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46100 Burjassot, València, Spain
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1. Introduction

Very recently, the deduction from the measured end point spectrum of nuclear

beta decay by Simpson
[1]

of about a 10% (in amplitude) “contamination” of the
electron neutrino with a different neutrino of mass 17 keV has been supported by

other groups.
[2]

These are difficult experiments but, if correct, they have very profound
implications for our understanding of electro-weak interactions. Indeed, there have

already been many interesting theoretical reports
[3−9]

on the matter.

The new observations seem puzzling according to usual theoretical models and
expectations. In the first place the neutrino masses are expected to be in the range
10−4 to 10−2 eV in order to explain the observed solar neutrino flux with the resonant

oscillation mechanism.
[10]

The 17 keV mass is far enough away from these values to
suggest the existence of another new scale in weak interaction physics. Secondly, when
one recognizes that the general (or “natural”) massive neutrino in gauge theories is
of the two-component “Majorana” type, it becomes a puzzle to understand why
a 17 keV neutrino mixing with νe at the 10% level does not strongly violate the

experimental bound
[11]

on neutrinoless double beta decay (ββ0ν). The only way out
would be to have two Majorana neutrinos whose contributions cancel each other. If
the two are degenerate, or nearly so, they effectively combine to be one of Dirac type.

In the initial attempts
[12]

to explain Simpson’s neutrino it was postulated that the
three two-component fields for the three generations should be regarded as one very

light νe and nearly degenerate νµ and ντ at 17 keV . This is notsuitable
†

for the

current explanation
[10]

of the solar neutrino flux which requires two light neutrinos.
The minimal set of two-component neutrino fields required is thus four — two for
solar flux and two for ββ0ν . But, considering just four neutrino fields is unaesthetic in
the sense that it disagrees with the parallel generation structure observed for the other
fermi fields in nature. Ordinarily, one’s intuition about massive neutrinos is guided

by the see-saw mechanism
[15]

in which two two-component fields for each generation
are assumed and where the 6× 6 mass matrix has the structure

M = MT =

(
0 εD

εDT MH

)
. (1.1)

The “heavy” mass matrix MH has a scale corresponding to some “new physics.”
There are three superheavy neutrinos and three whose masses are suppressed from a
“typical” fermionic scale εD by the dimensionless hierarchy parameter ε, the effective
light 3 × 3 neutrino mass matrix being −ε2DM−1

H DT . (Note that D and MH are
being taken of the same order so that ε is explicitly displayed.)

† However such an explanation might be viable if one were able to explain [13]the reduction of the
solar neutrino flux by neutrino flavor-spin rotation [14] in the sun’s magnetic field.
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One option for explaining Simpson’s neutrino in a parallel generation framework
is simply to give up the “new physics” scale by setting MH = 0. Then all three
neutrinos would be of Dirac type. This does not explain why ντ is so much heavier
than νe and νµ. Several years ago, in a study of the way MH could be related to

the mass matrices of the charged fermions, it was found
[16]

that MH tended to come
out close to a singular matrix (of rank 2). The exactly singular case was noted
to lead to a rather unusual pattern of neutrino masses which was advocated as an
interesting possibility if ντ was found to be substantially heavier than νe and νµ. In
this pattern there are only two superheavy neutrinos with masses of order MH , two
very light Majorana neutrinos (νe and νµ presumably) with masses of order ε2MH

and, most interestingly, an effective Dirac neutrino of mass order εMH (identified as
17 keV ). This is just the pattern needed and has very recently been discussed by

other investigators.
[3,4]

In this note we will further discuss some technical aspects of the singular see-
saw mechanism. In particular we would like to obtain explicitly the unitary 6 × 6
transformation matrix U connecting the “bare” and physical (mass diagonal) neutrino
fields for a generic singular see-saw model:

ρ = Uν. (1.2)

Here ρ and ν are respectively the bare and physical column vectors of two-component
fields. Furthermore

UTMU = diagonal. (1.3)

The transformation matrix U is central to the discussion of the properties of the
various neutrinos. Of special interest are the possible decay modes of the 17 keV
neutrino. Astrophysical and cosmological criteria necessitate a relatively quick decay.

One promising mode is a decay such as ντ → νµ + J , where J is the Majoron,
[17]

a
true Goldstone boson associated with spontaneous breakdown of lepton number. A
näıve estimate would suggest that the amplitude for this process goes as ε2, which
is sufficiently rapid for ε ∼ m(νµ)/m(ντ ) ∼ 10−7. However there is a subtlety due

to the Goldstone nature of J and it turns out
[18]

that for the non-singular see-saw

the amplitude is suppressed to order ε4, which is not sufficient. We will explicitly
show how the singular see-saw restores the ε2 order for the amplitude. Similarly
the amplitude for ντ → 3ν due to Z boson exchange, which is of order ε2 for the

non-singular see-saw,
[18]

will be shown to be enhanced to order ε in the singular case.

