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Abstract

It is demonstrated that charged particles may acquire unusual statistics in topo-

logically nontrivial two-dimensional samples placed in strong magnetic fields. These

novel statistics follow from an analysis of the self-adjoint extensions of the Landau

Hamiltonian which are partially classified by the UIR’s of the fundamental group.

Superselection rules corresponding to different quantum theories are found. Super-

symmetry arguments are used to construct exact ground states.
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1. Introduction

Electrons, the most prosaic of particles, are fermions as chemistry amply teaches

us. In dimensions higher than two, only the usual Fermi and Bose and the exotic

parastatistics, which seem to be unrealized in nature, are possible statistics for par-

ticles, unless the fundamental group of the domain is nontrivial. In two dimensions

the possibilities are much richer. Indeed, in two dimensions it is the braid group

which is relevant to statistics, not the permutation group as in higher dimensions.
[1]

Until recently, there was no reason to take these extra possibilities seriously, since the

physical dimension of space seems to exclude these exotic possibilities as mere theo-

retical curiosities. However, the discovery of the fractional quantum Hall effect
[2]

and

its most accepted theoretical explanation
[3]

have turned this prejudice on its head.

Now it is even fashionable to consider that exotic statistics have relevance for high-Tc

superconductivity.
[4]

In the fractional quantum Hall effect it is the quasiparticle excitations which

have the exotic statistics while the electrons themselves remain fermions. In general,

whenever the configuration space, Q, is multiply connected, there exist inequivalent

quantizations corresponding to different unitary, irreducible representations (UIR’s)

of π1(Q).
[5]

The most complete treatment of this is due to R. Sorkin, in ref. 5. When

the homotopy group π1(Q) is non-abelian, some of these quantizations will require

the use of vector-valued wave functions. Such wave functions are used, for example,

in the quantization of the collective rotational motion of odd-A nuclei with three

distinct moments of inertia.
[6]

In this spirit, we investigate the quantization of planar

motion in a uniform magnetic field. The magnetic field makes the problem tractable
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by preventing the electrons from wandering off to infinity, but is interesting because

of its connections to studies of the quantum Hall effect. In these quantizations the

electrons themselves may acquire statistics more general than Fermi-Dirac by virtue

of their monodromies forming a non-trivial representation of the fundamental group.

In this more general case one must be careful to distinguish the paths through which

the electrons are exchanged. If the path does not encircle a puncture, the many-body

wave function must simply change sign. If, on the other hand, the path does encircle a

puncture, the many-body wave function will gain an additional factor corresponding

to the monodromy of the path. For definiteness, we consider the simplest case, the

twice punctured plane, whose homotopy group π1(R2\{p1, p2}) is the free group on

two letters.

2. Landau Levels

The electron states in a two dimensional magnetic system are highly degenerate.

These degenerate states, the Landau levels, are easily found when a non-symmetric

gauge is chosen for the vector potential.

A(x, y) = B0x ŷ (2.1)

The momentum py is a conserved quantity of the Landau Hamiltonian

H =
1

2m
(p− eA)2 =

1

2m
[(−i∂x)2 + (−i∂y − eB0x)2]. (2.2)

The energy eigenstates are written with harmonic oscillator wave functions, φn, cen-
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tered at x0 = − k
eB0

with frequency eB0

m ;

ψn = eikyφn(x− x0). (2.3)

Another way to view these states is to use the symmetric gauge

A(r) = 1
2B× r. (2.4)

In this gauge the Hamiltonian reads

H =
1

2m
{Π2

x + Π2
y} =

1

4m
{ΠzΠz̄ + Πz̄Πz}

=
1

2m

{
−4∂∂̄ + (

eB0

2
)2|z|2 − eB0(z∂ − z̄∂̄)

}
.

(2.5)

Again Π = −i∇− eA. The problem has been formulated in complex coordinates

z = x+ iy,

∂ = 1
2(∂x − i∂y),

∂̄ = 1
2(∂x + i∂y).

