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We examine the construction of the spin angular momentum in systems with pseudoclassical Grassmann
variables. In constrained systems there are many different algebraic forms for the dynamical variables that
will all agree on the constraint surface. For the angular momentum, a particular form of the generators is
preferred, which yields superselection sectors of irreducible spin2(=) representations rather than reducible
so(=) representations when quantized in the Schrödinger realization.

I. INTRODUCTION

Quantization of the pseudoclassical actions1–7, intro-
duced more than forty years ago to describe spinning
particles, has been done by the path integral method and
by canonical quantization directly on the reduced phase
space. Quantization in the Schrödinger picture was par-
tially worked out by Barducci, Bordi, and Casalbuoni8,9
but, as far as we are aware, the full details have been
worked out only recently10.
In the standard reduced phase space approach, the

phase space has rotational covariance, which must be
broken by choosing a particular splitting into coordi-
nates and momenta—a “polarization”—in order to use
the Schrödinger realization. Because the actions are
first-order in velocities, in order to quantize without re-
ducing the phase space first we must use Dirac’s con-
strained Hamiltonian quantization, but in exchange we
gain a coordinate space that is rotationally covariant. In
the reduced phase space approach, the Noether angular
momentum directly gives the correct spin, while in the
Dirac quantization, the Noether angular momentum is
ambiguous and one particular form must be chosen to
obtain the correct spin.

Construction of angularmomentumas differential op-
erators on functions of Grassmann variables is not new.
Mankoč-Borštnik gave such a construction,11,12 though
not in the context of the Schrödinger quantization of a
constrained pseudoclassical mechanical system. What is
new here is to examine angular momentum in the con-
text of the constrained Schrödinger quantization of the
simplest pseudoclassical systems.

In the Schrödinger realization, the full state space
splits into orthogonal physical and ghost sectors that
have positive-definite and negative-definite norms, re-
spectively. Within those sectors, for dimensions greater
than two, there are isomorphic superselection sectors,
each of which corresponds to quantization directly on
the reduced phase space and forms an irreducible rep-
resentation of spin2(=).

The wave functions in the Schrödinger realization
thus correspond to spinorial states, and can be directly
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mapped10,13 to Kähler fermion14–17 differential form-
valued wave functions.
In the following, we examine how the so(=) algebra

that acts on the physical state space becomes spin2(=).
Weuse the Einstein summation convention that repeated
indices are summed. Because our metric is the unit ma-
trix, there is no distinction between upper and lower
indices but we raise or lower them for notational con-
venience and to make the generalization to indefinite
metrics nearly immediate.

II. PSEUDOCLASSICAL ACTION

We consider systems of = anticommuting variables �8
described by the rotationally invariant action

( =

∫
3�

[
8

2�8
¤�8 − �(�)

]
, (2.1)

as a Hamiltonian system with constraints, in the sense
of Dirac. The canonical Poisson brackets of two phase
space functions, �(�, �) and �(�, �) is given by{

�, �
}
=
%'�

%�8

%!�

%�8
+ %'�

%�8
%!�

%�8
, (2.2)

where the ' and ! superscripts denote whether the
derivative is to be taken from the right or the left.

III. DIRAC CONSTRAINT ANALYSIS

Because the action (2.1) is first-order in velocities, there
are Dirac constraints18,19,

!8 = �8 − 8

2�
8 ≈ 0 . (3.1)

These constraints have constant, non-vanishing Poisson
brackets with each other

Δ8 9 =
{
!8 , ! 9

}
= −8�8 9 , (3.2)

and so are second-class. The matrix (3.2) has inverse

Δ−1
8 9 = 8�8 9 . (3.3)
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The dynamical system can be reduced to the phase space
defined by the constraints (3.1) with the (ortho-)sym-
plectic form given by the Dirac bracket,{

�, �
}
�
=

{
�, �

}
−

{
�, !8

}
Δ−1
8 9

{
! 9 , �

}
, (3.4)

which allows second-class constraints to be taken to zero
strongly because theywill have vanishing Dirac brackets
with any dynamical quantity,{

�, !8
}
�
≡ 0 . (3.5)

The Dirac brackets satisfy the same (graded) Jacobi iden-
tity as the Poisson brackets.

