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Abstract

We examine the problem of constructing a real BRST charge for general relativity in the

Ashtekar variables. In addition to reviewing the construction of Ashtekar, Mazur and Torre,

we apply a method found previously by us for quantizing theories with complex constraints

to gravity in Ashtekar’s new variables, and we find real constraints expressed in terms of the

Ashtekar variables. We find that although real BRST charges can be constructed, they are

not polynomial and the polynomial BRST charges are not real.
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I. Introduction

It is ironic that while the gravitational interaction was the first of the fundamental

forces to be understood classically, it has yet to be reconciled with quantum mechanics.

Dirac wrestled with the problem of casting Einstein’s General Theory of Relativity into

Hamiltonian form in order to apply the rules of canonical quantization to it. Dirac reduced

the problem of quantum gravity to finding solutions of the quantum constraints of general

relativity. Progress in canonical quantum gravity was stymied by the non-polynomiality

of the Dirac constraints. The perturbative approach to quantum gravity came to a dead

end when general relativity, long known to be non-renormalizable, was shown to be infinite

at two loops [1]. The failure of these more conservative approaches to quantum gravity is

responsible in part for the enormous interest in supersymmetric string theory.

The difficulty in Dirac’s formulation of quantum general relativity is in finding solutions

to the quantum constraint equations. In 1987, Ashtekar published a canonical transformation

of Einstein gravity to a new set of variables in which the constraints become polynomial [2].

The corresponding quantum constraint operators are second-order functional differential

operators and are easier to solve. At least one solution of the full set of constraint equations

is known [3] and there is great hope that many more solutions can be found to the Ashtekar

constraints and that from them a quantum theory can be found.

A powerful method of quantization subsuming Dirac’s was found in the late 1970’s by

several members of Fradkin’s school [4] in the Soviet Union. This method, known by the

initials of Becchi, Rouet, Stora, Tyutin, Batalin, Fradkin and Vilkovisky, or BRST-BFV,

allows more freedom in finding physical quantum states and gives a general prescription

for finding the inner product on physical states. We examine the construction of a BRST

quantization of quantum gravity in the Ashtekar variables.

One unfortunate aspect of the the new variables found by Ashtekar is that they are nec-

essarily complex in a spacetime of Lorentzian signature, leading to non-hermitian quantum

constraint operators. Although there is probably a deep significance to the to the fact that
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the variables and the constraints are not real-valued, the non-hermiticity of the constraints

presents us with great technical difficulties.

One aspect of these difficulties is that the construction of a BRST quantization of gravity

using the Ashtekar variables is not straightforward. A useful BRST analysis of a physical

theory requires the construction of a real BRST charge. Very soon after the discovery of

the Ashtekar variables, BRST charges were constructed by Ashtekar, Mazur and Torre,[5]

who did not consider the reality properties of the charge. We examine the complex structure

of these constraints and show that, in fact, they are a complex mix of real constraints.

Following the analysis of Ref. [6], we show that the BRST charges constructed by Ashtekar,

Mazur and Torre [5] are complex. We investigate the construction of a new BRST charge

which is real by using the technique developed in Ref. [6], namely, by adding the complex

conjugates of the Ashtekar constraints to the original set of Ashtekar constraints and treating

the combined set as a reducible set of constraints. We thus satisfy the criterion of reality,

but we show that this is at the cost of polynomiality.

II. Complex structure of the Ashtekar constraints

In the Ashtekar formulation of general relativity, the constraints take on an especially

simple form [2],

±Daσ̃
a
M

N ≈ 0

Tr(σ̃a ±Fab) ≈ 0

Tr(σ̃aσ̃b ±Fab) ≈ 0.

(2.1)

Tensor indices are represented by lower case letters and spinor indices are represented by

upper case letters. “Tr” indicates the trace over spinor indices. One generally chooses ei-

ther the plus sign or the minus sign, each of which gives a full set of constraints, although

the method we use in section 4 will use both sets. In this section, we examine the com-

plex structure of the Ashtekar constraints. We separate them into their real and imaginary
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parts and write them as a complex combination of real constraints. The manifestly com-

plex object in the Ashtekar constraints is the Ashtekar connection ±Da or, more precisely,

the spinor connection 1-form ±AaA
B. Less obvious is the complex behavior of the SU(2)

spinors. Hermitian spinors behave like “real” numbers and anti-hermitian spinors behave

like “imaginary” numbers under hermitian conjugation. We must also take care to examine

the hermiticity properties of the spinors in the constraints. The hermiticity properties of

SU(2) spinors, and of the Ashtekar variables in particular, are discussed in the appendix.

For convenience, we drop the ± signs from the Ashtekar variables, choosing Aa := +Aa in

sections 2 and 3 of the paper.