(2.6)

Clearly the Πz and Πz̄ should be treated as creation and annihilation operators. They

satisfy the commutation relations

[Πz,Πz̄] = 2mω. (2.7)

Here ω denotes the signed frequency eB0

m . The sign of ω determines which of Πz and

Πz̄ is the creation operator. In the following ω > 0. The notation is simpler if the
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complex coordinates are scaled by (m|ω|)−1/2. The spectrum generating operators

can then be identified as

â† = − i√
2m|ω|

Πz̄ =
√

2(−∂ + 1
4 z̄),

â =
i√

2m|ω|
Πz =

√
2(∂̄ + 1

4z).

(2.8)

Just as for the one dimensional harmonic oscillator, the ground state is annihilated

by â, otherwise it could be lowered to a state of lower energy and the Hamiltonian

must be bounded below. It follows that the ground states of the Hamiltonian are of

the form

ψf (z, z̄) = exp(−|z|2/4)f(z),

Hψf = 1
2 |ω|ψf .

(2.9)

In the plane it is possible to use angular momentum to label the possible ground

states

|0n〉 = exp(−|z|2/4)zn. (2.10)

Excited states are built upon any ground state (2.9), by applying creation operators.

|n, f〉 =
1√
n!
a†
n

exp(−|z|2/4)f(z). (2.11)

One may also solve the problem by means of separation of variables. The operator ∂+

1
4 z̄ commutes with the Landau Hamiltonian and may be simultaneously diagonalized.

Setting ψ(z, z̄) = φ(z)φ̃(z̄)e−|z|
2/4 and

(∂ +
1

4
z̄)ψ =

β

2
ψ,

1
2 |ω|(−4∂∂̄ + (

1

4
)|z|2 − (z∂ − z̄∂̄))ψ = Eψ,

(2.12)
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we find

ψ(z, z̄) = (z̄ − β)
2E−ω

2ω exp(−z(z̄ − 2β)/4). (2.13)

It is immediate from this that the spectrum is E = (n+ 1
2)ω, n = 0, 1, . . . , in order

that the solution (2.13) be normalizable and single-valued. Any of the states (2.11)

can be expressed as

|n, f〉 = f(
d

dβ

∣∣∣∣
β=0

)
[
(z̄ − β)n exp(−z(z̄ − 2β)/4)

]
. (2.14)

3. Self-adjoint extensions of the Landau Hamiltonian

A fundamental requirement of quantum mechanics is that probability should be

conserved. That is, the time evolution of the system ought to be unitary. Ordinarily,

we think of this in terms of the Hamiltonian being hermitian. Technically, however,

this is not enough. The proper requirement is that the Hamiltonian be self-adjoint. A

self-adjoint operator has real eigenvalues while a merely hermitian operator may have

complex eigenvalues. The classic example
[7]

of the latter situation is the momentum

operator p̂ = i ddx acting on functions of a real variable. The momentum operator

is formally hermitian, yet any function exp(αx) is an eigenfunction with eigenvalue

iα. Thus, one must be very careful to specify the allowed functions on which the

operator may act. In the present instance, if a domain too small D0(p̂) = {φ :

[0, 1] → C |φ(0) = φ(1) = 0} is set, then the adjoint operator p̂∗ has a domain too

large to exclude the above exponential eigenfunction. The proper way to find a self-

adjoint extension of the operator p̂ acting on a domain at least as large as D0(p̂) is to
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set the domain just weak enough that the domain of the adjoint, D(p̂∗), is no larger

than D(p̂). Thus v ∈ Dθ(p̂) = {φ : [0, 1]→ C |φ(0) = eiθφ(1)} and

〈u, p̂v〉 − 〈p̂u, v〉 = ū(0)v(0)− ū(1)v(1) = 0 (3.1)

together imply that u ∈ Dθ(p̂), or that p̂ acting on Dθ(p̂) is self-adjoint. The impli-

cation of this is that the states actually live on the circle and that the transport of

the wave function around the circle preserves the norm.

Keeping this in mind, we next imagine studying the motion of electrons under the

influence of a constant magnetic field, but in a punctured plane. All of the important

features of the problem are displayed by the twice-punctured plane. For simplicity

we choose to put the punctures at z = 0 and at z = 1. Furthermore, we assume that

the electrons may be described by vector-valued wave functions, and in this case we

will consider them to be valued in CN , but will give an example for which N = 2.

