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1. Introduction

There is an elegant formalism, known as superspace, in which the global space-

time supersymmetry of a theory is manifest. The Neveu-Schwarz-Ramond (NSR)

form of the superstring has spacetime supersymmetry in addition to the manifest

superconformal symmetry on the worldsheet. Consequently, although any string field

theory built from the NSR form will have spacetime supersymmetry, its supersymme-

try will not be manifest. To construct a string field theory with manifest spacetime

supersymmetry, one needs a first-quantized theory which has superspace coordinates

as the fundamental fields on the two-dimensional worldsheet. A classical Lagrangian

having global supersymmetry and a local fermionic worldsheet symmetry has been

constructed by Green and Schwarz [1]. This action can be quantized in light-cone

gauge and is the same as the NSR string in that gauge [2].

While the Green-Schwarz action is free in light-cone gauge, in general gauges it is

an interacting two-dimensional theory. This, in part, is why the covariant quantiza-

tion of the theory is difficult. Because the action is free in light-cone gauge, one might

expect that the action could be quantized straightforwardly in a covariant gauge, and

that the covariantly quantized action would have a simple form. A formal quantiza-

tion of the Green-Schwarz action shows that, on the contrary, there are difficulties

even in passing from the Hamiltonian to a Lagrangian description.

The possibility should be kept in mind, therefore, that the Green-Schwarz action

is not the appropriate action for quantization and may need to be amended in whole

or in part. One such possible action has been proposed by Siegel [3]. The motivation

for the Siegel string is to incorporate the smallest algebra containing the generators of

reparametrizations and of local fermionic transformations as the invariance algebra

of the string. Unfortunately, the phase space constraints of the Siegel string are

equivalent to those of the Green-Schwarz string in generic regions of phase space, as I

will show. It seems then that one is forced to use the Green-Schwarz action, or some

other action not yet formulated, in order to obtain a covariantly first-quantized string

with manifest spacetime supersymmetry.
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Even though there are difficulties in constructing a covariantly quantized string

with manifest spacetime supersymmetry, such a construction is a necessary ingredient

of the corresponding superstring field theory. The dynamical variables (including

ghosts and auxiliary fields) of the first-quantized string become the coordinates on

which the string field depends. And, as Siegel has explained [3], the constraints of

the first-quantized theory will determine the free dynamics of the string field. The

free field Lagrangian is ΨĤΨ, with Ĥ the first-quantized Hamiltonian (operator) and

Ψ the string field.

A manifestly supersymmetric string field theory may make the possibilities for, or

necessity of, supersymmetry breaking more apparent and may put some constraints

on the allowable vacua.

The ghost structure of the theory is likely to yield as much insight into string

physics as it has for the bosonic and NSR strings [4, 5].

The first step on the road to string field theory is the construction of a first-

quantized theory. The classical string actions are singular systems (in the sense of

Dirac [6]) and their quantizations begin with the analysis of their constraints. The

analysis and quantization of constrained systems were first investigated by Dirac [6]

who considered canonical quantization only. A path integral quantization eliminates

some of the problems of ordering in the canonical formalism and also yields the ghost

parts of the action [7]. The path integral quantization of constrained Hamiltonian

systems was fully worked out by Fradkin and his school [8, 9, 10]. It is through

the Fradkin formalism that one may formally quantize the Green-Schwarz action.

The difficulties of, and remaining technical steps in this quantization are discussed

in section 4. The Siegel string will be shown to be essentially equivalent to the

Green-Schwarz string, and thus is shown to have no particular advantage over the

Green-Schwarz string in the canonical formalism.
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2. The Green-Schwarz String

The quantities which appear in the Green-Schwarz action are the two-dimensional

metric gαβ, a ten-dimensional position Xµ, and two anticommuting Majorana-Weyl

spinors θA, A = 1, 2. Both Xµ and θA transform as scalars under worldsheet

reparametrizations. When light-cone gauge is fixed, the remaining pieces of θA to-

gether transform as a spinor on the world-sheet, with the label A becoming a two-

dimensional spinor index. The covariant classical Green-Schwarz action is [1]

IGS =
1

π

∫
d2σ
√
−g
{
−1

2
gαβ Πα · Πβ

− iεαβΠα · [θ̄1γ ∂β θ
1 − θ̄2γ ∂β θ

2]

