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Abstract

Dirac’s procedure is applied to the Brink-Schwarz and Siegel superparticle sys-

tems. Both systems are exhibited to have the same first-class constraints. The dif-

ference between the systems is the lack of second-class fermionic constraints in the

Siegel superparticle. Thus the Siegel superparticle has a phase space with twice as

many fermionic degrees of freedom as the Brink-Schwarz superparticle.
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1. Introduction

Since its discovery in 1984 the manifestly supersymmetric string action [1] has

resisted quantization in a covariant gauge [2, 3, 4]. The supersymmetric particle has

served as a laboratory for those wishing to practice tier methods before attacking the

more complicated mechanics of the superstring.

The phase space structures of the superstring and, to a lesser extent, of the

superparticle, are complicated and so the methods of Dirac [6] seem particularly ap-

propriate for their quantization. In this letter I wish to discuss the classical mechanics

of the Brink-Schwarz and Siegel superparticles. The Dirac analysis is also useful in

this context as it allows the true dimension of the phase space to be examined easily.

In a forthcoming paper I shall describe and compare the two actions proposed as

manifestly supersymmetric descriptions of the superstring [1, 9].

2. Review of the Dirac Procedure

Whenever a Lagrangian is first order in derivatives, or has a variable whose ve-

locity does not appear, the system is said to be singular. In most cases one must

be careful when quantizing a singular system. Singular systems have constraints

which first appear in the course of defining the momenta. For such systems there are

velocities which are not expressible in terms of positions and momenta.

The definition of the momenta become the primary constraints of the system,

φi(p, q) ≈ 0. (2.1)

Here the curly equals sign reminds one that, while the system’s evolution occurs on

the surface in phase space satisfying eq. (2.1) as an equality, the equality should not

be taken before evaluating a Poisson bracket.

One obtains the Hamiltonian in the usual way except that there is the possibility

of adding arbitrary combinations of the constraints to the Hamiltonian because any

two such Hamiltonians would be numerically equal on the constraint surface.

1



In the course of time evolution, the system should remain on the constraint surface

specified by eq. (2.1). This is equivalent to the conservation of the constraints:

φ̇i = {φi, H}P ≈ 0. (2.2)

The preservation of the constraints in time may require the imposition of further

constraints or a restriction on the form of the Hamiltonian. Any further constraints

must also be conserved.

Eventually one is left with a set of consistent conserved constraints and a Hamil-

tonian which may have some arbitrariness in its from.

The maximal algebra of constraints with the property that the Poisson bracket

of any element of the algebra and any other constraint vanishes on the constraint

surface is the algebra of first-class constraints. Any remaining constraints are called

second-class.

The first-class constraints generate “gauge transformations” while the second-

=class constraints are superfluous variables which must be excised from the system.

The consistent removal of second-class constraints is accomplished using a redefined

bracket, the Dirac bracket [6], which has the property that the bracket of any function

on phase space with any second-class constraint vanishes identically. Usually one

can deal with the second-class constraints trivially. Exceptions appear to be the

superparticle and the corresponding superstring in which the second-class constraints

serve to frustrate quantization.

The existence of gauge symmetry and the corresponding first-class constraints

allows one to impose as many gauge conditions as one has symmetries. The corre-

sponding statement in the Hamiltonian language is that a single first-class constraint

reduces the dimension of the phase space by two, while the second-class constraints,

which do not generate symmetries, each reduce the dimension of the phase space by

one.
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3. The Brink-Schwarz Superparticle

The massless superparticle considered in ref. [8] has the simple action

I = 1
2

∫
dτ [e−1(ẋµ − iθ̄γµθ̇)2]. (3.1)

Here e is an “einbein” playing the role of the metric tensor along the world-line, θ is

the fermionic position of the particle in superspace which is the superpartner of the

particle’s bosonic position Xµ. The spinor θ is taken to be a Majorana spinor. In

ten dimensions θ can be taken to be both Majorana and Weyl and has sixteen real

components.

The momenta for the fields e, Xµ and θ are defined as

Pe :=
∂L

∂ė
= 0,

Pµ :=
∂L

∂ẋµ
= e−1(ẋµ − iθ̄γµθ̇),

ζ :=
∂RL

∂Rθ̇
= −iθ̄γµe−1(ẋµ − iθ̄γµθ̇) = −iθ̄P/ ,

(3.2)

where R denotes the right-handed derivative. The canonical Hamiltonian is

H0 = 1
2eP

2, (3.3)

and there are two primary constraints.