Instead of using Dirac brackets, dynamical variables
can be replaced by their “primed” versions19

�′ = � −
{
�, !8

}
Δ−1
8 9 !

9 , (3.6)

and the original Poisson bracket can be kept, at the pos-
sible cost of having certain relations holding only on the
constraint surface, rather than the full phase space. The
Poisson brackets of primed variables satisfy{

�′, �′
}
≈

{
�′, �

}
≈

{
�, �′

}
≈

{
�, �

}
�
, (3.7)

wherewehaveusedDirac’s “weak equality,”≈, to denote
quantities whose difference vanishes on the constraint
surface defined by the constraints, in this case Eqs. (3.1).

We have previously analyzed the system described by
the action (2.1) in detail10 using the primed variables

�′ 8 ≡ �8 −
{
�8 , !0

}
Δ−1
01
!1 = �8 − 8!8

=
1
2�

8 − 8�8 ,

�′ 8 ≡ �8 −
{
�8 , !0

}
Δ−1
01
!1 = �8 − 1

2!
8

=
1
2�

8 + 8

4�
8 =

8

2�
′ 8 .

(3.8)

These variables have strongly vanishing Poisson brackets
with the second-class constraints,{

�′ 8 , ! 9
}
= 0 ,{

�′8 , !
9
}
= 0 .

(3.9)

After quantization, the Poisson brackets become anti-
commutators and the set of �̂′ 8 then generate a Clifford
algebra.10

IV. ANGULAR MOMENTUM

The conserved angular momentum of the system fol-
lows from Noether’s theorem applied to infinitesimal
rotations of the variables

�$�
8 = $8

9 �
9 , $ 98 = −$8 9 . (4.1)

When the action (2.1) is invariant under infinitesimal ro-
tations, the definition and conservation of the spin angu-
lar momentum (8 9 follow from the equations of motion
and the invariance of the action under (4.1),

�$( = Δ

(
%'!

% ¤�8
�$�

8

)
=

1
2$8 9Δ (

98 = 0 , (4.2)

where %'/% ¤�8 denotes the derivative acting from the
right, and Δ denotes the difference in values between
final and initial times.
The angular momentum from (4.2) is

(8 9 = −�[8� 9] ≡ −�8� 9 + � 9�8 . (4.3)

Even for non-invariant actions, the angular momentum
still generates rotations of the canonical variables,

�$I =
1
2$

98
{
I, (8 9

}
. (4.4)

V. WEAKLY EQUIVALENT ANGULAR MOMENTA

First, we note the constraints (3.1) are vectors, and we
have the Poisson brackets{

(8 9 , !:
}
= �8:! 9 − � 9:!8 = �:[8! 9] ≈ 0 . (5.1)

It is therefore consistent on the constraint surface to use
the Poisson bracket rather than the Dirac bracket with
the angular momentum.
From (5.1) we can calculate the Hanson-Regge-

Teitelboim primed version of the angular momentum,

(′ 8 9 = (8 9 −
{
(8 9 , !0

}
Δ−1
01
!1

= (8 9 + 8![8! 9] .
(5.2)

We find the Poisson brackets{
(′ 8 9 , !:

}
=

{
(8 9 , !:

}
+ 8

{
![8! 9] , !:

}
= �:[8! 9] + 28![8(−8� 9] :) (5.3)
= −�:[8! 9] ≈ 0 ,

which show that the primed version of the angular mo-
mentum (5.2) is no better than the original canonical
version (4.3) in allowing the use of Poisson rather than
Dirac brackets.

VI. WEAK AND STRONG LIE ALGEBRAS

Noting that under the primed generators (′ 8 9 , the con-
straints transform (5.3) contravariantly rather than co-
variantly, as they do under the (8 9 , we now consider the
one-parameter family of weakly equal forms of the an-
gular momentum

Σ
8 9
& = (

8 9 + 8&![8! 9] , (6.1)
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and examinewhether their Lie algebras close strongly or
only weakly.

The generators � 8 9 of so(=) (and also spin2(=)), satisfy
the Poisson bracket algebra{

� 8 9 , �<=
}
= − � 9< � 8= + � 9= � 8< − �8= � 9< + �8< � 9= . (6.2)

It is straightforward to check that the canonical Noether
generators (4.3) satisfy the relations (6.2) strongly.