We begin with the Ashtekar connection Da and the connection 1-form AaM
N . Da is

defined by

DaλbM = DaλbM +
i√
2
ΠaM

NλbN , (2.2)

where Da is the covariant derivative operator that acts on both tensor and spinor indices.

To separate the real and imaginary parts of Da, we take a closer look at its action on objects

with tensor and spinor indices,

DaλbM = ∂aλbM + Γab
cλcM + ΓaM

NλbN +
i√
2
ΠaM

NλbN . (2.3)

Ignoring λbM , which is included only so that the indices match, we see that the first two

terms on the right hand side, which involve only real spacetime operators, are manifestly real.

The third term involves the spinorial connection 1-form ΓaM
N ≡ Γabσ

b
M

N . In this paper,

we use the standard hermitian conjugate to define reality properties of matrices. The tensor

Γab is real and σaM
N is anti-hermitian (see appendix). Under complex conjugation, the third

term goes to minus itself and therefore behaves like an imaginary number. The last term is

hermitian because it is the product of i times the anti-hermitian spinor ΠaM
N ≡ Πabσ

b
M

N .
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We rearrange the Ashtekar connection into “real” and “imaginary” parts,

DaλbM := ∂aλbM + Γab
cλcM +

i√
2
ΠaM

NλbN
︸ ︷︷ ︸

“real”

+ΓaM
NλbN

︸ ︷︷ ︸
“imaginary”

. (2.4)

The connection 1-form AaM
N consists of just the last two terms of Da. We can write it in

terms of its “real” and “imaginary” parts,

AaM
N =

i√
2
ΠaM

N

︸ ︷︷ ︸
“real”

+ ΓaM
N

︸ ︷︷ ︸
“imaginary”

. (2.5)

We now consider the Gauss constraint. Using the definition of Da, the fact that

Daσ̃
a
M

N ≡ Da(q
1/2σaM

N ) = 0 (because both σaM
N and qab are compatible with Da),

and the commutation relations of σaM
N , we can rewrite the Gauss constraint in a number of

equivalent forms,

Daσ̃
a
M

N ≡ i√
2
[Πa, σ̃

a]M
N

≡
√
2iq1/2Π[ab]σ

b
M

PσaP
N

≡ −iq1/2Π[ab]ǫ
abcσcM

N

(2.6)

The square brackets on the indices indicate antisymmetrization, and we use the rule Π[ab] =

1
2(Πab − Πba). It is also convenient to invert the last form of the Gauss constraint,

Π[ab] = − i

2
q−1/2ǫabcσ

c
N
MDdσ̃

d
M

N . (2.7)

Any of the forms of the Gauss constraint can be used to examine its reality properties,

but the last of (2.6) is the simplest to use. The tensors Π[ab] and ǫabc are real, σcM
N is

anti-hermitian, and the coefficient i makes the Gauss constraint overall hermitian. It thus

behaves like a “real” number under complex conjugation,

Daσ̃
a
M

N = −iq1/2Π[ab]ǫ
abcσcM

N

︸ ︷︷ ︸
“real”

. (2.8)

To separate the vector constraint into real and imaginary parts, we first expand the
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curvature tensor Fab using (2.2),

FabM
N = RabM

N +
√
2iD[aΠb]M

N − Π[aM
PΠb]P

N . (2.9)

FabM
N is the spinorial curvature tensor of the Ashtekar connection, (DaDb − DbDa)λM =

FabM
NλN , and RabM

N is the spinorial curvature tensor of the covariant derivative operator,

(DaDb −DbDa)λM = RabM
NλN . Substituting (2.9) into the vector constraint gives

Tr(σ̃aFab) =
q1/2√

2
ΠamΠbnǫ

amn

︸ ︷︷ ︸
real

− iq1/2√
2
Da(Πba − Πqba)

︸ ︷︷ ︸
imaginary

. (2.10)

where we have indicated the real and imaginary parts of the vector constraint. The first term

contains only the real tensors Πab and ǫabc and is manifestly real. Although Da is in general

“complex” because of the spinorial connection 1-form that it contains, the second term is

purely imaginary because Da is acting on a tensor. The spinorial piece of the connection

does not enter and Da behaves as a real operator.

