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Abstract

The primordial mass density fluctuations may have arisen from quantum fluctuations in a

(massless) scalar field that occurred during an inflationary era. We show that it is possible for

primordial mass density fluctuations, which arose in this way, to be highly non-Gaussian. We

also show that the “bad” infrared properties of the propagator for a massless scalar field in de

Sitter space can translate itself into a power spectrum, for the the two-point spatial correlation

of objects that do not trace the mass, which behaves like k−3, at small wave numbers k.
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Limits on the anisotropy of the microwave background radiation restrict the primordial fluc-

tuations in the mass density to be small at early times. However, the fluctuations do grow in the

matter-dominated era because of gravitational instability. Presumably the primordial fluctua-

tions in the mass density determined the large-scale structure of the universe that is observed

today. Understanding the nature of these fluctuations is one of the important issues in physics.

If the length scales associated with the physical processes that generated the primordial fluc-

tuations are very small, compared to astrophysically relevant length scales, then they probably

can be neglected in the correlations of the mass density. This naturalness requirement of scale

invariance restricts the power spectrum for the two-point correlation of the mass density fluc-

tuations to have the Harrison-Zeldovich form,
[1]

but allows for many types of connected higher

point correlations.

A gaussian probability distribution is the simplest scale invariant choice for the primordial

mass density fluctuations. This choice also has considerable predictive power. Provided there is

no new physics occurring at very late times, once the type of fluctuations (e.g., adiabatic) and

the type of dark matter are specified, only the normalization of the two-point correlation of the

mass density fluctuations is left undetermined (we assume an Ω = 1 universe with vanishing

cosmological constant). It appears that this simplest choice is encountering difficulties explaining

the observed large-scaled structure of the universe. For example, with cold dark matter and

adiabatic fluctuations, it is hard to explain the significant correlations of rich clusters of galaxies

that occur at large distances.
[2]

This problem has lead to speculation that the primordial mass

density fluctuations are not gaussian.
[3]

Since primordial fluctuations in the mass density with

wavelengths that are less than the horizon length (i.e., 1/H) today had wavelengths greater than

the horizon length at early times, it is difficult to come up with reasonable ways to generate

these fluctuations. In fact, at the present time, there are only two schemes. In one it is the

presence of topological defects called cosmic strings that generate the fluctuations.
[4]

The other

scheme has the fluctuations in the energy density arising from quantum fluctuations in a scalar

field during an inflationary era.
[5][6]

The smallness of the primordial fluctuations restricts the field

that is driving the inflation to be very weakly coupled so that its quantum fluctuations (and

the corresponding fluctuations in the mass density) are approximately gaussian.
[7]

The purpose

of this letter is to show that it is possible to have cosmologies where quantum fluctuations in a

field during an inflationary era give rise to scale invariant non-gaussian primordial fluctuations

in the mass density. We shall do this by constructing a model where quantum fluctuations
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in an invisible axion field
[8] [9]

give rise to significantly non-gaussian isocurvature mass density

fluctuations.
[10]

Assuming that the Peccei-Quinn symmetry
[11]

is already broken, we take the interactions of

the axion field during the inflationary era to be described by the lagrangian density

L = 1
2g
µν∂µa∂νa+

λ

4!f4
(gµν∂µa∂νa)2, (1)

where the de Sitter space metric is

ds2 =
1

H2τ2
(dτ2 − dx2). (2)

In eq. (2) we have adopted conformally flat spacetime coordinates and H is the Hubble

constant during the inflationary era. It is correlations of the Fourier transform of the axion

field, ã(k, τ), defined by

a(x, τ) =

∫
dk

(2π)3
eik·xã(k, τ) (3)

that determine the correlations of the mass density fluctuations. Since we are interested in

fluctuations of the mass density on astrophysically relevant scales, we can restrict our attention to

the correlations of ã(k, τ) at kτ << 1. Treating the coupling λ as small, the leading contributions

to the connected two- and four-point correlations of the Fourier transform of the axion field (in

de Sitter space) are given for very small kτ by

〈ã(k1, τ)ã(k2, τ)〉c '
H2

2k3
1

(2π)3δ3(k1 + k2), (4)