− εαβ θ̄1γ ∂αθ
1θ̄2γ ∂βθ

2
} (2.1)

where

Πµ
α := ∂αX

µ − i
∑
A

θ̄Aγµ ∂αθ
A. (2.2)

Just as the Brink-Schwarz superparticle has primary constraints [11] there are

similar primary constraints for the Green-Schwarz action [12, 13]:

Pg ≈ 0,

D̄A := ζA + iθ̄A γµ(Pµ + (−)AXµ′ − (−)Aiθ̄A γµθA
′
) ≈ 0. (2.3)

Here Pg is canonically conjugate to g, prime denotes derivative with respect to σ, and

ζA is the conjugate momentum to θA satisfying the (symmetric) canonical Poisson

bracket {
ζA(σ) , θB(σ′)

}
= hA δAB δ(σ − σ′) (2.4)

where hA is the chirality projector for the spinor θA : hAθA = θA. The second relation

in (2.3) defines the momentum, ζA := ∂RL/∂Rθ̇
A, which is the right derivative of the
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Lagrangian with respect to the velocity of θA. Already one can see that there is

something about the θA which is peculiar for scalar fields. The momentum conjugate

to the field θA is constrained to be a function of fields other than the velocity of θA.

This is more the behavior of a two-dimensional spinor field.

Two more constraints need to be imposed in order to conserve the first constraint

of (2.3). These two constraints are the vanishing of the (traceless) stress tensor Tαβ:

0 ≈ Tαβ := Ṗgαβ =
√
−g
(

1
2gαβg

γδ − δγαδδβ
)

Πγ · Πδ. (2.5)

The Πµ
α in eq. (2.5) are the expressions (2.2) expressed in canonical variables. In

conformal coordinates the constraints (2.5) are particularly simple. Writing

Πµ
A := Πµ

0 + (−)AΠµ
1 = (Pµ + (−)AXµ′)− 2i(−)Aθ̄A γµθA

′
, (2.6)

one obtains Π2
A = 0 for the constraints (2.5).

One may check that there are no more constraints which need to be imposed in

addition to (2.3) and (2.5). Upon examining the constraints one finds that some of

them are second-class. Specifically, one computes the Poisson bracket of the fermionic

constraints with themselves and finds{
D̄Aa(σ), D̄Bb(σ′)

}
= 2iδAB δ(σ − σ′)(γ0hAγ

µ)abΠAµ(σ). (2.7)

(Roman minuscules are ten-dimensional spinor indices.) Because Πµ
A is null (from

(2.5)), exactly half of the components of D̄A ≈ 0 are second-class and half are first-

class. The null vectors Πµ
A are useful for separating these constraints covariantly [12,

13]. One may check that the first-class constraints are separated from the second-class

constraints by

FA := D̄A γµΠµ
A ≈ 0 , A = 1, 2, (2.8a)

GA := D̄A γµΠµ
Ā
≈ 0 , A = 1, 2. (2.8b)

The bar over the label A in (2.8b) is to denote the other value A may take; that is

1̄ = 2, 2̄ = 1. The FA(σ) are first-class and the GA(σ) are second-class. The choice
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of second-class constraints is not unique. One could choose any null vector VA with

VA · ΠA 6≡ 0 and define a new second-class constraint G̃A = D̄A γµV
µ
A ≈ 0. One is

forced into choosing the null vector VA to be Πµ
Ā

because the choice of any null vector

not given by the theory itself would break manifest covariance. It turns out [12] that

the generator of reparametrizations is not purely Π2
A but is 1

2Π2
A+ 2(−)AD̄AθA

′
. The

full set of constraints for the Green-Schwarz string is

(Pg)αβ ≈ 0,

TA := 1
2Π2

A + 2(−)AD̄AθA
′ ≈ 0

FA := D̄AγµΠµ
A ≈ 0

GA := D̄AγµΠµ
Ā
≈ 0

, A = 1, 2,

, A = 1, 2,

, A = 1, 2.