Similarly, substituting (2.9) into the scalar constraint allows us to separate it into real

and imaginary parts,

Tr(σ̃aσ̃bFab) =
1
2q(R +Π2 − ΠabΠ

ba)︸ ︷︷ ︸
real

− iqǫabcDaΠbc︸ ︷︷ ︸
imaginary

. (2.11)

Equations (2.8), (2.10), and (2.11) explicitly show the real and imaginary parts of the

Ashtekar constraints, but the real and imaginary parts cannot all be independent since we

have seven complex constraint equations and only seven independent (real) constraints on

phase space. The vector and scalar constraints implicitly contain the Gauss constraint. We

wish to make this dependence on the Gauss constraint explicit. For convenience, we identify

the Gauss constraint by

GMN := Daσ̃
a
M

N

︸ ︷︷ ︸
“real”

≈ 0. (2.12)

We consider first the vector constraint (2.10). By relabeling dummy indices and using the
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third of (2.6), we can rewrite the first term on the right side of (2.10) as

q1/2√
2
ΠamΠbnǫ

amn = − i√
2
ΠbN

M (Daσ̃
a
M

N ). (2.13)

In the second term on the right side of (2.10) we need to separate Πba into its symmetric

and antisymmetric components since the Gauss constraint is related to the antisymmetric

part only. Using (2.7), we rewrite the second term as

iq1/2√
2
Da(Πba − Πqba) ≡

iq1/2√
2
Da(Π[ba] +Π(ba) − Πqba)

= − 1

2
√
2
ǫbcdσ

c
N
MDd(Daσ̃

a
M

N ) +
iq1/2√

2
Da(Kab −Kqab),

(2.14)

where we have used Π(ab) = Kab. Combining these terms, we can rewrite the vector constraint

as

Vb := Tr(σ̃aFab) =− i√
2
ΠbN

M (Daσ̃
a
M

N )

︸ ︷︷ ︸
real

+
1

2
√
2
ǫbcdσ

c
N
MDd(Daσ̃

a
M

N )− iq1/2√
2
Da(Kab −Kqab)

︸ ︷︷ ︸
imaginary

≈ 0.

(2.15)

Similarly, in the scalar constraint (2.11) we must separate ΠabΠ
ba into symmetric and anti-

symmetric components. Using (2.7), the first of (A.5) and the first of (2.6) we find

ΠabΠ
ba = Π(ab)Π

(ba) +Π[ab]Π
[ba]

= KabK
ab − 1

2q
−1(Dbσ̃

b
N
M )(Daσ̃

a
M

N ).
(2.16)

The last term of (2.11) can be written in terms of the Gauss constraint by again using (2.7),

iqǫabcDaΠbc = σ̃aN
MDa(Dbσ̃

b
M

N ). (2.17)

The scalar constraint can thus be rewritten as

S := Tr(σ̃aσ̃bFab) =
1
2q(R +K2 −KabK

ab) + 1
4(Dbσ̃

b
N
M )(Daσ̃

a
M

N )︸ ︷︷ ︸
real

− σ̃bN
MDb(Daσ̃

a
M

N )︸ ︷︷ ︸
imaginary

≈ 0.
(2.18)
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Equations (2.12), (2.15), and (2.18) are the forms of the Ashtekar constraints that we will

find useful in the next sections.

Equations (2.12), (2.15), and (2.18) immediately lead to the reality conditions on the

constraints,

(GMN )† = GMN

V∗
b = −Vb −

√
2iTr(ΠbG)

S∗ = S + 2Tr(σ̃aDaG),

(2.19)

where † is hermitian conjugation and ∗ is ordinary complex conjugation. We observe that the

reality conditions on the vector and scalar constraints have nonconstant coefficients. These

reality conditions will prove to be useful in determining the reality of the BRST charges in

the next sections.

III. The Ashtekar, Mazur, and Torre BRST charges

In 1987, Ashtekar, Mazur, and Torre [5] investigated the BRST structure of canonical

general relativity in terms of the recently introduced new variables. They used methods

developed by Henneaux [7] in which the constraints are assumed to be real, but they did

not consider the consequences of the complex nature of the Ashtekar constraints. Ashtekar,

Mazur, and Torre constructed three different BRST charges, one based on the original set of

Ashtekar constraints and two others based on recombinations of the constraints. The recom-

binations were motivated by physical and computational arguments and were not related

to the reality properties of the constraints. In this section, we review the BRST charges

constructed by Ashtekar, Mazur, and Torre (AMT) and show that all three are intrinsically

complex.
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3.1. The original Ashtekar constraints

We consider first the BRST charge constructed from the standard Ashtekar constraints,

Daσ̃
a
A
B ≈ 0,

Tr(σ̃bFab) ≈ 0,

Tr(σ̃aσ̃bFab) ≈ 0.

(3.1)

This is not the case preferred by Ashtekar, Mazur, and Torre, but is logically the first case

to consider.

The constraints are integrated against test functions to convert them to scalar-valued

functions on the phase space,

U(N) = −i
√
2

∫

Σ

TrNDaσ̃
a

U( ~N) = −i
√
2

∫

Σ

TrNaσ̃bFab

U(N
˜
) = −i

√
2

∫

Σ

TrN
˜
σ̃aσ̃bFab.