From the Poisson brackets{
(8 9 , (<=

}
= −� 9<(8= + � 9=(8< − �8=( 9< + �8<( 9= ,{

(8 9 , ![<!=]
}
= − � 9< ![8!=] + � 9= ![8!<]

− �8=![9!<] + �8<![9!=] ,
(6.3)

{
![8! 9] , (<=

}
= −

{
(<= , ![8! 9]}

=
{
(8 9 , ![<!=]

}
,

and{
8![8! 9] , 8![<!=]

}
= 2� 9< 8![8!=] − 2� 9= 8![8!<]

+ 2�8= 8![9!<] − 2�8< 8![9!=] ,
(6.4)

we can determine the Poisson brackets of the quantities
(6.1) as{

Σ8 9 ,Σ<=
}
= − � 9<

(
(8= + 2(1 − &)8&![8!=]

)
+ � 9=

(
(8< + 2(1 − &)8&![8!<]

)
− �8=

(
( 9< + 2(1 − &)8&![9!<]

)
+ �8<

(
( 9= + 2(1 − &)8&![9!=]

)
,

(6.5)

and see that the generators (6.1) will satisfy the Lie alge-
bra relations (6.2) strongly only for

& = 0 or & =
1
2 . (6.6)

For other values of & the algebra (6.2) is only satisfied
weakly. We observe that the Poisson bracket of the gen-
erator Σ8 9 and the constraint !: ,{

Σ8 9 , !:
}
=

{
(8 9 , !:

}
+ 8&

{
![8! 9] , !:

}
= �:[8! 9] + 28&![8(−8� 9] :)
= (1 − 2&)�:[8! 9] ≈ 0 ,

(6.7)

also vanishes strongly if and only if & = 1/2. It’s also
instructive to note that when & = 1/2,

Σ8 9 = −�′ [8�′ 9] = − 82�
′ [8�′ 9] , (6.8)

which immediately implies
{
Σ8 9 , !:

}
≡ 0.

Eq. (6.4) shows that the quantities− 82![8! 9] also satisfy
the Poisson bracket relations (6.2), and with Eq. (6.8),
implies that the canonical so(=)generators (4.3) are a sum
of two independent, commuting spin2(=) generators,

(8 9 = − 82�
′ [8�′ 9] − 8

2!
[8! 9] . (6.9)

VII. QUANTUM MECHANICS

The Schrödinger realization10 of quantum mechanics
for theories described by the action (2.1) with = Grass-
mann variables consists of replacement of the canonical
variables by the operators

�̂8#(�) = �8 #(�) ,

�̂8#(�) = 8
%!

%�8
#(�) ,

(7.1)

that act on wave functions #(�) of all = Grassmann vari-
ables. The Schrödinger inner product is given by the
integral over the full configuration space,

〈) |#〉 = 8 b =2 c
∫

)∗# 3�13�2 . . . 3�= = 〈# |)〉∗ , (7.2)

underwhich the coordinates variables �̂8 are self-adjoint,
and the momentum variables �̂8 are anti-self-adjoint.
The second-class constraints !̂8 ≈ 0 are imposed by

the generalizedGupta-Bleuler condition that all physical
matrix elements of the constraints vanish,

〈)phys |!̂8 |#phys〉 = 0 . (7.3)

This condition splits the full state space into two orthog-
onal subspaces: positive norm physical states and neg-
ative norm unphysical (ghost) states. Note that if the
opposite sign is taken in (7.2), the physical and ghost
states are interchanged. The constraints map physical
states into ghost states, and vice-versa.10
If all dynamical variables have weakly vanishing com-

mutators or anti-commutators with the constraints, then
the constraints can be taken to be strongly zero and the
Hilbert space restricted to physical states. Replacing the
Grassmann operators �̂8 by �̂′8 and �̂8 by �̂′8 in all dynam-
ical variables built from them will accomplish this.

A. Two dimensions

In a system with just two anticommuting coordinates,
the physical (positive norm) states are spanned by the
orthonormal states10

|0〉 = 4 8
2 �1�2 = 1 + 8

2�1�2 ,

|1〉 = 1√
2
(�1 + 8�2) 4

8
2 �1�2 =

1√
2
(�1 + 8�2) ,

(7.4)

while the ghost (negative norm) states are spanned by
the orthonormal states

|0̄〉 = 4− 8
2 �1�2 = 1 − 8

2�1�2 ,

|1̄〉 = 1√
2
(�1 − 8�2) 4−

8
2 �1�2 =

1√
2
(�1 − 8�2) .