(2.9)

The first two of these constraints generate Weyl rescalings of the metric and two-

dimensional reparametrizations of the world-sheet. The constraints FA ≈ 0 generate

the local fermionic κ-symmetry and together with the first two constraints are the

first-class constraints of the theory. The conditions GA ≈ 0 are second-class and must

be treated differently from the rest of the constraints in (2.9). Before analyzing the

Siegel string, let us count the degrees of freedom of the Green-Schwarz string. Ignoring

the metric degrees of freedom one has twenty bosonic and sixty-four fermionic phase

space variables on which there are two bosonic first-class, sixteen fermionic first-class

and sixteen fermionic second-class constraints. The first-class constraints each fix out

two degrees of freedom while the second-class constraints each fix out a single degree

of freedom. (This counting works irrespective of the choice of gauge fixing conditions.)

Thus there are sixteen bosonic and sixteen fermionic physical phase space degrees of

freedom at each point along the string.

3. The Siegel String

The Siegel string is motivated by a desire not to have the whole of D̄A fixed to zero.

This is reasonable because the troublesome second-class constraints are contained in

D̄A. If only three quarters of the components of D̄A were constrained to vanish, then
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there would be the correct number of degrees of freedom, and the constraints would

all be first-class. Further, the quantity D̄A is part of the fermion emission vertex

and its vanishing seems to be at odds with its use in the fermion emission vertex [3].

There is no problem with this because the full emission vertex does not vanish by the

constraints.

The two-dimensional fields used to construct the Siegel string are, in addition

to the fields of the Green-Schwarz string, a ten-dimensional and worldsheet vector

Pµα , two ten-dimensional Majorana-Weyl spinors DA
α which are also vectors on the

worldsheet, and three auxiliary fields ψA β
α , χAαβµνρ, and φAαβγµ. The ψA are two

Majorana-Weyl spinors in ten dimensions while χA and φA are an antisymmetric

tensor and vector respectively. The full Weyl invariant classical action is [3]

IS =

∫
d2σ
√
−g
{
gαβ
(

1
2Pα · Pβ + Pα · (∂βX − i

∑
A

θ̄Aγ∂βθ
A)
)

+ iεαβ ∂αX · (θ̄2γ∂βθ
2 − θ̄1γ ∂βθ

1) + εαβ θ̄1γ∂αθ
1 · θ̄2γ∂βθ

2

+ i
∑
A

D̄A
α∂βθ

AΠAαβ +
∑
A

ΠAηαΠAδ
β ψ

A β
α P/ηD

A
δ

+
∑
A

χAαβ µνρ ΠAδ
αΠAγβD̄A

δ γ
µνρDA

γ

+
∑
A

φAαβγµ ΠAδ
αΠAε

βΠAγηD̄A
δ γ

µ∂ηD
A
ε

}
.

(3.1)

The quantities ΠAαβ are projection operators

ΠAαβ := 1
2(gαβ + (−)Aεαβ) (3.2)

and are not related to the expression (2.2) even though they are, unfortunately, de-

noted by the same symbol. The Dirac analysis proceeds analogously to the Siegel su-

perparticle [11]. The canonical phase space has the conjugate pairs (X,PX), (P, PP ),

(θ, ζ), (D,B), (g, Pg), (ψ, Pψ), (χ, Pχ) and (φ, Pφ) as canonical variables.
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The definition of momenta leads directly to the primary constraints.

φ1 := ζA + iθ̄Aγµ(P µ
α g

α0 + (−)AXµ′ − i(−)Aθ̄ĀγµθĀ
′
)− iD̄A

βΠAβ0 ≈ 0,

φ2 := P µ
X − P

µ
α g

α0 − i
∑
B

(−)B θ̄BγµθB
′ ≈ 0,

φ3 := BAη − φAαβγµ D̄A
δγ
µΠAδ

α ΠAη
βΠAγ0 ≈ 0,

φ4 := P αµ
P ≈ 0,

φ5 := P Aα
ψ β ≈ 0,

φ6 := PA β µνρ
χ α ≈ 0,

φ7 := Pgαβ ≈ 0,

φ8 := P Aγµ
φαβ ≈ 0.

(3.3)

In these primary constraints the variables are all mixed up in a complicated

fashion, but it is possible to see that φ1, φ2, φ4 and pieces of φ3 are second-class.