For now, the problem is to find the conditions on the states which guarantee that the

Landau Hamiltonian (2.5) is self-adjoint.

In the present case, we shall observe that there are two conditions for self-

adjointness; unitary monodromies around each of the punctures and conditions on

the relative behavior of the functions and their derivatives at the punctures.

Besides the punctures at z = 0 and z = 1, we choose a boundary for the sample

to ensure that the remaining parts of the sample are simply connected. We consider

the location of this boundary to be unobservable and in the end the analysis ought

to be independent of its position. The extensions we are seeking are extensions of the

Landau Hamiltonian acting on smooth functions having compact support in a simply
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connected region of the punctured plane. It is sufficient to choose the boundary to

be a branch cut along the positive real axis and the point at infinity. Figure 1 shows

the boundary and punctures explicitly.

The inner product on the states is the standard one:

〈u, v〉 =
i

2

∫
C

dz ∧ dz̄ ūj(z, z̄)vj(z, z̄). (3.2)

Thus, the condition 〈u,Hv〉 = 〈Hu, v〉 becomes∮
∂C

{
dz ūj(∂ + 1

4 z̄)vj + dz̄ vj(∂̄ + 1
4z)ū

j
}

= 0, (3.3)

where the contour ∂C is shown in figure 2. We examine the pieces of the boundary

separately, and break them up as follows.

∂C = C0 ∪ C1 ∪ C∞ ∪ L0 ∪ L1, (3.4)

where

C0 = {z| |z| = 0+},

C1 = {z| |z − 1| = 0+},

C∞ = {z| |z| =∞},

L0± = {z| z = x± i0+, x ∈ R, 0 < x < 1},

L1± = {z| z = x± i0+, x ∈ R, 1 < x <∞}.

(3.5)

The condition for hermiticity (3.3) becomes the separate conditions∮
CA

{
dz ūj(∂ + 1

4 z̄)vj + dz̄ vj(∂̄ + 1
4z)ū

j
}

= 0, A = 0, 1,∞

( ∫
LA+

−
∫
LA−

){
dz ūj(∂ + 1

4 z̄)vj + dz̄ vj(∂̄ + 1
4z)ū

j
}

= 0, A = 0, 1.

(3.6)
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If, for the first condition, we suppose that the function vi on the upper contour LA+,

denoted v
(+)
i , is a given constant matrix MA times its value, v

(−)
i , on the lower

contour LA−,

v
(+)
i =MA ijv(−)

j , (3.7)

then we may recast the first part of (3.6) as

∫
LA

{
ū(+)Dv(+) + D̄ū(+)v(+) − ū(−)Dv(−) − D̄ū(−)v(−)

}
=

∫
LA

{
[D̄ū(+)MA − D̄ū(−)]v(−) + [ū(+)MA − ū(−)]Dv(−)

}
= 0,

(3.8)

where D = (∂ + 1
4 z̄) dz. This implies that

ū(+)MA = ū(−), (3.9)

or, equivalently,

u(+) = (M†A)−1u(−). (3.10)

This is the same condition on u as (3.7) is on v, if

M†AMA = 1, (3.11)

which is the first condition for self-adjointness of the Landau Hamiltonian, the uni-

tarity of the monodromies around the punctures of the plane.
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The second conditions of (3.6) are the relative behavior at the punctures and

infinity of the wave functions and their derivatives.∮
CA

(
D̄ūivi + ūiDvi

)
= 0, A = 0, 1,∞. (3.12)

In coordinates (%, θ) near each puncture,

ζ = z − zc = %eiθ, (3.13)

the derivative part of (3.12) at the puncture zc becomes∮ (
dζ̄ v∂̄ū+ dζ ū∂v

)
= 1

2

∮
d(ūv) + i

2

∮
% dθ

(
ū∂%v − v∂%ū

)
. (3.14)