The transformation matrix is derived in Sec. 2 and applied to the Majoron decay
modes in Sec. 3. Section 4 is concerned with other decay modes while Sec. 5 presents
the parametrization of the lepton mixing matrix for the singular see-saw.
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2. Transformation Matrix

In the general singular see-saw model εD in eq. (1.1) is arbitrary and MH =

R−1M̃R where M̃ = diag(0,M1,M2). (One might think of setting R = 1 but if
a particular model is specified it might be more convenient to allow for R 6= 1.)
We shall specialize to real M for simplicity, the generalization to complex M being
straightforward. Thus R is an ordinary 3× 3 rotation matrix. Our approach will be
to make a succession of similarity transformations. We start by writing

(
0 εD

εDT RTM̃R

)
=

(
1 0

0 RT

)(
0 εDRT

εRDT M̃

)(
1 0

0 R

)
. (2.1)

Notice that DRT = ( a b c ) is an arbitrary real 3× 3 matrix. The crucial step is
the exact diagonalization of the upper left 4 × 4 sub-block in the central matrix on
the right side. This yields

(
0 εDRT

εRDT M̃

)
=

(
V 0

0 1

)(
εA εB

εBT M

)(
V T 0

0 1

)
, (2.2)

where the matrix on the left is partitioned into 3×3 sub-blocks while the matrices on
the right are partitioned in a (4, 2) pattern. The diagonal matrix of eigenvalues εA =
diag(0, 0, ε|a|,−ε|a|) shows that there are two entries with the same magnitude ε|a|;
these are essentially the two “Majorana” components of the effective Dirac neutrino.
Note now thatM without the tilde is a diagonal 2×2 matrix . The 4×4 diagonalizing
matrix V is

V =

(
n̂× a ̂(n× a)× a â/

√
2 â/

√
2

0 0 1/
√

2 −1/
√

2

)
(2.3)

in which n is an arbitrary unit vector. Three independent real numbers are needed
to specify V : two for â and one for n (since only the components of n perpendicular
to â are relevant). In addition

M = diag(M1,M2), B = V

(
b c

0 0

)
. (2.4)

Next, we approximately block-diagonalize the central matrix on the right side of
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eq. (2.2):

(
εA εB

εBT M

)
≈(

1 εBM−1

−εM−1BT 1

)(
εA− ε2BM−1BT 0

0 M

)(
1 −εBM−1

εM−1BT 1

)
.

(2.5)

The 4 × 4 matrix −ε2BM−1BT supplies masses to νe and νµ of order ε2M and
slightly splits the two Majorana components of the 17 keV Dirac neutrino by
ε2[(BM−1BT )33 + (BM−1BT )44]. We define W as the 4 × 4 matrix which accom-
plishes the final diagonalization

W T (εA− ε2BM−1BT )W = m = diag(m1,m2,m3,m4). (2.6)

Multiplying together the four transformation matrices in eqs. (2.1), (2.2), (2.5) and
(2.6) yields for the transformation matrix defined by eq. (1.3):

U ≈
( 3 3

3 1 0
3 0 RT

) ( 4 2

4 VW εV BM−1

2 −εM−1BTW 1

)
, (2.7)

where we must caution the reader that the first matrix is partitioned as (3, 3) and
the second as (4, 2). Eq. (2.7) is basic for the following. At present only W is not
explicit.

3. Majoron decay modes

It was pointed out
[16,3]

that introducing a Majoron field J could promote the

viability of the present scheme by providing a rapid decay mode
[17]

such as ντ →
νµ + J . We will focus our attention on the simplest Majoron model — the singlet

Majoron.
[17]

If the ordinary non-singular see-saw is employed, the decay is suppressed
by the Goldstone nature of J , unfortunately. The crucial point is to see how the
singular see-saw enhances this mode. For this purpose we will simplify the calculation
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by simplifying R to have the form

R→
(

1 0

0 R̃

)
, (3.1)

so that eq. (2.7) is neatly partitioned in a (4, 2) pattern.