Whether or not the rest are first-class is less clear, but one must suspect that φ5,6,7,8

are first-class as they shift the Lagrange multiplier fields. In order to simplify the

analysis one may fix these suspected gauge invariances with further constraints, and

then must check that there are no inconsistencies that follow from the imposition and

conservation of the extra constraints. With this caveat, set

ω1 := gαβ − ηαβ ≈ 0,

ω2 := χA ≈ 0,

ω3 := φA ≈ 0,

ω4 := ψA ≈ 0,

ω5 := DA
αΠĀα1 ≈ 0,

(3.4)

and require their conservation. It is important to note that the imposition of these

covariant gauge conditions in no way changes the counting of the independent degrees

of freedom.
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Conservation of the constraints (3.3) and (3.4) requires the additional constraints

φ9 := P µ
γ γµD

A
ε ΠAγ

α ΠAε
β ≈ 0,

φ10 := 1
2D̄

A
γ γ

µνρDA
δΠ

Aγ
α ΠAδβ ≈ 0,

φ11 := D̄A
δγ
µDA′

ε ΠAδ
α ΠAε

β ≈ 0,

φ12 := Tαβ ≈ 0,

φ13 := P µ
1 +Xµ′ − i

∑
A

θ̄AγµθA
′
≈ 0,

(3.5)

where

T00 = T11 = 1
2(P 2

0 + P 2
1 )− i

∑
A

D̄A
1 θ

A′,

T01 = P0 · P1 − i
∑
A

D̄A
0 θ

A′
(3.6)

is the stress tensor and is the same as the modified stress tensor in (2.9). The set of

constraints (3.3), (3.4), and (3.5) are conserved without the imposition of any further

constraints. The set of fixing conditions (3.4) is consistent and leaves an algebra

[3, 14] of constraints generated by φ9,10,11,12. The Hamiltonian which preserves the

constraints,

H =− 1

2
ηαβPα · Pβ − P1 · (X ′ − i

∑
B

θ̄BγθB
′
)

− i
∑
B

θ̄Bγµθ
B ′((−)BP µ

0 −X
µ′ + iθ̄B̄γµθB̄

′
)

+ P 2
X + PX · (P0 − i

∑
B

(−)B θ̄BγθB
′
)

+
∑
A

(−)A(ζAθA
′
+BAηDA′

η)− εαβPαP · P β
′
,

(3.7)

is unique up to the addition of first-class constraints and is equal to T00 upon setting

the second-class constraints to zero strongly. (That is, taking the second-class con-

straints to vanish identically and replacing the Poisson bracket by the Dirac bracket

[6] so that no contradictions will result from taking the constraints to vanish identi-

cally.) Since the constraints φ1,...,8,13 and ω1,...,5 together are second-class, one must
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think of D̄A
α and P µ

α as derived quantities given by their expressions in (3.3, 3.4, 3.5).

When this is done, the only independent variables left are X,PX , θ and ζ , which must

still satisfy φ9,10,11,12 ≈ 0. Two of these constraints have identical counterparts in the

Green-Schwarz theory. The constraint φ9 is FA and φ12 is TA. The Green-Schwarz

string has eight additional second-class constraints GA ≈ 0 while the Siegel string has

instead twenty-nine additional constraints which have vanishing Poisson brackets with

all other constraints on the constraint surface. One might be tempted to call these

twenty-nine constraints first-class, but if they were first-class then there would be a

mismatch in the number of physical degrees of freedom between the Green-Schwarz

and Siegel string. In fact, both theories have the same number of physical degrees of

freedom and have the same second-class constraints in generic regions of phase space.

To see this, one must analyze the constraints φ9,10,11,12 carefully. First, it is useful

to have a simple notation. Set A = 1 because the case A = 2 is analogous. Let DA
α

become D because A = 1 and α has only one non-zero component by (3.4). Similarly,

let P = PαΠAαβ. The constraints (3.5) are now easily written as

1
2P

2 + 2D̄θ′ ≈ 0, P/D ≈ 0, D̄γµνρD ≈ 0, D̄γµD′ ≈ 0. (3.8)

Because P/ is invertible for P 2 6= 0, the first two of these together imply that

P 2 ≈ 0 and D̄θ′ ≈ 0 (3.9)

separately.

Here we must assume that P 2 is not a nilpotent commuting supernumber. Al-

though the variable Pµ is a priori a commuting supernumber, we may restrict it to

be real. It is permissible for us to do this because we will define quantum mechanics

through the use of the path integral and, as shown in the appendix, an integral over

all commuting supernumbers is equal to the same integral restricted to be over purely

real numbers. Because the constraints are imposed on the path integral, we may ana-

lyze the constraints using this same assumption. It is also important that the variable
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Pµ is a global supersymmetry invariant so that the global supersymmetry will not

be ruined by this restriction. It is clear that the first constraint of (3.8) then implies

that P 2 and D̄θ′ must vanish separately, because D̄θ′ has no real number piece. (In

the terminology of DeWitt [16], D̄θ has no body and P 2 has no soul.)