The first term on the right hand side vanishes because ūv is single valued in the whole

plane. The constant piece of (3.12) becomes

1
4

∮ {
ū(iz̄cζ)v − ū(izcζ̄)v

}
dθ, (3.15)

which we will write as

i

2

∮ (
ū

%γ̄ū

)T (
0 1

−1 0

)(
v

%γv

)
dθ, (3.16)

where γ = 2z̄ce
iθ is an angle dependent factor. Putting these together, using D% =

∂% + γ, we have

lim
%→0

1
2

∮
dθ

{(
u

%D%u

)†(
0 i

−i 0

)(
v

%D%v

)}
= 0. (3.17)

It is convenient to expand the vector ( vi %D%vi ) in terms of eigenvectors of(
0 i

−i 0

)
. These eigenvectors, e = 1√

2
( 1 −i ) and ē = 1√

2
( 1 i ) have eigen-

values 1 and −1 respectively. In general the functions near the puncture may be
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expanded out in harmonics, ΘIi(θ), I ∈ ZN , which are orthogonal and have the

proper monodromies.

ΘIi(θ + 2π) = MAijΘIj(θ),∮
dθ Θ̄Ii(θ)ΘJi(θ) = δIJ .

(3.18)

We posit a specific expansion for v,

(
v

%D%v

)
i

=
∑

I,J∈ZN

AI(%)[δIJe + UIJ ē]ΘJi(θ), (3.19)

take the general expansion for u,

(
u

%D%u

)
i

=
∑
I∈ZN

[BI(%)e + CI(%)ē]Θ(θ)Ii, (3.20)

and use (3.17). For finite %, the function whose limit we wish to evaluate is

∑
I,J∈ZN

[B̄I − C̄JUIJ ]AI . (3.21)

The vanishing of the above expression (3.21) for finite % would imply that (u %D%u )i

has the same form as (3.19)

(
u

%D%u

)
i

=
∑

I,J∈ZN

BI(%)[δIJe + UIJ ē]Θ(θ)Ji, (3.22)

but in the limit, the precise condition is slightly more complicated. If vi describes

a normalizable state, the coefficient AI in (3.19) must be less singular than %−1,
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(%AI(%, θ)→ 0 for %→ 0). This implies that in the limit the correct condition is

(
v

%D%v

)
i

=
∑

I,J∈ZN

AI(%)[δIJe + UIJ ē]ΘJi(θ) +O(%), (3.23)

Now, for the vanishing of (3.17). If we posit (3.23) as above, a condition of the exact

same form must hold for the vector ( u %D%u )i, where the coefficients, denoted AI

in the condition (3.23) above need not be the same for the two vectors.

The full set of conditions for the existence of a self-adjoint extension of the Landau

Hamiltonian (2.5) in the many-punctured plane are that all of the states in the Hilbert

space have the same unitary monodromies around the punctures and that all of the

functions have limiting behavior (3.23) with the same values for the unitary matrices

UIJ at a given puncture. There are no conditions on the boundary values of the

wave functions at spatial infinity because the normalizability requirement makes them

vanish sufficiently rapidly there. Each of the parameters MA and UIJ is essentially

superselected. That is, in a space of states which contains elements with differing

values of these parameters, the Hamiltonian will not be self-adjoint. We have assumed

that the parametersMA are constants along the cuts from the punctures to infinity

in order that the placement of the cuts be arbitrary as long as the remaining domain

of the sample be simply connected.

Not every unitary matrix UIJ defines a self-adjoint extension. It usually happens

that the functions realizing the general UIJ are not normalizable. To determine the

realizable UIJ is a tedious exercise. To find the number of independent parameters

describing the extension, one might turn to the von Neumann theory of self-adjoint
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extensions. In the von Neumann theory, the kernels

K± = {ψ ∈ L2 |H∗ψ = ±iψ}. (3.24)

are used to construct the self-adjoint extensions. The domain of the adjoint of H is

given by

D(H∗) = D(H)⊕K+ ⊕K−. (3.25)

The self-adjoint extensions are characterized by the unitary maps U : K− → K+.