〈ã(k1, τ) . . . ã(k4, τ)〉c '
H4

4(k1k2k3k4)3/2
λ(
H

f
)4g(k1,k2,k3,k4)

(2π)3δ3(k1 + . . .+ k4),

(5)

with

g(k1,k2,k3,k4) =
1

(k1k2k3k4)1/2

{ 4

k5
T

[(k1k2 − k1 · k2)(k3k4 − k3 · k4)]

− 1

k4
T

[k̂1 · k̂2(k1 + k2)(k3k4 − k3 · k4) + k̂3 · k̂4(k3 + k4)(k1k2 − k1 · k2)]

− 1

3k3
T

[k̂3 · k̂4(k1k2 − k1 · k2) + k̂1 · k̂2(k3k4 − k3 · k4)− (k̂1 · k̂2)(k̂3 · k̂4)

· (k1 + k2)(k3 + k4)] +
1

3kT
(k̂3 · k̂4)(k̂1 · k̂2)

}
+ (2↔ 3) + (2↔ 4)

(6)

2



where kT = k1 + k2 + k3 + k4, kj = |kj | and k̂j = kj/kj. In addition to these correlations, the

axion field has some expected value which is of order the axion decay constant

〈a(x, τ)〉 ∼ f. (7)

After the Universe has exited the de Sitter era and cooled to a temperature of about 800 MeV,

the axion develops significant non-derivative interactions because the Peccei-Quinn symmetry

is not respected by non-perturbative strong interactions. The fluctuations in the axion field

generated in the inflationary era are converted into fluctuations in the mass density as they

enter the horizon. Local energy conservation ensures that for wavelengths large compared to the

horizon length, the fluctuations in the axion energy density are compensated by fluctuations in

the energy density of the other matter and radiation fields so that there are no net energy density

fluctuations (i.e., the fluctuations are isocurvature). Linearizing in the axion fluctuations, the

two-point and connected four-point correlations of the Fourier transform of the mass density

fluctuations δ̃(k) that result from eqs. (4) and (5) are

〈
δ̃(k1)δ̃(k2)

〉
=
N2T 2(k1)

k3
1

(2π)3δ3(k1 + k2) (8)

〈
δ̃(k1) . . . δ̃(k4)

〉
c

=
N4T (k1) . . . T (k4)

(k1k2k3k4)3/2
λ(
H

f
)4

· g(k1,k2,k3,k4)(2π)3δ3(k1 + . . .+ k4),

(9)

where g(k1,k2,k3,k4) is given in eq. (6). In eqs. (8) and (9), T (k) is the transfer function

appropriate to isocurvature fluctuations.
[10]

At small k, T (k) ∼ k2 so that the correlations in

eqs. (8) and (9) are scale invariant. For large k, T (k) goes to a constant. The normalization

constant N is such that the two-point correlation implies that averaged over the horizon volume,

the mass density fluctuations are of order

〈 ∫
horizon
volume

dx δ(x)


2〉1/2

∼
(
HΩa

f

)
. (10)

In eq. (10) H is the Hubble constant during the inflationary era. The factor of Ωa ≡ ρa/ρc

arises because we are not necessarily assuming that the axions comprise the dark matter of the
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universe. In order for galaxy formation to be possible and for microwave background constraints

to be satisfied these fluctuations must be of order 10−5.