(7.5)
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Denoting the general state of the system by

©­­«
0
1
2
3

ª®®¬ = 0 |0〉 + 1 |1〉 + 2 |0̄〉 + 3 |1̄〉 , (7.6)

we can write the matrix representation of the canonical
position and momentum operators on the general state
as

�̂1 =
1√
2

(
�1 −8�2
−8�2 �1

)
, �̂2 =

1√
2

(
−�2 −�2
�2 �2

)
,

�̂1 =
8

2
√

2

(
�1 8�2
8�2 �1

)
, �̂2 =

1
2
√

2

(
−8�2 8�2
−8�2 8�2

)
,

(7.7)

where �1 and �2 are standard Pauli matrices. The di-
agonal pieces map physical states to physical states and
unphysical to unphysical, while the off-diagonal pieces
map physical to unphysical states or vice-versa. In this
matrix representation, the canonical Noether angular
momentum is

(̂12 = �̂2�̂1 − �̂1�̂2 =
1
2

(
1 − �3 0

0 −1 + �3

)
. (7.8)

Including the term containing the second-class con-
straints and with & = 1/2, we find

Σ̂12 = (̂12 + 8!̂1!̂2 =
1
2

(
−�3 0

0 +�3

)
. (7.9)

B. Three dimensions

Adding one more anticommuting coordinate to the
two-dimensional system creates two superselection sec-
tors of physical states and two of ghost states. These are
superselection sectors for the Hanson-Regge-Teitelboim
�̂′
8
and �̂′

8
operators, and are denoted by unprimed and

primed states.10
The positive norm physical states are spanned by the

orthonormal basis

|0〉 = 1
4√2

(
1 + 8

2�1�2

) (
1 + �3√

2

)
,

|1〉 = 1
4√8

(
�1 + 8�2

) (
1 + �3√

2

)
,

|0′〉 = 1
4√2

(
1 − 8

2�1�2

) (
1 − �3√

2

)
,

|1′〉 = 1
4√8

(
�1 − 8�2

) (
1 − �3√

2

)
,

(7.10)

while the negative norm ghost states are denoted by
barred states and spannedby the orthogonal anti-normal

basis

|0̄〉 = 1
4√2

(
1 − 8

2�1�2

) (
1 + �3√

2

)
,

|1̄〉 = 1
4√8

(
�1 − 8�2

) (
1 + �3√

2

)
,

|0̄′〉 = 1
4√2

(
1 + 8

2�1�2

) (
1 − �3√

2

)
,

|1̄′〉 = 1
4√8

(
�1 + 8�2

) (
1 − �3√

2

)
.

(7.11)

In this full basis, where the general state of the system is
denoted by

©­­­­­­­­­«

0
1
2
3
4
5
6
ℎ

ª®®®®®®®®®¬
= 0 |0〉+1 |1〉+ 2 |0̄〉+3 |1̄〉+ 4 |0′〉+ 5 |1′〉+ 6 |0̄′〉+ ℎ |1̄′〉,

(7.12)
the coordinate and momentum operators are repre-
sented, using the standard Pauli matrices, by the 8 × 8
matrices

�̂1 =
1√
2

©­­«
�1 −8�2
−8�2 �1

0
0 �1 −8�2

−8�2 �1

ª®®¬ , (7.13)

�̂2 =
1√
2

©­­«
−�2 −�2
�2 �2

0
0 �2 �2

−�2 −�2

ª®®¬ , (7.14)

�̂3 =
1√
2

©­­«
�3 0 0 �3
0 �3 �3 0
0 −�3 −�3 0
−�3 0 0 −�3

ª®®¬ , (7.15)

�̂1 =
1

2
√

2

©­­«
8�1 −�2
−�2 8�1

0
0 8�1 −�2

−�2 8�1

ª®®¬ , (7.16)

�̂2 =
1

2
√

2

©­­«
−8�2 8�2
−8�2 8�2

0
0 8�2 −8�2

8�2 −8�2

ª®®¬ , (7.17)

�̂3 =
1

2
√

2

©­­«
8�3 0 0 −8�3
0 8�3 −8�3 0
0 8�3 −8�3 0
8�3 0 0 −8�3

ª®®¬ , (7.18)
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which allow for a more standard and reliable computa-
tion tool than Grassmann operators.