For each such unitary map U , one finds a domain on which H is self-adjoint:

Dsa(H) = {φ+ β(ψ+ + Uψ−)|φ ∈ D(H), β ∈ C, U fixed}. (3.26)

Again, there is the problem of finding which eigenvectors are normalizable, but this

usually is not a problem if the eigenvectors can be found in closed form. An analysis

of the simple case of one puncture is given in the appendix.

4. An Exact Ground State

4.1 Supersymmetric Quantum Mechanics

Because there are boundary conditions at the punctures on the allowable states,

the creation and annihilation operators do not, in general, generate the spectrum

of the Landau Hamiltonian in the punctured plane. Therefore, the argument that

analytic functions are ground states is no longer valid. A better argument starts

from a supersymmetrized Hamiltonian, since the supersymmetry guarantees that the

spectrum is non-negative. It is well known that the supersymmetrization of the
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spectrum generating algebra for the Landau levels describes the same physics with

the introduction of electron spin.
[8]

In addition to the bosonic oscillator â, â† we

introduce a fermionic oscillator ξ̂, ξ̂† from which we construct a supercharge Q =√
|ω|(âξ̂† + â†ξ̂). The supercharge squares to

Q2 = |ω|(ξ̂†ξ̂ + â†a) = |ω|(Nf +Nb) = |ω|(Nf − 1
2) +H (4.1)

With the value of ω = eB0

m , (4.1) is exactly (in the absence of corrections to g−2) the

Hamiltonian for planar motion in a uniform magnetic field with the magnetic moment

coupling included. In this case we interpret (Nf − 1
2) as 1

2σz and the operator ξ̂† flips

the spin from parallel to antiparallel. The states are paired; an antiparallel state in

one Landau level is paired with the parallel state one level up.

4.2 Self-adjoint extensions of the Supercharge

It is interesting to consider the question of when the supercharge is self-adjoint.

Whenever a self-adjoint domain of the supercharge contains a self-adjoint domain of

the Landau Hamiltonian, the lowest possible energy will be 1
2ω. We expect that the

domain D(Q) on which Q is self-adjoint will be larger than D(H) because Q is a

first-order operator. From the expressions

â† =
√

2(−∂ + 1
4 z̄),

â =
√

2(∂̄ + 1
4z),

ξ̂(f0 + ξf1) = ξf0,

ξ̂†(f0 + ξf1) = f1,

(4.2)

we construct the supercharge Q =
√
|ω|(âξ̂† + â†ξ̂) and examine the hermiticity
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condition

(QU,V )− (U,QV ) = 0. (4.3)

Because the supercharge is off-diagonal in the 1, ξ basis, we expect that the self-

adjointness conditions on the wave functions will be quite a bit weaker than for the

Landau Hamiltonian. The following calculation bears out this expectation. We put

U = u0 + ξu1 and V = v0 + ξv1 and obtain

0 =
〈
â†u0, v1

〉
+ 〈âu1, v0〉 − 〈u0, âv1〉 −

〈
u1, â

†v0

〉
=
√

2

∫
C

dz ∧ dz̄
{
∂(ū0v1)− ∂̄(ū1v0)

}

=
√

2

∮
∂C

dz̄ (ū0v1) + dz (ū1v0).

⇒ 0 =
√

2

∮
∂C

dζ

ζ

(
ū0ζv1 − ζ̄ū1v0

)

=
√

2

∮
∂C

dζ

ζ

(
u0

ζu1

)†(
0 1

−1 0

)(
v0

ζv1

)
,

and u0, u1, v0, v1 have identical unitary monodromies.

(4.4)

Following the analysis after eqn. (3.17), we find that the self-adjoint extensions of

the supercharge are characterized by the boundary conditions at the punctures(
v0

ζv1

)
i

=
∑

I,J∈ZN

BI(%)[δIJe +WIJ ē]ΘJi(θ) +O(%). (4.5)

IfWIJ = δIJ , there are no restrictions on the derivatives of the states at the punctures.