HΩa/f ∼ 10−5. (11)

If the axions comprise the dark matter of the universe, then Ωa = 1 and eq. (11) implies that

the Hubble constant during the inflationary era is much smaller than the axion decay constant

f . In this case, the connected part of the four-point correlation of the primordial mass density

fluctuations [eq. (9)] is negligible compared with the disconnected part. The smallness of the

mass density fluctuations has ensured that they are approximately gaussian. A simple way

around this is to have the axion fluctuations large so H/f ∼ 1 but to make the resulting mass

density fluctuations small by having the axions make up only a small fraction of the total mass

density. Since the main motivation for the axion is the strong CP puzzle there is no reason for

us to demand that axions be the dark matter. Some other particle (e.g., the photino) is assumed

to dominate the mass density of the universe.

The fraction of critical density that comes from axions is given approximately by
[9]

Ωa ∼ (f/4× 1012 GeV ). (12)

Thus, eq. (11) is satisfied with H/f ∼ 1 by having f ∼ 108 GeV. Such a small value for the

axion decay constant can lead to astrophysical problems due to excessive axion emission from

stars. However, the couplings of the axion to quarks, leptons and photons are model-dependent

and they can be arranged so that with an axion decay constant of order 108 GeV the rate for

stellar axion emission is acceptable.
[12]

The scenario presented here assumes that the Peccei-Quinn symmetry is broken during and

after the inflationary era. If the reheating is efficient (i.e., all the vacuum energy is converted

into radiation), then the reheating temperature is

Trh ∼
√
MPlH/N

1/2
eff (13)

Here Neff is the effective number of radiation species after reheating and MPl is the Planck

mass. For H/f ∼ 1, and an axion decay constant of order 108 GeV, this reheating temperature
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is significantly greater than the axion decay constant. Although there is no general relation

between the temperature at which a symmetry is restored and the magnitude of the vacuum

expectation value associated with the symmetry breaking, it seems likely that a bizarre fine

tuning of coupling constants would be required for the Peccei-Quinn symmetry to remain bro-

ken at a temperature several orders of magnitude greater than the axion decay constant. We

prefer to imagine that the reheating is not very efficient so that the universe only reheats to a

temperature of order the axion decay constant, thus leaving the Peccei-Quinn symmetry broken.

(This is not difficult to achieve. In fact, many inflationary models suffer from problems due to

insufficient reheating.
[13]

) The small reheating temperature may make the generation of a baryon

excess through the standard mechanisms difficult.
[14][15]

However, there are ways to generate an

acceptable baryon excess at quite low temperatures.
[16]

Finally, we note it is not the phase tran-

sition associated with the breaking of the Peccei-Quinn that is driving the inflation. In fact,

the curvature of the potential for the scalar fields whose vacuum expectation values break the

Peccei-Quinn symmetry should be greater than the Hubble constant during the inflationary era

to ensure that the Peccei-Quinn symmetry is broken during the inflationary phase.

The fluctuations in the mass density presented in eqs. (8) and (9) resulted from linearizing

in the axion field. The connected four-point correlation in eq. (9) is important, for H/f of

order unity, because then the axion is an interacting field during the de Sitter epoch. With

H/f of order unity there will also be non-gaussian fluctuations induced through the non-linear

relationship between the axion filed and the mass density. These we have neglected. We have

also neglected the fact that a/f is an angular variable. It has been argued in ref. [17] that this

provides an infrared cutoff that breaks the scale invariance of the fluctuations. However, as long

as H/f is not larger than unity this violation of scale invariance is likely to be negligible on

astrophysically relevant length scales. (In ref. [17] it was also noted that acceptable isocurvature

mass density fluctuations can arise for large H/f provided axions comprise only a small fraction

of the total mass density. However, the main emphasis of ref. [17] was on the breaking of

scale invariance, due to the angular nature of a/f , rather than on producing non-gaussian

fluctuations.)