(3.2)

The integration is over the spatial 3-manifold Σ and the fields N , Na, and N
˜
are, respectively,

a Lie-algebra-valued function on Σ, a vector field on Σ, and a scalar density of weight minus

one on Σ.

Calculation of the Poisson brackets between the constraints yields the structure functions

U( , | ), where the two entries in the parentheses on the left of the vertical line take the

place of the indices a and b of the structure function Uab
c, and the entry to the right of the
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line takes the place of the index c. The only nonvanishing first-order structure functions are

U(N,M |L̃) = −
∫

Σ

TrNML̃,

U( ~N, ~M |L̃) = 1
2

∫

Σ

TrNaMbFabL̃,

U( ~N, ~M |L̃) = 1
2

∫

Σ

(£ ~N
Ma)L̃a,

U( ~N,M
˜

|L̃) =
∫

Σ

TrM
˜

N bσ̃aFabL̃,

U( ~N,M
˜

|˜̃L) = 1
2

∫

Σ

(£ ~N
M
˜

)
˜̃
L,

U(N
˜
,M
˜

)|L̃) =
∫

Σ

(N
˜
∂aM˜

−M
˜

∂aN˜
)(Tr σ̃aσ̃b)L̃b.

(3.3)

L̃ is a density of weight one with values in the SU(2) Lie algebra (representing an index

dual to N), L̃ is a covector field of weight one (representing an index dual to ~N), and
˜̃
L is

a scalar density of weight two (representing an index dual to N
˜
).

The calculation of the second-order structure functions is quite tedious. Ashtekar, Mazur

and Torre show that the only nonvanishing second-order structure functions are

U(L
˜
,M
˜

, ~K|Ñ, J̃) =

√
2i

6
Tr

∫

Σ

(M
˜

∂aL˜
− L
˜
∂aM˜

)ÑbK
(aσ̃b)J̃ ,

U(L
˜
, ~M, ~N |K̃, J̃) =

√
2i

6
Tr

∫

Σ

L
˜
NaMbFabK̃J̃.

(3.4)

and then show that the third-order and fourth-order structure functions all vanish and that

the theory is, therefore, rank-two. The BRST charge takes, as they put it, “the rather
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unwieldy form,”

Q′′ =

∫

Σ

Tr

[√
2

i

(
η(Daσ̃

a) + ηaσ̃bFab + η
˜
σ̃aσ̃bFab

)
+ ηηP̃ − (ηb∂bη

a)P̃a

− (ηa∂aη
˜
+ η
˜
∂aη

a)
˜̃P − 2η

˜
(∂aη
˜
)(Trσ̃aσ̃b)P̃b + 2ηaη

˜
P̃ σ̃bFab

−1
2η

aηbP̃Fab − 2i
√
2η
˜
(∂aη
˜
)η(aσ̃b)P̃bP̃ − i

√
2

2
η
˜
ηaηbFabP̃P̃

]
.

(3.5)

We now wish to investigate the reality of this BRST charge. A BRST charge is an

expansion in the antighost number, i.e., in powers of the ghost momenta P, and must

be real at each antighost number for the overall charge to be real. The first three terms

on the right side of (3.5) are the antighost number zero part, which we can rewrite as

−
√
2i
∫
Σ(Tr ηG + ηaVa + η

˜
S). For this expression to be real we require that

iTr ηG + iηaVa + iη
˜
S = (iTr ηG + iηaVa + iη

˜
S)∗

= −iTr η†G† − iηa∗V∗
a − iη

˜
∗S∗

= iTr[(−η† +
√
2iηa∗Πa − 2η

˜
∗σ̃aDa)G] + iηa∗Va − iη

˜
∗S,

(3.6)

where the reality conditions (2.19) on the constraints have been used in the last step. Match-

ing coefficients on the left and right sides and solving for the complex conjugate ghosts, we

find reality conditions on the ghosts,

(η
M

N )† = −η
M

N +
√
2iΠaM

Nηa − 2σ̃aM
NDaη

˜
,

ηa∗ = ηa,

η
˜
∗ = −η

˜
.

(3.7)

These, in turn, impose reality conditions on the ghost momenta,

P̃†
= P̃,

P̃∗
a = −P̃a +

√
2iTr(ΠaP̃),

˜̃P
∗
=
˜̃P + 2Tr(σ̃aDaP̃).

(3.8)

which are found by complex conjugating the fundamental Poisson brackets between the
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ghosts and their momenta and imposing the ghost reality conditions.