U =

( 4 2

4 Ua Ub
2 Uc Ud

)
≈
(

VW εV BM−1

−εR̃TM−1BTW R̃T

)
. (3.2)

The Majoron Yukawa interaction is given by eq. (3.6) of Ref. 18 (noting the (4, 2)
partition now):

LY =
iJ

2x
νTσ2

(
UTc R̃

TMR̃Uc UTc R̃
TMR̃Ud

UTd R̃
TMR̃Uc UTd R̃

TMR̃Ud

)
ν + h.c., (3.3)

where x ∼ O(M) ∼ 170GeV is the vacuum value of the singlet Higgs field in this
model. The 4× 4 submatrix for the Majoron Yukawa coupling constants of the four
“light” neutrinos is given by the upper left sub-block in (3.3); using (3.2) and (2.6)
we obtain

1

x
UTc R̃

TMR̃Uc ≈
−m
x

+
ε

x
W TAW. (3.4)

At this stage we may recover the old result
[18]

for the non-singular see-saw by noting
that the calculation in that case is structurally the same as the present one except
that the second term on the right side of eq. (3.4) is absent. Since the first term is
diagonal, there is then no off-diagonal coupling to mediate ντ → νµ +J , for example!
To treat the second term in (3.4) we approximately diagonalize eq. (2.6) at the 2× 2
block level to find

W ≈
(

1 εQbÃ
−1

−εÃ−1QTb 1

)(
Z 0

0 1

)
, (3.5)

wherein

Ã = diag(|a|,−|a|),

−BM−1BT ≡
(
Qa Qb

QTb Qd

)
(3.6)

and ZTQaZ is a diagonal 2× 2 matrix. The second term in eq. (3.4) then becomes
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approximately

ε

x
W TAW ≈ ε

x

(
0 −εZTQb

−εQTb Z Ã

)
. (3.7)

Finally, the Yukawa couplings for ν3,4 → ν1,2 + J are explicitly given by the off-
diagonal sub-block in (3.7) and are immediately read off to be of order ε2. This is in

contrast to the ε4 amplitude
[18]

in the non-singular case. Numerically,

Γ(ντ → νµJ) ≈ (ε2)2

16π
m(ντ ) ≈ 0.51× 10−10sec−1. (3.8)

This is in agreement with the cosmological density bound
[19]

for a 17 keV neutrino

Γtotal(ντ ) > 0.3× 10−11sec−1. (3.9)

It may be of interest to note that the amplitude for one of the superheavy neu-
trinos to decay into a Majoron and a light neutrino is determined by the upper right
rectangular sub-block in (3.3) and is of order ε. The partial width for this mode is
then about 1011sec−1.

4. Other decay modes

In the non-singular see-saw model the amplitude for a decay like ντ → νe + 2νµ
mediated by Z boson exchange is

[18]
of order ε2. We will see that this amplitude is

also enhanced for the singular case. The interaction term for the neutrinos and the Z

in the SU(2)×U(1) theory Lagrangian is (ig′/2 sin θW )Zµν̄Lγ
µPνL where νL =

(
ν

0

)
in a γ5-diagonal representation of the Dirac matrices and P is the 6× 6 matrix

Pαβ =
3∑
a=1

U†αaUaβ. (4.1)

Here, of course, we are interested in the restriction of Pαβ to the first four “light”
neutrinos. We note from (3.2) that the upper left sub-block VW of U is approximately
unitary by itself so that

Pαβ ≈ δαβ − (VW )4α(VW )4β for α, β = 1, . . . , 4. (4.2)

In the non-singular case the second term of (4.2) is absent so Pαβ is purely diag-
onal to lowest order. To see that the amplitude for, say, the ντ → νe transition
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is enhanced to order ε for the singular see-saw note that P13 ≈ −(VW )43(VW )41

with (VW )41 ≈ (W31 − W41)/
√

2 ∼ ε [using eqs. (2.3) and (3.5)]. Similarly

(VW )43 ≈ 1/
√

2. Numerically, for a typical decay, we find

Γ(ντ → νeνµνµ) ≈ ε2
[
m(ντ )

m(µ)

]5

Γ(µ→ eν̄eνµ) ≈ 10−27sec−1. (4.3)

So even though this decay rate is enhanced in the singular see-saw it is still
much too small by itself to satisfy the cosmological bound (3.9). It is possible to

enhance the 3ν decay mode further
[5,6]

if one includes the effect of exchanging new
neutral Higgs bosons. For comparison with (3.8) and (4.3) we must also mention the
more “standard” decay modes such as ντ → νµ + γ. These are limited by various

astrophysical arguments
[20]

on the number of photons allowed in various circumstances
to

Γ(ντ → νγ)

Γ(ντ → no photons)
<∼ 10−5. (4.4)

We estimate
[21]

the partial width for photon decay as

Γ(ντ → νeγ) ≈ αG2
F

128π4
· 9

16
·m5(ντ )|Kτνe|2

[
m(τ)

m(W )

]4

≈ 10−25sec−1,

(4.5)

where α ≈ 1/137, GF is the Fermi constant and Kτνe ≈ 0.1 is an element of the
leptonic Kobayashi-Maskawa matrix. Comparing the ratio of eq. (3.8) to eq. (4.5) with
(4.4) it is clear that, in the singular see-saw Majoron model, the invisible Majoron
decay mode is highly dominant over the radiative decays, so there are no astrophysical
difficulties.
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5. Lepton mixing matrix