This domain is obviously realizable with normalizable states and is larger than the

domains found for the Landau Hamiltonian. Thus the smallest possible eigenvalue of

the Landau Hamiltonian is 1
2ω.
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4.3 An Exact Ground State

The simplest case to consider is that of a C2 valued wave function, vi. If the

sample has no punctures, we know that the ground states are just given by analytic

functions. We know that a ground state of the extended Landau Hamiltonian is

also given by an analytic function, according to (2.9), if the analytic function obeys

the correct boundary conditions at the punctures. For illustrative purposes, we will

restrict ourselves to the two component case.

ψi,0 = exp(−|z|2/4)φi(z) i = 1, 2 (4.6)

Because the punctures are at z = 0 and z = 1, a suitable ground state may be found

by using hypergeometric functions 2F1(a, b; c; z). We would like to construct a pair

of functions which has unitary monodromies around the two punctures and vanishes

at the punctures as well. The pair of functions

u =

(
F (a, b; c; z)

z1−cF (a+ 1− c, b+ 1− c; 2− c; z)

)
(4.7)

has monodromy

u(z e2πi) =

(
1 0

0 e−2πic

)
u(z) (4.8)

around the origin and monodromy

u(1 + (z − 1) e2πi) =

(
B11 B12

B21 B22

)
u(z) (4.9)

around z = 1. The Bij are given by
[9]
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B11 = 1− 2i eiπ(c−a−b) sin(πa) sin(πb)

sin(πc)
,

B12 = −2πi eiπ(c−a−b) Γ(c)Γ(c− 1)

Γ(c− a)Γ(c− b)Γ(b)Γ(a)
,

B21 = 2πi eiπ(c−a−b) Γ(2− c)Γ(1− c)
Γ(1− c+ a)Γ(1− c + b)Γ(1− b)Γ(1− a)

,

B22 = 1 + 2i eiπ(c−a−b) sin(π(c− a)) sin(π(c− b))
sin(πc)

.

(4.10)

Using these relations, one finds that

φ(z) =

(
F (5

4 ,−
9
4 ; 1

2 ; z)

7i
√

3
45

√
zF (7

4 ,−
7
4 ; 3

2 ; z)

)
(4.11)

has monodromies σ3 and iσ2 around z = 0 and z = 1 respectively. Furthermore, the

vector (4.11) is finite at the two punctures, and has pole of low order at infinity. By

multiplying by zn(z−1)m, for positive integers n and m, we find an infinite number of

valid two-component ground states which can be built from φ, yielding normalizable

ground states of a self-adjoint extension of the Landau Hamiltonian (2.5). Given any

set of punctures and any desired monodromies around these punctures, there exists

a vector-valued analytic function in the plane minus those punctures which has just

those monodromies.
[10]

This guarantees the existence of many such ground states, so

that (4.11) is not an isolated example and its monodromies are by no means the only

unitary monodromies possible.
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5. Conclusion

We have considered quantization of charged particles in a uniform magnetic field

in a topologically nontrivial plane. The nontrivial topology was put in by hand,

considering the “punctures” to be part of the boundary of the configuration space.

Boundary conditions at the punctures are necessary to keep the evolution of the sys-

tem unitary. It is natural to inquire what physically could account for the punctures.

Any defects in the material which have short range interactions certainly could be

considered punctures. More interesting would be to see how far one could push the

analogy of punctures to solitons or quasiparticles. Punctures with nontrivial mon-

odromy are physically equivalent to infinitesimally thin flux tubes. When the wave

functions are scalars the fluxes are abelian. In the vector-valued quantizations the

fluxes are in general non-abelian. In the scalar quantizations with monodromies e2πiθ

it is tempting to identify the punctures with some type of anyon. In fact, in consider-

ing a many electron state in the plane with such a puncture, one is led to the ground

state

ψ(z1, . . . , zK) = exp
(
−
∑
i

|zi|2/4
) K∏
i=1

(zi − z0)θ
∏
i<j

(zi − zj). (5.1)

This state bears a striking resemblance to the Laughlin wave function. This suggests

that there is a relationship between the two and it would be interesting to find such

a relationship.