It is straightforward to check that the representa-
tion of the canonical angular momentum algebra of the
(̂8 9 = −�̂[8�̂ 9], splits the four physical states into the re-
ducible so(3) representation 1⊕3, and similarly splits the
four ghost states. The splitting mixes the superselection
sectors; the Ŝ2 = 2, (̂12 = 0 state is

|( = 1, (I = 0〉 = 1√
2
(|0〉 − |0′〉) , (7.19)

while the singlet state is

|( = 0, (I = 0〉 = 1√
2
(|0〉 + |0′〉) , (7.20)

and similarly for the ghost sectors.
Once the constraint modification is made in Eq. (6.1)

with & = 1/2, the Σ̂8 9 exactly commute with all second-
class constraints, making the constraints scalars under
rotation, and the physical and ghost spaces each split
up into superselection sectors as two irreducible spin2(3)
representations, 2 ⊕ 2. This is implied by the relation
Eq. (6.8), and the fact that the �̂′

8
do not mix superselec-

tion sectors10.

C. General case

With = anticommuting coordinates, there are 2= total
states, half of which are physical and half of which are
ghost. A ghost state differs from a physical state by a
reflection in one of the �8 in its wave function, which
changes the sign of its norm. A rotation cannot change
just one sign, so ($(=) rotations will preserve the sign
of the norm.

The 2=−1 physical states fall into #B = 2b =−1
2 c superse-

lection sectors of the �̂′
8
operators, and the same is true of

the ghost states. Each superselection sector, physical or
ghost, has dimension 2b =2 c . For odd =, these superselec-
tion sectors are irreducible representations of spin2(=).
For even =, because the generators (6.8) have even Grass-
mann parity, these superselection sectors are a sum of
two irreducible spinor representations of spin2(=) hav-
ing opposite Grassmann parity. However, products of
odd numbers of the �̂′

8
operators will mix them. Ad-

ditional Grassmann degrees of freedom added to the
theory may prevent these irreducible spinor represen-
tations from being quantum mechanical superselection
sectors. From the construction of states as functions of
the Grassmann variables �8 given in Ref. 10, we can see
that under the rotations generated by the (̂8 9 , the super-
selection sectors will mix, giving in general a sum of
irreducible scalar, vector, and antisymmetric tensor rep-
resentations of ($(=) with at most b =2 c indices. Explicit
constructions of these states is given in Appendix B.

For dimensions smaller than three there is just one su-
perselection sector. For = = 1 there is a single scalar state
and for = = 2 there is one superselection sector consisting
of a scalar and a half-vector, while for = = 5, for example,
the four physical spin2(5) spinor 4 superselection sectors
will mix under so(5) into the reducible representation
1 ⊕ 5 ⊕ 10, and for = = 6, the four physical spin2(6) re-
ducible spinor 8 superselection sectors will mix under
so(6) into the reducible representation 1 ⊕ 6 ⊕ 15 ⊕ 10.
The same is true for the ghost sectors.
In constructing isospin operators to describe rela-

tivistic particles interacting with a non-Abelian gauge
field, Balachandran et al. examined constructions of
isospin for any representation of an arbitrary gauge
group in terms of both commuting and anticommut-
ing variables.7 Two of these constructions are relevant
to our construction of spin from the fundamental rep-
resentation of so(=). When the spin is constructed—
e.g., in a reduced phase space quantization—from an
abstract n-dimensional Clifford algebra as in Eq. (6.8),
a single spin2(=) representation results.10 Because the
Schrödinger realization constructs the Clifford algebra
generators �̂′ 8 in Eq. (3.8) as operators on wave func-
tions of all = of the Grassmann coordinates, repeated
spin2(=) representationsoccur as identical superselection
sectors.10 A consistent quantization can be obtained by
restricting to just one of these superselection sectors, al-
though restricting tomore than one superselection sector
is also consistent, and in the language of Kähler fermions
has been proposed as the origin of fermion families.20
When the angular momentum is constructed from two
n-dimensional Clifford algebras, as in the decomposi-
tion of the Noether angular momentum in Eq. (6.9), one
obtains a spin2(2=) representation7 that reduces under
so(=). In Appendix B we give a tensor construction for
the reduction under so(=), different from the method
given in Ref. 7.