With the reality conditions (3.7) and (3.8), the antighost number zero part of the BRST

charge (3.5) is real. The next term, ηηP̃, involves the trace of three SU(2)-valued ghosts. P̃

is hermitian but, as (3.7) shows, η is generically neither hermitian nor anti-hermitian. The

next term, −(ηb∂bη
a)P̃a, is manifestly complex because ηa is real and P̃a has nonzero real

and imaginary parts. The following term, −(ηa∂aη
˜
+ η
˜
∂aη

a)
˜̃P, is also manifestly complex

because ηa is real, η
˜
is pure imaginary, and

˜̃P has nonzero real and imaginary parts. Rather

than continue, we need simply argue that the imaginary pieces in (3.5) do not cancel each

other. We showed in Ref. [6] that the freedom to choose the reality properties of the ghosts

and their momenta is exhausted at the antighost zero level, and that the appearance of

complex terms at higher antighost numbers makes the BRST charge intrinsically complex.

We have explicitly demonstrated here some of the intrinsically complex terms at antighost

number one, and we conclude that the BRST charge (3.5) is intrinsically complex.

Having looked at one of the BRST charges constructed by Ashtekar, Mazur, and Torre

(AMT) [5] in some detail, we will now look at the other two much more briefly, being satisfied

to show explicitly that the constraints upon which they are built are intrinsically complex

and concluding that the BRST charge is therefore also intrinsically complex.

3.2. Modified vector constraint

Next we look at the set of constraints and resulting BRST charge that was the primary

focus of AMT. The constraints differ from those in (3.1) by the addition of a term to the

vector constraint. The additional term is a multiple of the Gauss constraint and therefore

preserves the weak equality of the system of constraints, i.e., the modified constraints define

the same constraint surface. The modified constraints are

Daσ̃
a
A
B ≈ 0,

Tr(σ̃bFab −AaDbσ̃
b) ≈ 0,

Tr(σ̃aσ̃bFab) ≈ 0.

(3.9)
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The extra term is added to the vector constraint both for physical and computational reasons.

The physical reason is that the modified constraint is the generator of spatial diffeomorphisms

and thus has a well-defined geometric meaning. The computational reason is that the Poisson

bracket algebra is simplified by the addition of this constraint. Although the motivation of

AMT was not to make the constraints real, they observe in a footnote that the addition of

this term yields a hermitian function on the phase space.

We have already shown that the Gauss constraint (2.12) is hermitian and that the scalar

constraint (2.18) has nonzero real and imaginary parts. This already is sufficient to make the

BRST charge constructed from the constraints (3.9) intrinsically complex, but it is enlight-

ening to examine the reality properties of the modified vector constraint and demonstrate

that it is purely imaginary.

Since Fab is antisymmetric in its tensor indices, the vector constraint (2.15) can be

rewritten as

Tr(σ̃bFab) =
i√
2
ΠaN

M (Dbσ̃
b
M

N )

︸ ︷︷ ︸
real

− 1

2
√
2
ǫabcσ

b
N
MDc(Ddσ̃

d
M

N ) +
iq1/2√

2
Db(Kab −Kqab)

︸ ︷︷ ︸
imaginary

≈ 0.

(3.10)

The last term, involving the extrinsic curvature Kab, is the independent physical constraint

and cannot be removed by adding the Gauss or scalar constraints to it. Thus, in order to

give the vector constraint well-defined reality properties, it is necessary to cancel the real

part, which is a multiple of the Gauss constraint. We could simply subtract it off as it is, but

it is nonpolynomial and would leave the resulting modified vector constraint nonpolynomial.

Instead, we consider the term Tr(AaDbσ̃
b) and observe that we can use (2.5) to separate it

into two terms,

AaN
M (Dbσ̃

b
M

N ) = ΓaN
M (Dbσ̃

b
M

N ) +
i√
2
ΠaN

M (Dbσ̃
b
M

N ). (3.11)

The second term in Eq. (3.11) is exactly the term we wish to cancel in the vector constraint
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and we have shown that it is real. Furthermore, using (2.6), we see that the first term,

ΓaN
M (Dbσ̃

b
M

N ) = Γabσ
b
N
M (

√
2iq1/2Π[cd]σ

d
M

PσcP
N )

= iq1/2ΓabΠ[cd]ǫ
bcd.

(3.12)

is purely imaginary. By subtracting the term (3.11) from the vector constraint, we simultane-

ously cancel the real part and add an imaginary part, leaving the modified vector constraint

purely imaginary. The trivial step of multiplying the vector constraint by i turns it into a

real constraint.