In the system described above, the statistics of the electrons are altered by the

puncture. If the two electrons are exchanged through a path which does not encircle

the puncture, the wave function simply changes sign. When the exchange path encir-

cles the puncture, the wave function gets a factor −e2πiθ. In the more general vector
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quantizations the wave function would get an additional unitary matrix factor if the

exchange path encircled a puncture.

More general vector-valued wave functions are, in general, mysterious and the

analysis here has shed no new light on their interpretation. In fact, proceeding to a

many particle state is problematical and no guidance is given by considering analogous

systems such as the asymmetric rotor, where it is not necessary. However, in analogy

with the scalar states, one expects that the punctures, interpreted as quasiparticles,

should have more general “braid” statistics than anyons.

APPENDIX

Here we consider the extension of the Landau Hamiltonian in a plane punctured

at the origin. To determine the different self-adjoint extensions, we first need to

determine the kernels

K± = ker(H∗ ∓ i). (.1)

The dimensions of these kernels are called the deficiency indices, denoted (n+, n−).

There exist self-adjoint extensions of the operator H if and only if n+ = n−. The

homotopy group is π1(R2\{0}) = Z, all of whose UIR’s are one dimensional. Thus

we need only consider wave functions having a single component. For the trivial

representation, the deficiency indices are (1, 1), while for any other representation,

the deficiency indices are (2, 2). Our starting domain, D(H), is C∞0 (R2\{0}), such

that ψ(r, θ) ∈ D(H) satisfies

ψ(r, θ + 2π) = e2πiνψ(r, θ), 0 ≤ ν < 1. (.2)
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We can solve the Schrödinger equation H∗ψ = Eψ for any E, including ±i, by

separation of variables. Set ψ(r, θ) = Rn(r)ei(n+ν)θ. The general solution regular at

infinity is

Rn(r) = e−r
2/4rn+νΨ(1

2(1− 2E

ω
), 1 + n+ ν,

r2

2
), n ≥ 0,

R−m(r) = e−r
2/4rν−mΨ(1

2(1− 2E

ω
) +m− ν, 1 +m− ν, r

2

2
), m ≥ 1.

(.3)

Here Ψ(a, b, x) is a confluent hypergeometric function.
[11]

There is another set of

solutions involving the other confluent hypergeometric function, Φ(a, b, x). These

solutions are not normalizable, however, because they behave as er
2/4 for large r.

The solutions involving Ψ are singular at the origin, but for each of the eigenvalues

E = ±i there are two normalizable solutions, R0(r) and R−1(r) for ν 6= 0 and

only one, R0(r), for ν = 0. The energy spectrum for m,n = 1, 2, . . ., E = ω
2 (2k +

1), ω
2 (2k+1+2(1−ν)), k = 2, 3, . . ., may be read off from these solutions since one

knows that the small r behavior of the confluent hypergeometric function Ψ(a, b, r) is

Ψ(a, b, r) ∼ Γ(b− 1)

Γ(a)
r1−b for b > 1. (.4)

If the wave functions all must vanish at the origin then the lowest states have energies

E = ω
2 ,

ω
2 (3− 2ν).

20



ACKNOWLEDGEMENTS

It is a pleasure to thank A.P. Balachandran for suggesting this investigation and

to thank him, Michele Bourdeau, Elias Kiritsis, Jorge Pullin, Joseph Samuel, and

Rafael Sorkin for many interesting discussions. The author is indebted to Rafael

Sorkin for his careful reading of the manuscript and to Doug Kurtze for his help via

USENET in providing the solutions of the radial part of the Schrödinger equation

that appear in the appendix. This research was supported in part by DOE grant

DE-FG02-85ER40231.

REFERENCES

1. Y.-S. Wu, Phys. Rev. Lett. 52 (1984) 2103; Phys. Rev. Lett. 53 (1984) 111.

2. D.C. Tsui, H.L. Störmer and A.C. Gossard, Phys. Rev. Lett. 48 (1982) 1559;

Phys. Rev. B 25 (1982) 1405.

