon the dynamical variables,

δaxBµν(x) =[Bµν(x), Q] ≡ 0,

δaxΠµν
B (x) =[Πµν

B (x), Q] ∝
∫
ε0µνρ∂ρδ(x− y)d3y = 0.

(5.6)

Thus it does not generate any nontrivial symmetry of the action and there is no symmetry

breaking in the Bµν system corresponding to the symmetry breaking in the η system.

The preceding discussion is for space-times which have spatial sections that are topo-

logically trivial, H2( 3M) = 0. QΩ above was just the generator of gauge transformations

B → B + Ω where Ω = dλ (H2( 3M) = 0 iff dΩ = 0⇒ Ω = dλ). When the space-time is

nontrivial more interesting things can happen. In nontrivial space-times, (such as axionic

black hole spacetimes [6] or when 3M = R3\{0}) the axionic charge is, strictly speaking,

not
∫

3MH =
∮
∂ 3MB, since the boundary includes a 2-sphere around r = 0. The suit-

able axionic charge is Q∞ =
∮
∂ 3M∞ B, the integral only around the boundary component

at spatial infinity. Now [Q∞, QΩ] = i
∮
∂ 3M∞ Ω. The axionic charge Q∞ is changed by

QΩ whenever Ω ∈ H2( 3M) is non-trivial. This behavior is reminiscent of large gauge

transformations in Yang-Mills theories where gauge transformations which cannot be built

up from infinitesimal gauge transformations change the ‘winding number’ of the vacuum.

Here the analogous ‘winding number’ is the axionic charge Q∞ =
∮
∂ 3M∞ B. We conclude

then that in the Bµν variables there is no remnant of the scalar shift η → η + c. This is

particularly evident in topologically trivial spacetimes, where one is always able to shift

η → η+ c but there are no ‘large’ gauge transformation of Bµν to be made. In spacetimes

with non-trivial H2( 3M) we expect that the vacuum structure will be similar to that of

Yang-Mills theories.

6. Conclusion

To summarize, we have shown that the topological mass term for an abelian two-

form coupled to massless QED with unitary and renormalizable matter couplings becomes

massive QED and remains unitary and renormalizable.

Furthermore, in spacetimes with topologically trivial spatial sections there is no spon-

taneous breaking of any global symmetry, as there is in the abelian Higgs model. We have

shown that the two currents which are dual to each other are the generators of global
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gauge transformations and the generator of the global phase rotation in the Higgs (to be

precise, infinitely massive Higgs, or the Stückelberg) model and that these symmetries are

not equivalent.

It seems possible that this mechanism can be generalized to non-abelian gauge fields in

3+1 dimensions using the non-abelian generalization of the Kalb-Ramond gauge invariance

due to Rajeev [4]. Such a mechanism would obviate the need for a Higgs boson, left over

from the process of giving mass to the gauge fields (via the usual Higgs mechanism) but

would not address the independent problems of giving masses to the quarks and leptons

and of chiral symmetry breaking. In passing, we note also that the theory consisting of the

B ∧ F interaction alone is an interesting example of an exactly soluble four-dimensional

topological field theory [10].

A first announcement of some of the results presented in this paper appeared in [11].
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