Alternatively, we may argue in the following fashion. We still restrict the variable

Pµ to be real. Because P/ is invertible for P 2 6= 0, the first two constraints of (3.8)

together imply that

P 2 ≈ 0 and D̄θ′ ≈ 0 (3.10)

separately. The argument proceeds by multiplying the second constraint by IP and

then dividing by P 2 if it is non-zero.

The relevant constraints on the derived quantity D are

P/D ≈ 0, D̄θ′ ≈ 0, D̄γµνρD ≈ 0, D̄γµD′ ≈ 0. (3.11)

The solution of these constraints, D = f(θ′,P/) will be the analogous constraints

to D̄ = 0 in the Green-Schwarz theory. For any f , except f = (P/ − iθ̄γθ′γ)θ +

constant, the constraints D = f(θ′,P/) are obviously second-class. One may dispose

of the possibility f = (P/− iθ̄γθ′γ)θ by showing that it is not a solution.

One may show that the only solution for generic θ′ is f = 0 or that (3.11) are

equivalent to D̄ ≈ 0. The third constraint is most easily solved. It implies that

Da(σ) = λa(σ)ε(σ) (3.12)

where λa(σ) is a commuting spinor function and ε(σ) is an anticommuting scalar.

The second equation implies

ε(σ) ∝ (λ̄θ′), (3.13)

while the last requires that εε′ = 0 or, equivalently,

ε(σ) ∝ ε′(σ). (3.14)

Generically, all of the components of θ′ are independent Grassmann numbers and have
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zeros as functions of σ. Eq. (3.14) requires λ(σ) to have poles of the same order as

the zeros of these generic θ configurations unless ε is identically zero. The expression

D, which is tacitly assumed to be a differentiable function of σ, is expressed through

(3.12, 3.13) as

Da = βλa(λ̄θ′). (3.15)

Therefore Da has poles as a function of σ for generic θ(σ) field configurations

unless it vanishes.

There is one loop-hole in the above argument. There is a way to solve the con-

straints (3.11) which is not of the form (3.12). The last two constraints can be solved

by setting D proportional to a constant nilpotent commuting number (such as ε1ε2, ε1

and ε2 both Grassmann). That is, the expression (3.15) satisfies the last three con-

straints if β2 = 0. It also satisfies the first constraint if the commuting spinor λ is

annihilated by P/. These solutions must be considered “pathological.”

These pathological solutions are assumed to be unimportant for the quantum

theory. To illuminate the peculiar nature of solutions involving nilpotent commuting

numbers, consider a constraint PµP
µ = 0. Any Pµ of the form Pµ = βMµ with M

arbitrary and β2 = 0 satisfies the constraints. The finite dimensional analog of the

path integral measure over such a constrained surface is dnP δ(P 2) which becomes

βnδ(β2)dnM/M2 upon replacement of Pµ by βMµ. From the rules in the appendix,

we would define βnδ(β2) as βn+2δ′(0) which is ambiguous but should be set to zero

because β is nilpotent. These pathological solutions can be eliminated if we define

the integrals over these subspaces to vanish.

The existence of these pathological solutions is of secondary importance to the

fact that they, like D = 0, are also second-class constraints.

It is peculiar that the algebra of constraints (3.8) hides second-class constraints.

Usually one believes that constraints which form an algebra are first-class and generate

symmetries. An analogous, though simpler, model of this situation can be made.

Suppose there is a system with constraints p ≈ 0 and q ≈ 0. These constraints
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cannot be imposed simultaneously on the system because their Poisson brackets do

not vanish; {q, p} = 1. These are second-class constraints. An equivalent set of

constraints may be imposed on the system. Consider the set of constraints

p2 ≈ 0, q2 ≈ 0, pq ≈ 0. (3.16)

The constraints (3.16) are equivalent to p ≈ 0, q ≈ 0 in that the hypersurfaces defined

by both sets of constraints are identical. The difference is that (3.16) form an algebra:

{q2, p2} = 4pq, {p2, pq} = −2p2, {q2, pq} = 2q2. (3.17)

Thus the quadratic constraints (3.16) appear to be first-class. When they are solved

(written in a form linear in the dynamical variables) one can see they are actually

second-class. This simple example shows how algebras of non-linear quantities may

hide second-class constraints.