The above model has (for λ of order unity) significantly non-gaussian primordial mass density

fluctuations. The connected part of the four-point correlation of the mass density fluctuations,

averaged over the horizon volume, is as large as the disconnected part. The two-point spatial
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correlation of biased objects (e.g., rich clusters of galaxies
[18]

) typically depends on all the con-

nected correlations of the mass density fluctuations. When the number density of the objects is

determined by local properties of the primordial mass density fluctuations (e.g., objects arising

only at high peaks of the filtered primordial fluctuations
[17]

), it is easy to characterize how the

connected correlations of the mass density fluctuations affect the two-point spatial correlation

of the objects.
[3,19]

The connected n-point correlation of the mass density fluctuations depends

on the locations of n points x1, . . . ,xn. Suppose m of these points are kept near each other

(i.e., within the distance given by the filtering used to define the objects) but separated a large

distance r from the remaining n−m points (which are also near each other). If in this limit the

connected n-point correlation of the mass density fluctuations behaves like r−p, then it gives

a contribution to the two-point correlation of the objects ξ0(r) that goes like r−p, for large r.

An analogous criterion holds in Fourier space. The Fourier transform of the connected n-point

correlation of the primordial mass density fluctuations depends on n wave vectors k1, . . . ,kn. If

as any partial sum of wave vectors ks = k1 +· · ·+kj , j < n goes to zero (but the individual wave

vectors do not), the Fourier transform of the connected n-point correlation of the primordial

mass density fluctuations diverges as k−ps , then the power spectrum for the two-point correlation

of the biased objects P0(k) gets a contribution that also diverges as k−p for small k.

In the model we have constructed the connected correlations of the mass density fluctuations

give a contribution to the power spectrum for the two-point correlation of biased objects that

goes to a constant at small wave numbers. It is possible to complicate the model somewhat

so that the higher correlations have a more dramatic impact on the power spectrum for the

two-point correlation of biased objects. For example, imagine that there is another (essentially)

massless field χ that is coupled to the axion in a way that is described by the interaction

lagrangian density

Lint = (λ′/f)χgµν∂µa∂νa. (14)

Now there is a contribution to the connected part of the axion four-point correlation that comes

from tree level χ exchange. The most divergent part of the Fourier transform of this correlation,

as ks = k1 + k2 goes to zero, is given at small kτ by

〈ã(k1, τ) . . . ã(k4, τ)〉c ' H4(λ′H/f)2 1

2k6k3
s

(2π)3δ3(k1 + . . .+ k4). (15)

Here for simplicity we have set k = k1 = k2 = k3 = k4. When multiplied by the transfer
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functions, the axion four-point correlation in eq. (15) corresponds to non-gaussian mass density

fluctuations that five a contribution to the power spectrum for the two-point correlation of biased

objects (i.e., objects that do not trace the mass) which diverges like k−3 at small k! This “bad”

infrared behavior occurs because the propagator for a massless scalar field in de Sitter space

is badly behaved in the infrared. Even for very small λ′(H/f) this could have an observable

impact on the large-scale structure of the universe. It implies fluctuations in the number of

objects in a large volume V tends to infinity. Webster’s analysis of the clustering of a sample of

about 5000 radio sources provides a limit of about 10−3 on the normalization of a k−3 term in

their power spectrum.
[20]

The infrared divergence associated with the k−3 spectrum is an artifact of approximations

made in the computation of eq. (15). It is cut off by the size of the region that has been in

causal contact, the χ mass and the angular nature of a/f . We have assumed that the length

scales associated with these cutoffs are greater than those relevant for astrophysics.

In this letter we have constructed a model where fluctuations in an axion field during the

inflationary era give rise to significantly non-gaussian primordial mass density fluctuations. The

smallness of the primordial mass density fluctuations did not restrict the axion to be weakly

coupled because the axions comprised only a small fraction of the total mass density. While a

more detailed analysis would be necessary to determine if the model presented here is completely

realistic, we believe it serves the purpose of illustrating that (even without cosmic strings) the

primordial mass density fluctuations can be highly non-gaussian. We have also seen that the

peculiar infrared propertied of the fluctuations of massless fields in de Sitter space can translate

itself into unusual behavior for the spatial distribution of objects that do not trace the mass.

We thank Nick Kaiser, John Preskill and George Siopsis for useful discussions.
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