From the BRST point of view, the constraints (3.9) are an improvement over the con-

straints (3.1). Nevertheless, the BRST charge that Ashtekar, Mazur and Torre construct

from them,

Q =

∫

Σ

Tr

[√
2

i

(
η(Daσ̃

a) + ηa(σ̃bFab − AaDbσ̃
b) + η

˜
σ̃aσ̃bFab

)

+ ηηP̃ + (ηa∂aη)P̃ − (ηb∂bη
a)P̃a − (ηa∂aη

˜
+ η
˜
∂aη

a)
˜̃P

−2η
˜
(∂aη
˜
)(Trσ̃aσ̃b)(P̃b − TrAbP̃)

]
,

(3.13)

must necessarily be complex because the scalar constraint remains complex.

3.3. Modified scalar constraint

Having achieved some computational simplification by modifying the vector constraint,

Ashtekar, Mazur and Torre then do the same, to some extent, by modifying the scalar

constraint. The new constraints are

Daσ̃
a
A
B ≈ 0,

Tr(σ̃bFab − AaDbσ̃
b) ≈ 0,

Tr[σ̃aσ̃bFab + 2σ̃aAa(Dbσ̃
b)] ≈ 0.

(3.14)

To determine the reality properties, we investigate the added term. Using (2.5) and (2.6),
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we find

Tr
(
σ̃aAa(Dbσ̃

b)
)
= Tr

[
σ̃a(Γa +

i√
2
Πa)(

√
2iq1/2Π[dc]σ

cσd)

]

= −qΠabΠ[ab]︸ ︷︷ ︸
real

+
√
2iqΓabΠ[ab]︸ ︷︷ ︸
imaginary

.
(3.15)

The extra term has nonzero real and imaginary parts. Furthermore, comparing with (2.11),

we see that the imaginary parts do not cancel. The scalar constraint remains intrinsically

complex and we once again conclude that the BRST charge,

Q′ =

∫

Σ

Tr

[√
2

i

(
η(Daσ̃

a) + ηa(σ̃bFab −AaDbσ̃
b) + η

˜
(σ̃aσ̃bFab

+ 2σ̃aAaDbσ̃
b)

)
+ ηηP̃ + (ηa∂aη)P̃ − (ηb∂bη

a)P̃a

− (ηa∂aη
˜
+ η
˜
∂aη

a)
˜̃P − 2η

˜
σ̃a(∂aη)P̃ −2η

˜
(∂aη
˜
)(Trσ̃aσ̃b)P̃b

]
,

(3.16)

constructed from the constraints (3.14), must be intrinsically complex.

IV. The reducible formalism

In Ref. [6], we developed a technique for constructing a real BRST charge for a system

with complex constraints which satisfy the condition that the constraints together with their

complex conjugates are all first-class. We now apply this method to self-dual gravity. In this

section, we make use of the symbols + and − to indicate quantities built from self-dual and

anti-self-dual variables, respectively.

To the original Ashtekar constraints,

+Daσ̃
a
A
B ≈ 0,

Tr(σ̃b+Fab) ≈ 0,

Tr(σ̃aσ̃b+Fab) ≈ 0,

(4.1)

15



we add the complex conjugate constraints,

−Daσ̃
a
A
B ≈ 0,

Tr(σ̃b−Fab) ≈ 0,

Tr(σ̃aσ̃b−Fab) ≈ 0.

(4.2)

to obtain a reducible set of constraints. The reducibility conditions follow from (2.12), (3.10),

and (2.18). The relations among the constraints are

(+Daσ̃
a)† = +Daσ̃

a = −−Daσ̃
a = −(−Daσ̃

a)†,

Tr(σ̃b +Fab)− Tr(+Aa
+Dbσ̃

b) = −Tr(σ̃b −Fab) + Tr(−Aa
−Dbσ̃

b),

Tr(σ̃aσ̃b +Fab) +Da[Tr(σ̃
a+Dbσ̃

b)] = Tr(σ̃aσ̃b −Fab) +Da[Tr(σ̃
a−Dbσ̃

b)].

(4.3)

In the case of first-class complex constraints linearly dependent with their complex con-

jugates, we showed in Ref. [6] that there exists an hermitian BRST charge Ω satisfying the

requirements,

{Ω,Ω} = 0, Ω = ηaGa + ηāGā + φi(Z a
i Pa + Z ā

i Pā) + “more, ”

where “more” means terms of higher antighost number. Here Ga and Gā are the constraints,

ηa and ηā the ghosts, and Pa and Pā are the ghost momenta. These quantities satisfy

G
†
a = Gā, η

a† = ηā and P†
a = −Pā. The full set of constraints satisfies the reducibility

conditions Z a
i Ga+Z ā

i Gā ≡ 0. The field φi is a ghost-of-ghost, which is real and of opposite

Grassmann parity to η. We assume that Z a†
i = −Z ā

i .