For discussing the ordinary, W boson mediated, weak interactions it is of course
crucial to know the leptonic analog of the K-M matrix which we denote as K. It
enters into the interaction Lagrangian as:

LW =
ig√

2
W−µ ēLγ

µKνL + h.c. . (5.1)

Here the three physical charged leptons eL are related to the “bare” fields EL as
EL = ΩeL. K is a rectangular matrix:

Kbα =
3∑
c=1

Ω†bcUcα, (5.2)

having, to start with, three rows and six columns. However, for discussing processes
mediated by (5.1) and involving the four light two-component neutrino fields we may
neglect the two superheavy neutrinos; then K has three rows and four columns. The
parametrization of such a K which involves three SU(2) doublet neutrinos and one
SU(2) singlet neutrino may be slightly unfamiliar. In ref. 22 such parametrizations
were discussed for the general case of n doublet and m singlet neutrinos [(n,m)
model]. For our present (3, 1) case there are actually six angles and six CP violation
phases required in general. Since we are assuming K to be real there are just six
angles which, as we will now show, get reduced to three at the needed zeroth order
in ε description of the singular see-saw. Think of substituting the U in eq. (3.2),
truncated to the 4× 4 light subspace, into eq. (5.2). The main structure is provided
by V given in eq. (2.3). Multiplying by W (see eq. (3.5)) on the right will, to zeroth
order in ε, leave the third and fourth columns, as well as the zeroes in the first and
second columns, unchanged. Hence the net effect must just correspond to a different
choice of the unit vector n. Now multiplying V on the left by the 3 × 3 matrix Ω†

(assumed real) will just rotate each column vector in the same way. Hence we end up
with the three parameter effective matrix:

K = ( ̂n′ × a′ ̂(n′ × a′)× a′ â′/
√

2 â′/
√

2 ) . (5.3)

One may note that a change of variables to ν′3 = (ν3 +ν4)/
√

2, ν′4 = (ν3−ν4)/
√

2 will
convert the third column of K to â′ and the fourth to 0. In this basis K is just a real
3 × 3 orthogonal matrix which can be parametrized in one’s favorite way. However,
the basis used in (5.3) is preferable for discussing neutrino oscillations since, as we saw
in Section 2, ν′3 and ν′4 are not mass eigenstates when one includes the ε2 corrections.
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The probability that a neutrino associated with charged lepton a oscillates in time t
to one associated with charged lepton b is

I(a→ b) =
4∑

α,α′=1

KaαKbαKaα′Kbα′ exp[i(Eα′ −Eα)t], (5.4)

where Eα′ −Eα ≈ [m2(να′)−m2(να)]/2E. New phenomena associated with m(ν3) 6=
m(ν4) are expected

[7,9]
in νe ↔ ντ and νµ ↔ ντ oscillations.

From Simpson’s experiment
[1,2]

we may estimate |K13| = |K14| ≈ 0.1/
√

2. |K12|
should be obtained from the νe ↔ νµ oscillation explanation

[10]
of the solar neutrino

flux deficit, while |K23| = |K24| <∼ 0.25 from the lack of observation
[23]

of νµ → νX .

It seems worth emphasizing that a (3, 1) model is the minimal one needed to
explain the solar flux and ββ0ν data. If the parallel generation structure is given up

an interesting model may be constructed
[7]

with these fields alone.

6. Discussion

We have given in fairly explicit form the various neutrino and lepton mixing ma-
trices which occur in the singular see-saw model characterized by a small hierarchy
parameter ε. The difference in ε dependence from the non-singular see-saw case of
some important amplitudes was studied. It was noted that the model seems rea-
sonable for explaining the properties of Simpson’s 17 keV neutrino. Of course, new
Higgs particles which may enter in models of the present type might have additional
astrophysical implications which must be studied.

The material here may be useful in treating a variety of models with different
Higgs structures. The singularity in the heavy Majorana neutrino mass matrix may
be easily achieved in a somewhat ad hoc way by imposition of suitable flavor depen-
dent symmetries, generally involving the Higgs fields. In general the spontaneous
breakdown of such symmetries will lead to Goldstone bosons different from the flavor

singlet Majoron and the decay amplitude will be
[24]

of order ε2 even for the non-
singular see-saw. It is to be hoped that such symmetries would lead to a deeper
understanding at the GUT or perhaps even superstring level. Indeed, the possibility

of a singularity was suggested
[16]

by considering a GUT framework. Finally the origin

of the particular value of the hierarchy parameter, ε ∼ 10−7 is an interesting question;

perhaps it suggests a “radiative” mechanism.
[4,6,7]

This research was supported in part by DOE grant No. DE-FG02-85ER40231
and in part by AEN-90-0040.
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