3. B.I. Halperin, Phys. Rev. Lett. 52 (1984) 1583; D.A. Arovas, R. Schreiffer and

F. Wilczek, Phys. Rev. Lett. 53 (1984) 722.

4. P.B. Wiegmann, Phys. Rev. Lett. 60 (1988) 821; R.B. Laughlin Phys. Rev.

Lett. 60 (1988) 2677;Y.-H. Chen, F. Wilczek, E. Witten, B.I. Halperin, Int. J.

Mod. Phys. B3 (1989) 1001.

5. L.S. Schulman, Phys. Rev. 176 (1968) 1558 and Techniques and Applications of

Path Integration,” (Wiley, New York, 1981); J.B. Hartle and J.R. Taylor, Phys.

Rev. D1 (1970) 2226; C. Morette-DeWitt, Phys. Rev. D3 (1971) 1; J.S. Dowker,

J. Phys. A5 (1972) 936; “Selected Topics in Quantum Field Theory,” Austin

lectures (1979) unpublished; J. Phys. A18 (1985) 2521; J.M. Leinaas and J.

21



Myrheim, Nuovo Cim. 37B (1977) 1; F. Wilczek, Phys. Rev. Lett. 49 (1982)

957; R.D. Sorkin, Phys. Rev. D27 (1983) 1787; “Introduction to Topological

Geons,” in Topological Properties and Global Structure of Spacetime, P.G.

Bergmann and V. de Sabbata, eds. (Plenum, New York, 1986) p. 249; Y.-S.

Wu, Phys. Rev. Lett. 52 (1984) 2103; Phys. Rev. Lett. 53 (1984) 111; C.J.

Isham, in: Relativity, Groups and Topology II, B.S. DeWitt and R. Stora,

eds. (Elsevier, Amsterdam, 1984); R. MacKenzie and F. Wilczek, Int. J.

Mod. Phys. A3 (1988) 2827; A.P. Balachandran, “Wess-Zumino Terms and

Quantum Symmetries, A Review,” in Conformal Field Theory, Anomalies and

Superstrings, B.E. Baaquie, C.K. Chew, C.H. Oh, and K.K. Phua, eds., (World

Scientific, Singapore, 1988); “Topological Aspects of Quantum Gravity,” in

Particle Physics-Superstring Theory,” R. Ramachandran and H.S. Mani, eds.

(World Scientific, Singapore, 1988); “Classical Topology and Quantum Phases:

Quantum Mechanics,” in: Geometrical and Algebraic Aspects of Nonlinear

Field Theory, S. DeFilippo, M. Marinaro, G. Marmo and G. Vilasi, eds.

(Elsevier, Amsterdam, 1989); “Classical Topology and Quantum Phases,” in:

Anomalies, Phases, Defects,..., M. Bregola, G. Marmo, G. Morandi, eds.,

(Bibliopolis, Naples, 1990); “Classical Topology and Quantum Statistics,”

Preprint Syracuse University SU-4228-454 and University of Naples (1990);

E.C.G. Sudarshan, T.D. Imbo and T.R. Govindarajan, Phys. Lett. 213B

(1988) 471; P.O. Horvathy, G. Morandi, and E.C.G. Sudarshan, Nuovo Cim.

11D (1989) 201; T.D. Imbo, C.S. Imbo and E.C.G. Sudarshan, Phys. Lett.

234B (1990) 103; T.D. Imbo and J. March-Russell, Harvard Preprint HUTP-

90/A029 (1990) and references therein.

22



6. A. Bohr and B.R. Mottelson, Nuclear Structure Vol. II: Nuclear Deformations,

(W.A. Benjamin, Reading, MA, 1975) p. 187.

7. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol II:

Fourier Analysis, Self Adjointness, (Academic, San Diego, 1975).

8. Y. Aharonov and A. Casher, Phys. Rev. A 19 (1979) 2461; E. D’Hoker and L.

Vinet, Phys. Lett. 137B (1984) 72; H.L. Cycon, R.G. Froese, W. Kirsch, B.

Simon, Schrödinger Operators, (Springer-Verlag, Berlin, 1987) p. 125.
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Figure Captions

Fig. 1: Boundary of the simply connected piece of the sample.

Fig. 2: The boundary contour ∂C.
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Figure 1.

Figure 2.
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