VIII. CONCLUSIONS

Theuniquegenerators of the family (6.1) that havevan-
ishing Poisson brackets with the constraints become the
generators of spin2(=) upon quantization and the physi-
cal state space splits up into superselection sectors that
are identical spin2(=) representations. Aconsistent quan-
tization can be obtained by restricting physical states to
one or more of these superselection sectors.

The unique generators of that same family (6.1) under
which the constraints transform as vectors become the
generators of so(=) upon quantization and the physical
spin2(=) superselection sectors mix to become a sum of
antisymmetric tensor so(=) irreducible representations.
One cannot generally make a useful quantization using
the Noether form of the angular momentum because the
Grassmann position and momentum operators must be
modified by the Hanson-Regge-Teitelboim procedure so
that they do not mix physical and ghost states; mixing of
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ghost and physical states would ruin the consistent re-
moval of the ghost states from the theory. With themod-
ified �′ and�′ operators, the natural states are in spin2(=)
superselection sectors, which do not mix under the �′,
unlike the so(=) irreps. To use the Noether form of the
angular momentum, the full 2=−1-dimensional spin2(2=)
physical state space, meaning all the so(=) scalar, vector,
and antisymmetric tensor states, would have to be kept.
Such a quantization does not seem to have relevance to
physics.

We also found, in the quantum version of Eq. (6.9),
that the canonical so(=) generators (4.3) are the sum of
two independent commuting spin2(=) generators:

(̂8 9 = −�̂[8�̂ 9] = − 82 �̂
′ [8 �̂′ 9] − 8

2 !̂
[8 !̂ 9] . (8.1)

After setting the constraints !̂8 strongly to zero and re-
stricting the Hilbert space to the physical Hilbert space,
the Noether so(=) angular momentum generators (8.1)
become the spin2(=) generators, Eq. (8.2).

The selection of (6.1) with & = 1/2,

Σ̂8 9 = −�̂[8�̂ 9] + 8

2 !̂
[8 !̂ 9] = − 82 �̂

′ [8 �̂′ 9] , (8.2)

as the correct form of the spin angular momentum de-
pends on only two things. One is that the second-class
constraints !8 ≈ 0 transform as vectors under the canoni-
cal Noether angularmomentum (4.3) and the other is the
specific constant value of the rotationally invariant Pois-
son brackets of the constraints given in Eq. (3.2). Our re-
sults thus apply to somewhat more general actions than
the simple action (2.1) that we have considered here.
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Appendix A: Operator representations in three dimensions

We gather here for reference the matrix representa-
tions for various quantities in the basis (7.12), expressed
as tensor products of 2× 2 matrices. The canonical coor-
dinates are given by

√
2 �̂1 = 1 ⊗ 1 ⊗ �1 − 81 ⊗ �1 ⊗ �2 ,√
2 �̂2 = −�3 ⊗ �3 ⊗ �2 − 8�3 ⊗ �2 ⊗ �2 ,√
2 �̂3 = �3 ⊗ 1 ⊗ �3 + 8�2 ⊗ �1 ⊗ �3 ,

and the canonical momenta are given by

2
√

2 �̂1 = 81 ⊗ 1 ⊗ �1 − 1 ⊗ �1 ⊗ �2 ,

2
√

2 �̂2 = −8�3 ⊗ �3 ⊗ �2 − �3 ⊗ �2 ⊗ �2 ,

2
√

2 �̂3 = 8�3 ⊗ 1 ⊗ �3 + �2 ⊗ �1 ⊗ �3 .

The Hanson-Regge-Teitelboim primed operators �̂′
8
are

given by
√

2 �̂′1 = 1 ⊗ 1 ⊗ �1 ,√
2 �̂′2 = −�3 ⊗ �3 ⊗ �2 ,√
2 �̂′3 = �3 ⊗ 1 ⊗ �3 ,

and the constraint operators !̂8 are given by
√

2 !̂1 = −1 ⊗ �1 ⊗ �2 ,√
2 !̂2 = − �3 ⊗ �2 ⊗ �2 ,√
2 !̂3 = �2 ⊗ �1 ⊗ �3 .