The quantization of theories with quadratic constraint algebras is not straight-

forward. If we insist on dealing with the constraints in their non-linear form, we will

be unable to obtain any states at all, despite the fact that the constraints form an

algebra. This can be demonstrated with the simple example (3.16) above. First, we

transcribe the constraints into operators. In order to preserve the algebra (3.17), we

must order the constraints as follows.

p2→ p̂2,

q2→ q̂2,

pq→ 1
2(p̂q̂ + q̂p̂).

(3.18)

Imposing these operators on a wavefunction leads to the conclusion that the wavefunc-

tion must vanish. Of course, these constraints may be treated in the Gupta-Bleuler

fashion, but even second-class constraints may be successfully imposed this way. The
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BFV formalism may not be applied to the system (3.16) directly because the con-

straints are reducible. When using the reducibility conditions

0 = q(p2) + p(pq),

0 = q(pq) + p(q2).
(3.19)

in the BFV formalism for reducible theories, one finds that one cannot obtain a

consistent BRS charge Ω.

Because the solutions of the constraints (3.8) are second-class, the “symmetries”

of the Siegel string system generated by the last two constraints of (3.8) are not true

symmetries. The Siegel string, because it has the same constraints as the Green-

Schwarz string, also has sixteen bosonic and sixteen fermionic physical phase space

degrees of freedom. As classical theories the two formulations of the string are equiv-

alent. For quantization the (linear) Green-Schwarz constraints are more suitable.

4. The Quantization of the Manifestly Supersymmetric String

The bosonic string and the NSR superstring are both covariantly quantized

through the Faddeev-Popov procedure in which the canonical structure of the the-

ories need never enter. Instead, the integration over metric degrees of freedom is

rewritten to factor out the diffeomorphisms explicitly through a change of variables.

The resulting Jacobian becomes the ghost action once the ghosts are introduced.

Theories which have complicated phase space structure, such as nontrivial second-

class constraints, or algebras of first-class constraints which have phase-space de-

pendent structure constants, cannot be quantized using a Lagrangian path integral

with the Faddeev-Popov method. Theories with phase-space dependent structure

constants in the first-class constraint algebra have a more complicated BRS charge

which leads to a Lagrangian containing ghost-ghost interactions [10, 7]. Complicated

second-class constraints require a modification of the path integral measure and a

modification of the Poisson brackets [10]. It is unfortunate that the manifestly super-

symmetric string has both complications.
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In order to quantize covariantly one of these complicated theories, the constraints

must first be separated into first- and second-classes. The Poisson bracket is redefined

so that the second-class constraints have vanishing brackets with any function on

phase space. The measure of the path integral is modified by the introduction of

delta functions of the second-class constraints multiplied by the square root of the

superdeterminant of the matrix of Poisson brackets of all second-class constraints.

Measure factor = δN (χi)
√

sdet{χi, χj}P (4.1)

Next, the first-class constraints must be considered. The first-class constraints may

be used to construct a BRS symmetry generator which will later be used to fix out

the first-class symmetries. One starts by enlarging the phase space. For each first-

class constraint φ ≈ 0 a Lagrange multiplier λ and its conjugate momentum π are

introduced. A ghost η, antighost η̃ and their conjugate momenta ρ and ρ̃ round out

the set additional phase space variables needed for each first-class constraint φ. The

variables λ and π have the same statistics as φ while the statistics of η, η̃, ρ and ρ̃ are

the opposite of φ. There is also a new constraint one must introduce, which is π ≈ 0.

From these constraints one constructs a BRS generator [7]

Ω = η̃π + ηφ+ more (4.2)

to satisfy

{Ω,Ω}Dirac = 0. (4.3)

This condition is nontrivial to satisfy because Ω is fermionic and the Dirac bracket

(4.3) is symmetric for fermionic functions and does not vanish identically.