The reducibility relations between the Ashtekar constraints and their hermitian con-

jugates are almost bi-polynomial (i.e. having each side be polynomial in either self- or

anti-self-dual variables). A bi-polynomial BRST charge would be nearly as useful for quanti-

zation as a purely polynomial one. Even though the resulting BRST charge operator would

not be an ordinary differential operator, the ghosts of the conjugate constraints could be

played off against the original constraints, making available a large set of physical states.
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The relation between the Gauss constraint and the vector constraint is promising, but the

relation between the scalar constraint and the Gauss constraint would be bi-polynomial if

the divergence were of a vector density instead of a vector double density. This limits the

usefulness of the construction and indicates that a useful BRST quantization must entail a

more radical reworking of the standard formalism.

V. Construction of real constraints

The method of the previous section produces a real BRST charge, but is rather cum-

bersome. In this section, motivated by the form of the reducibility relations (4.3), we now

construct an irreducible set of real constraints for self-dual gravity. As we have already dis-

cussed, the Gauss constraint (2.12) is real and the modified vector constraint (3.9) is purely

imaginary. We now describe how to make the scalar constraint real.

We consider the term Tr(σ̃aDaDbσ̃
b). We expand the first Ashtekar derivative using

Da = Da +
i√
2
Πa to get

Tr(σ̃aDaDbσ̃
b) = Tr(σ̃aDaDbσ̃

b) +
i√
2
σ̃aB

AΠaA
DDbσ̃

b
D
B

− i√
2
σ̃aB

AΠaD
BDbσ̃

b
A
D.

(5.1)

We rewrite this as

Tr(σ̃aDaDbσ̃
b) = Tr(σ̃aDaDbσ̃

b) +
i√
2
[σ̃a,Πa]B

ADbσ̃
b
A
B, (5.2)

and recognize the commutator as the Gauss constraint. The last term is then quadratic in

the Gauss constraint,

Tr(σ̃aDaDbσ̃
b) = Tr(σ̃aDaDbσ̃

b)− (Daσ̃
a
B
A)(Dbσ̃

b
A
B)

≡ Tr(σ̃aDaDbσ̃
b)− Tr[(Daσ̃

a)(Dbσ̃
b)].

(5.3)

The first term on the right side of (5.3) is exactly the imaginary part of the standard scalar

constraint (2.18), while the second term is purely real. By adding (5.3) to the standard
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scalar constraint we cancel the imaginary part and add a real part, leaving the modified

constraint,

Tr(σ̃aσ̃bFab) + Tr(σ̃aDaDbσ̃
b) ≈ 0, (5.4)

purely real. It is also very nearly polynomial. The double derivative in the last term, when

expanded, contains an unfortunate term, proportional to ∂aq
1/2, that is not polynomial. The

remaining terms are polynomial, as are the Gauss and vector constraints.

We now have a set of real constraints for the Ashtekar formulation of self-dual gravity,

Daσ̃
a
A
B ≈ 0,

iTr(σ̃bFab)− iTr(AaDbσ̃
b) ≈ 0,

Tr(σ̃aσ̃bFab) + Tr(σ̃aDaDbσ̃
b) ≈ 0.

(5.5)

From a BRST viewpoint, we have returned to the realm of real constraints in which the

standard BRST methods apply. A real BRST charge is therefore known to exist, as proven

by Henneaux and Teitelboim [7].

In summary, all three sets of constraints upon which AMT have constructed their BRST

charges are intrinsically complex. Their BRST charges are also complex and are therefore

not viable precursors to a useful BRST quantization of self-dual gravity. We have given two

methods by which a real BRST charge can be constructed for self-dual gravity. (1) Follow-

ing the procedure we developed for complex extensions of real systems, we have extended

the Ashtekar constraints to include their complex conjugates plus the resulting reducibility

conditions. The BRST charge constructed by this approach is real but is not polynomial

nor bi-polynomial. (2) By a judicious remixing of the original Ashtekar constraints, we have

constructed a set of constraints which are real and very nearly polynomial. This again yields

a real BRST charge, which is considerably simpler than in the reducible case.

While we have succeeded in constructing a set of constraints which are real it has been at

the cost of sacrificing polynomiality. The difficulty that we have encountered in constructing
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a set of constraints which is both real and polynomial arises from the appearance of the

double covariant derivative in the imaginary part of the scalar constraint. In the original

form (2.1) of the (complex) constraints only a single covariant derivative appears, and there

in the special form of a divergence of a vector density. The fortuitous cancellation of the

action of the covariant derivative on the vector index by the action of the covariant derivative

on the density factor is what allows the construction of a polynomial form of the constraints.

This important feature does not carry over to attempts to make the scalar constraint real.

This appears to be a serious impediment to achieving the goal of constructing a BRST charge

for Ashtekar gravity which is both real and polynomial.