φ1 := Pe ≈ 0,

φ2 := ζ + iθ̄P/ ≈ 0.
(3.4)

Conservation of the constraints (2.55) requires the imposition of a third constraint,

φ3 := 1
2P

2 ≈ 0. (3.5)

One may check that the most general allowed Hamiltonian is

H = 1
2(e+ λ3)P 2 + ζP/λ2 + Peλ1, (2.57)

with λ1,2,3 arbitrary, and that there are no further constraints. The constraints φ1 and

φ3 are purely first-class, generating τ -reparametrizations, while φ2 is half first-class
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and half second-class. The first-class piece in φ2 is just

φ1st
2 = ζP/ ≈ 0. (3.7)

This constraint generates a superparticle analog of the superstring’s κ-symmetry.

The identification of the second-class piece of φ2 cannot be made covariantly for the

massless superparticle [5], but it may be identified as

φ2nd
2 = φ2γ

0P/ γ0 ≈ 0. (3.8)

Discounting the einbein and its momentum, the canonical phase space has 2D

bosonic dimensions and 2S fermionic dimensions. Here S is the number of real in-

dependent degrees of freedom of whatever type of spinor we are considering. For a

ten-dimensional Majorana-Weyl spinor S is sixteen. There is a single bosonic first-

class constraint, namely φ3, 1
2S fermionic first-class constraints and 1

2S fermionic

second-class constraints. Thus the completely gauge fixed phase space has 2D − 2

bosonic and 1
2S fermionic dimensions.

4. The Siegel Superparticle

The action considered in ref. [7] is

I =

∫
dτ [(ẋ− iθ̄γθ̇) · P − 1

2gP
2 + ˙̄θπ + ψP/ π]. (4.1)

This action, excepting the last two terms, is just (3.1) written in first-order form.

Just as in first-order electrodynamics (Palatini formalism) one may treat both X and

P as positions and give each a momentum. The Dirac procedure will identify P with

the momentum conjugate to X through second-class constraints. Thus the analysis

is as straightforward as before but somewhat messier.

For the action (4.1) take the coordinates to be Xµ, Pµ, θ, π, and g. Their canon-

ically conjugate momenta are then Px, PP , ζ, Pπ, Pψ, and Pg respectively. The Dirac
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procedure yields a conserved set of constraints after two iterations. The constraints

are

PX − P ≈ 0,

PP ≈ 0,

Pπ ≈ 0,

ζ + π̄ + iθ̄P/ ≈ 0,

P/ π ≈ 0,

Pg ≈ 0,

Pψ ≈ 0,

1
2P

2 ≈ 0.

(4.2)

The first pair are second-class and may be ignored if P is identified as conjugate

to X. The second pair are also second-class and may similarly be ignored if π̄ is

everywhere identified with −ζ − iθ̄P/ . This leaves a consistent set of constraints

1
2P

2 ≈ 0,

ζP/ ≈ 0,

Pg ≈ 0,

Pψ ≈ 0,

(4.3)

which are all first-class. The corresponding Hamiltonian is

H = 1
2(g + λ1)P 2 + (ψ + λ2)P/ ζ̄ + λ3Pg + λ4Pψ, (4.4)

with λ1,2,3,4 arbitrary.

Again discounting the einbein g, the gravitino ψ, and their momenta, the canon-

ical phase space has, as before, 2D bosonic and 2S fermionic dimensions. Here again

one has a single bosonic and S/2 fermionic first-class constraints; but no second-class

constraints. Thus the gauge-fixed phase space has 2D − 2 bosonic and S fermionic

dimensions.
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5. Conclusions

Because the two superparticle actions considered here have phase spaces of differ-

ent dimensions, they are not equivalent. It seems that a necessary condition for having

1
4S, rather than 1

2S, unconstrained fermionic coordinates is the existence of second-

=class constraints. Since the second-class constraints of the massless Brink-Schwarz

superparticle cannot be identified covariantly it is unlikely that the Brink-Schwarz

superparticle can be quantized in a formalism which requires the separation of first-

from second-class constraints.

This problem is less severe for the string in that, contrary to the claims of ref. [5],

the corresponding second-class constrains can be identified in a ten-dimensionally

covariant manner [3,4].

Note Added

After completion of this work, it was pointed out to me that an observation

tantamount to the inequivalence of the two superparticle actions has been made

elsewhere [10].
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