The canonical angular momentum components are

(̂23 =
1
2 (−1 ⊗ �3 ⊗ �1 + �1 ⊗ �3 ⊗ �1) ,

(̂31 =
1
2 (�3 ⊗ 1 ⊗ �2 + �2 ⊗ 1 ⊗ �1) ,

(̂12 =
1
2 (�3 ⊗ �3 ⊗ 1 − �3 ⊗ �3 ⊗ �3) ,

and the spin generators are

Σ̂23 = −
1
2 1 ⊗ �3 ⊗ �1 ,

Σ̂31 =
1
2 �3 ⊗ 1 ⊗ �2 ,

Σ̂12 = −
1
2 �3 ⊗ �3 ⊗ �3 .

The bilinear constraint operators − 82 !̂[8 !̂ 9] are

−8!̂2!̂3 =
1
2 �1 ⊗ �3 ⊗ �1 ,

−8!̂3!̂1 =
1
2 �2 ⊗ 1 ⊗ �1 ,

−8!̂1!̂2 =
1
2 �3 ⊗ �3 ⊗ 1 .

Appendix B: Orthonormal basis of so(=) irreps

Here we exhibit an orthonormal basis for the physi-
cal states and ghost states as antisymmetric irreducible
representations of so(=) built from the set of 2= possible
components of a function on the n-dimensional config-
uration space. To simplify the expressions, we use the
scaled variables, �� = ��/

√
2, as suggested by the formof
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the physical states10 as given, for example, by Eq. (7.10)
for = = 3.

A basis of the full physical plus ghost state space is the
set of all unique monomials

��1��2 · · · ��: , (B1)

where : runs from 0 to =. When : = 0 the monomial
is defined to be 1. This basis is neither orthogonal nor
normalized, nor are the states purely physical or ghost,
though they are either purely real or purely imaginary.

Monomialswithmore than b =2 c indicesmay be labeled
with b =2 c indices or fewer by using the so(=) invariant
tensor &�1�2 ···�= (&12···= = &12···= = 1) to define

∗(��1 · · · ��: ) = 1
(= − :)! &�1 ···�:�1 ···�=−: �

�1��2 · · · ��=−: .
(B2)

Orthonormal bases for the physical and ghost state
spaces are the set of unique linear combinations ofmono-
mials in Eqs. (B1) and (B2)with atmost b =2 c indices given
by

|�1 , �2 , · · · , �: , ±〉 = 
:
[
��1 · · · ��: ± �: ∗(��1 · · · ��: )

]
,

(B3)
where

�: = 8
b =2 c(−1)b :2 c , (B4)

and


: = 2
=−2

4 . (B5)

With the positive sign, the set of unique states of form
(B3) is an orthonormal basis for the physical states. With
the negative sign, that set is an (anti-)orthonormal basis
of the ghost states. For = = 2, these states are given in
Eqs. (7.4) and (7.5) respectively, while for = = 1, these
two states are

|±〉 = 1
4√2
(1 ± �) . (B6)

For even = = 2<, the physical (or ghost) states with <
indicies satisfy duality relations

|�1 , · · · , �< , ±〉 = ±
�<
<! &

�1 ···�<�1 ···�< |�1 , · · · , �< , ±〉 .
(B7)

The set of unique states (B3), those with �1 < �2 <
. . . < �: , for a given : forms an irreducible representa-
tion of so(=), which can be seen by acting theNoether an-
gular momentum generators (4.3) on these states, which
either produce zero or another state of the same form.
It is immediate that the unique states of form (B3)with

different : are orthogonal under the inner product (7.2)
and that the set of all unique states of form (B3) is linearly
independent.
The number unique states of form (B3) is 2= , half of

themphysical andhalf of themghost. Thusweobtain the
result that they must form a basis for both the physical
and ghost states.
A useful identity for verifying Eq. (B4) is

b =2 c + b
:

2 c + b
= − :

2 c + (= − :): ≡ 1 (mod 2), (B8)

for integers 0 ≤ : ≤ =.
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