The correct generating functional for the system is

ZΨ =

∫
DPDQδ[χi]

√
sdet{χi, χj}P exp i

∫
dt(PQ̇−H + {Ψ,Ω}D). (4.4)

with Ψ any imaginary fermionic function on the extended phase space of original

variables and ghost, antighost and Lagrange multiplier degrees of freedom, with ghost
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number −1. The Fradkin-Vilkovisky theorem [8] states that the generating functional

is independent of the gauge fixing function Ψ.

The Fradkin method cannot be straightforwardly applied to systems with

quadratic constraints which appear to be first-class. In fact, by incorporating the

model quadratic constraints (3.16) in a BRS generator and applying the rule (4.4),

one may show that the correct measure factor, δ(p)δ(q), cannot be obtained. Similarly,

the treatment of the constraints (3.11) as first-class constraints in the Fradkin for-

malism will not yield the correct result (i.e., the result one gets when the second-class

constraints are separated out explicitly as in (2.9)). Perhaps there is a modification of

the Fradkin formalism which allows more flexibility in the treatment of second-class

constraints, but the replacement of second-class constraints by quadratic first-class

constraints does not work.

Without possessing a more flexible formalism one is forced to treat the system

(2.9) according to the rules of the Fradkin formalism. Thus one can write down, at

least formally, the most general quantum version of the manifestly supersymmetric

string.

The measure factor is

δ[GAa(σ)]
(

det′({GAa(σ), GBb(σ′)}P )
)− 1

2

(4.5)

where

{GAa(σ), GBb(σ′)}P ≈ 4iδ(σ − σ′)δABΠA · ΠĀ(γ0hAγµΠµ
Ā

)ab. (4.6)

Next, one must construct the BRS charge Ω to satisfy {Ω,Ω}D = 0 and show that

the quantum BRS charge only squares to zero for ten spacetime dimensions. This

still has yet to be done, but there is no reason to doubt that it can be done.

There is, perhaps, little calculational power to be gained in continuing the quan-

tization in this fashion because the Poisson bracket (4.6) is cubic in the momentum

Pµ. The elevation of this bracket from the measure to the action with appropriate
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“second-class ghosts” will yield an action cubic in momenta. The momentum inte-

grals cannot be done explicitly to yield a conventional Lagrangian, but one could

consider this momentum space path integral as the configuration space path inte-

gral of a first-order Lagrangian, which is, unfortunately, not free. All that is needed

to use this formal quantization is the explicit form of the BRS operator Ω whose

quantum analog is nilpotent. This quantization could be used for any (world sheet)

perturbative calculation.

To conclude this section, I resolve the puzzle of why the above remarks do not

apply to the light-cone gauge

X+ + P+τ ≈ 0, P+′ ≈ 0, γ+θA ≈ 0, gαβ ≈ ηαβ. (4.7)

In other words, why can the light-cone gauge fixed string be quantized so easily

and why is it free? The answer crucially depends upon the observation that the

constraints (4.7) may be treated on the same footing with the constraints (2.3) and

(2.5). The constraints (4.7) must also be conserved and so fix the Hamiltonian to be

[12]

H =
1

2
(P 2 +X ′2) + ζ2θ2′ − ζ1θ1′ . (4.8)

The whole set of constraints (4.7), (2.3), and (2.5) are all together second-class

constraints as they must be since (4.7) fix the gauge completely. The generating

functional (4.4) may be used to quantize the theory. Because there are no first-class

constraints there is no BRS charge. The superdeterminant in the measure factor is not

field dependent, and the delta functions may be solved easily. When the momentum

integral is done, one is left with a free theory for the transverse modes. The main

point of this is that the theory is much simpler if one does not have to separate the

constraints into first- and second-classes. It also helps that the gauge conditions (4.7)

are simple and linear.

16



5. Discussion

The main result of this paper is the demonstration that the Siegel string is essen-

tially equivalent to the Green-Schwarz string.

The extra symmetries of the Siegel string are not actually symmetries at all

but hide second-class constraints. Because they are not symmetries, they do not

need to be fixed out through a gauge choice and do not properly belong in the BRS

generator of the theory. The existence of a formalism for quantizing a theory with a

quadratic algebra of constraints which are actually second-class is an open question.

The existing formalism for quantization requires the explicit identification of the

second-class constraints and therefore the Green-Schwarz form is the most appropriate

for quantization. A formal quantization of the Green-Schwarz system has been given.