APPENDIX

Many of the rules of spinor algebra and spinor analysis can be found in chapter 5 and

Appendix A of Ref. [8]. For convenience, we collect in this appendix the rules and notation

used in this paper for calculating with spinors in Ashtekar gravity.

The standard representation of SU(2) spinors is in terms of the Pauli matrices τ iA
B,

where i identifies the different Pauli matrices and the indices (A,B) identify the matrix

elements of τ i:

τ1A
B :=

(
0 1

1 0

)
, τ2A

B :=

(
0 −i

i 0

)
, τ3A

B :=

(
1 0

0 −1

)
. (A.1)

The algebra of the Pauli matrices is given by:

τ iA
Bτ jB

C = iǫijkτkA
C + δijδA

C . (A.2)

Given a real vector triad Ea
i , the SU(2) soldering form σaA

B is defined by:

σaA
B ≡ − i√

2
Ea
i τ

i
A
B. (A.3)

The fundamental relation between SU(2) spinors and the 3-metric qab follows from equations
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(A.2) and (A.3):

Tr σaσb ≡ σaA
BσbB

A = −qab. (A.4)

A number of other useful relations also follow from equations (A.2) and (A.3):

[σa, σb]A
B =

√
2ǫabcσcA

B,

Tr(σaσbσc) = − 1√
2
ǫabc,

Tr(σaσbσcσd) = 1
2(q

abqcd − qacqbd + qadqbc).

(A.5)

SU(2) spinor indices are raised and lowered with the (nowhere vanishing) antisymmetric

matrices

ǫAB ≡
(
0 −1

1 0

)
, ǫAB ≡

(
0 −1

1 0

)
, (A.6)

where ǫAB is the inverse of ǫAB as defined by the relation ǫABǫAC = δBC . The conventions

for raising and lowering spinor indices are:

λA = ǫABλB, λB = λAǫAB, (A.7)

where care must be taken with the order of the indices because of the antisymmetry of

ǫAB. A mnemonic device for remembering these conventions is to remember that spinor

summations are “from upper left to lower right.”

In considering the reality properties of expressions in spinor form, we need to consider

the hermiticity properties of spinors. The Pauli spinors (A.1) are manifestly hermitian. By

examining the representation of the SU(2) soldering form σaA
B in terms of Pauli matrices

and the real triad Ea
i ,

σaA
B ≡ − i√

2
Ea
i τ

i
A
B =

1√
2

(
−iEa

3 −Ea
2 − iEa

1

Ea
2 − iEa

1 iEa
3

)
, (A.8)

we see that σaA
B is anti-hermitian. The SU(2) connection AaA

B has a similar representation

in terms of Pauli matrices, AaA
B = − i

2A
i
aτ

i
A
B, but the components Ai

a are complex, so
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that AaA
B does not have well-defined hermiticity properties; it is neither anti-hermitian nor

hermitian. We recall, however, the definition of AaA
B in equation (2.5),

±AaA
B = ΓaA

B ± i√
2
ΠaA

B. (A.9)

The “real” and “imaginary” parts of AaA
B are i√

2
ΠaA

B ≡ i√
2
Πabσ

b
A
B and ΓaA

B ≡ Γabσ
b
A
B

respectively. The tensorial factors Γab and Πab are real, so ΓaA
B and ΠaA

B have the same

hermiticity properties as σaA
B and are therefore anti-hermitian.

The product of two SU(2) matrices is, in general, neither hermitian nor anti-hermitian,

even when the original matrices have well-defined hermiticity properties. However, the sym-

metrized and antisymmetrized products of hermitian and anti-hermitian SU(2) matrices do

have well defined hermiticity properties. We let HaM
N be an arbitrary hermitian matrix

and AaM
N be an arbitrary anti-hermitian matrix,

H†
a = Ha, A†

a = −Aa. (A.10)

The symmetrized product of two hermitian matrices is hermitian,

[H(aHb)]M
N ≡ HaM

PHbP
N +HbM

PHaP
N = HcM

N . (A.11)

while the antisymmetrized product of two hermitian matrices is anti-hermitian,

[H[aHb]]M
N ≡ HaM

PHbP
N −HbM

PHaP
N = AcM

N . (A.12)

We state these and similar rules more concisely as

H(aHb) = Hc, H[aHb] = Ac,

H(aAb) = Ac, H[aAb] = Hc,

A(aAb) = Hc, A[aAb] = Ac.

(A.13)

The square of an hermitian matrix is hermitian, as is the square of an anti-hermitian matrix,

HaHa = Hb, AaAa = Hb. (A.14)

Finally, we observe that the trace of a hermitian matrix is always real and that the trace of
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an anti-hermitian matrix is always purely imaginary,

TrHa ≡ HaM
M ∈ R, TrAa ≡ AaM

M ∈ C. (A.15)
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