The construction of the BRS charge which has zero Dirac brackets with itself and the

demonstration that the quantum mechanical BRS charge is nilpotent, are necessary

to complete the quantization. The important question of how treat the reducibility

of the constraints and therefore how to define the determinant in (4.5) must also be

resolved in order to complete the quantization. This formal quantization does not

possess the most useful attribute of the NSR and bosonic strings; the freedom of the

world sheet σ-model.

Nevertheless, one knows how to begin constructing the associated string field

theory. The set of fields on which the wave functional depends is the original set

Xµ, θA, the ghosts for the diffeomorphisms and local supersymmetry, the “second-

class ghosts,” and the fields used to elevate the delta functional in the measure factor

(4.5) to the action. Much less clear is the explicit form for the dynamics of the free

string field theory.
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APPENDIX

Calculus of Commuting and Anticommuting Grassmann Numbers [15]

Following DeWitt, we define supernumbers by starting with an infinite dimen-

sional Grassmann algebra with basis ζa, a = 1, 2, . . . satisfying only the relations

ζaζb = −ζbζa,

(ζa)2 = 0.
(A.1)

We denote this algebra over a base field F by Λ∞(F). We shall be concerned mostly

with Λ∞(R). Any supernumber in Λ∞(R) may be split into its body and soul

x ∈ Λ∞(R), x = xB + xS

xB ∈ R, xS =
∞∑
n=1

1

n!
cα1...αnζ

αn · · · ζα1

cα1...αn ∈ R

(A.2)

Functions on Λ∞(R) may be defined by extending any infinitely differentiable

real function by the formal series

f(x) =
∞∑
n=0

1

n!
f (n)(xB)xnS . (A.3)

Because the series (A.3) is purely formal, there is no problem with convergence.

More important for physics is the distinction between even and odd (that is,

commuting and anticommuting) supernumbers. Any supernumber x can be split into

two pieces, xc ∈ Rc and xa ∈ Ra.

x = xc + xa;

xc = xB +
∞∑
n=1

1

(2n)!
cα1...α2nζ

α2n · · · ζα1,

xa =
∞∑
n=0

1

(2n+ 1)!
cα1...α2n+1ζ

α2n+1 · · · ζα1.

(A.4)

Analytic functions of a single anti-commuting variable are precisely the linear
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functions

f(xa) = a+ bxa, (A.5)

because xa is nilpotent, x2
a = 0.

Functions of a real commuting variable, obtained from infinitely differentiable real

functions, are defined by the formal series (A.3).

A definite integral along a path in Rc of a function of a function of a commuting

variable is given by

b∫
a

f(x) dx =
∞∑
n=0

1

n!

bB∫
aB

f (n)(xB(t))xnS(t)

[
dxB
dt

+
dxS
dt

]
dt (A.6)

where t is a real number. Here we take the parametrization to be xB(t) = t. The strik-

ing thing about the integral (A.6) is that it is independent of the path (xB(t), xS(t))

used to define it. This fact is easily demonstrated. First we rewrite the integral (A.6)

as

b∫
a

f(x) dx =
∞∑
n=0

bB∫
aB

f (n)(t)

[
1

n!
xnS(t) +

1

(n+ 1)!

d

dt
xn+1
S (t)

]
dt (A.7)

Next we split the sums apart and integrate by parts.

b∫
a

f(x) dx =

bB∫
aB

f(t)
[
1 + x′S(t)

]
dt

+
∞∑
n=1

1

n!

[
f (n−1)(bB)bnS − f (n−1)(aB)anS

]

+
∞∑
n=1

bB∫
aB

[
− 1

n!
f (n−1)dx

n
S(t)

dt
+

1

(n+ 1)!
f (n)(t)

dxn+1
S

dt

]
dt.

(A.8)
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We obtain the desired result

b∫
a

f(x) dx =

bB∫
aB

f(t) dt+
∞∑
n=1

1

n!

[
f (n−1)(bB)bnS − f (n−1)(aB)anS

]
= F (b)− F (a),

(A.9)

as long as f and all of its derivatives are finite at the bodies aB and bB. A corollary

of this is that the improper integral over Rc is the same as that over R. This follows

from the fact that

lim
t→∞

F (t+ xS) = lim
t→∞

F (t) (A.10)

holds for all smooth functions F and all finite xS ∈ Rc, if the limit exists.
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