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Abstract

We examine the issue of duality both in electrodynamics and in Kalb–Ramond—

scalar axion systems. InD spacetime dimensions the dual abelian theories of p−1- and

D− p− 1-form potentials have vacua classified by the dimensions of the cohomology

spacesHp−1( (D−1)M) or HD−p−1( (D−1)M) respectively. The vacua are characterized

by topological charges which are expectation values for generalized ‘Wilson loop’

operators around non-trivial cycles. In certain instances the vacua exhibit a theta

angle parametrization much as in QCD. The relation of axionic hair and discrete

gauge hair is analyzed in the topologically massive Kalb–Ramond theory. If there

are no fundamental strings in the theory, axionic charge is replaced by an irrelevant

vacuum angle.
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1. Introduction

It is a well-known fact that certain theories, among them gauge theories and

abelian (and even non-abelian
[1]

) scalar theories, admit description in terms of two

different sets of potentials. The duality in these theories is the exchange of field

equations and Bianchi identities.

What is not well appreciated is that these theories are not identical. The prop-

agating modes written in one of the potentials do have description
[2]

in terms of the

dual potential, although the relation is non-local. It is precisely the vacua of the

theories which differ. It is the vacuum properties of the theories which carry such

information as Aharonov-Bohm phases and such exotic features as quantum hair.

Duality in terms of potentials is, in fact, another way of expressing the lattice duality

which exchanges the strong and weak coupling regimes.
[3]

In the Ising model dual-

ity exchanges the spin lattice with its dual lattice. The present work is an attempt

to clarify the issues of the vacua of theories dual to each other and to understand

the subtle differences between the different kinds of quantum hair which have been

proposed.

We find that the vacua of dual abelian theories have surprisingly rich structures,

depending on the topology of the spatial slices of spacetime. The main line of attack

is the construction of topological currents and, from them, observables and global

symmetries.

We first construct the topological currents both in electrodynamics and in the

scalar—Kalb–Ramond axion system, and from them their charges and observables.

Only the source-free equations are considered, but sources may be put in by excising

the regions from the spatial manifold where the sources are located. The source-free

equations are considered on the remaining manifold, which may now have non-trivial

topology. The same analysis applies to spatial manifolds having intrinsic topology not

created by physical currents. As an aside, we put the Dirac quantization of magnetic

charge and the quantization of axionic charge on S3 into the same language, even

though these are not strictly issues of the vacuum. Finally, we discuss the issue of
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quantum hair in the superconducting vacuum of coupled electromagnetic and axion

fields.

2. Duality and Topological Currents

2.1. Electrodynamics

Although we ordinarily think of Maxwell’s equations as being the theory of the

electromagnetic potential Aµ, it is sometimes useful to step back to the field strengths

themselves. We examine Maxwell’s equations in the absence of sources.

dF = 0,

d*F = 0.
(2.1)

The standard procedure is to solve the first equation by defining the potential: F =

dA, at least locally. Usually we think of this as being more reasonable than using

the dual potential G with *F = dG, because of the extreme scarcity of magnetic

charge. For now we assume the absence of any point-like defects in the spatial slices:

H2( 3M) = 0.

Let us take the point of view that either set of potentials is reasonable in the

absence of charged matter. It is useful to look upon the Maxwell equations as defining

two conserved currents, and to note the action of these currents upon states. It is

necessary to apply to the currents an arbitrary vector function in each case to saturate

the Lorentz indices.

jµ
(λ)

= λαF
αµ,

j∗µ(ξ) = ξα*F
αµ.

(2.2)

For each current to be conserved, the one-forms λ and ξ must satisfy dλ = dξ = 0. It

is important to note that although these currents are conserved, they have nothing

to do with the movement of electric or magnetic charges. (The true currents would

be given formally by the replacement of the one-forms λ and ξ with the exterior

derivative operator.) These currents, rather, encode topological information about

the spatial manifold 3M.
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If the dynamical variables of the system are taken to be the vector potentials

Aµ(x), then the charges associated to the currents (2.2) are

Q(λ) =

∫
3M

λαΠα
A,

Q̃(ξ) =

∫
3M

ξ ∧ dA,

(2.3)

where ΠA is the canonical momentum conjugate to A. When λ is an exact form of

compact support,

λ = dχ, χ(x) = 0 when |x| > R for someR, (2.4)

we may integrate by parts and find that the charge Q(λ) generates true, or “small,”

gauge transformations: Aµ → Aµ + ∂µχ. Thus, when λ is an exact form, the charge

Q(λ) must have a trivial action upon physical states, because physical states are gauge

invariant. Another way to put this is to say that Q(dχ) is a constraint in the sense of

Dirac, and must annihilate all physical states. Written in terms their respective dual

potentials, the charges Q and Q̃ are the generators of the global symmetry group of

“large” gauge transformations when the forms λ and ξ are closed but not exact. These

large gauge transformations are transformations on the fields which are locally gauge

transformations but which cannot be patched together globally into a single-valued

gauge transformation. The two charges Q and Q̃ commute,

[Q(λ), Q̃(ξ)] = −i
∫

3M

ξ ∧ dλ = 0, (2.5)

at least formally.
[4]

For certain spatial topologies the commutator (2.5), which is

related to the linking number of two curves, will not vanish and provides us with

information about the vacuum. The algebra obeyed by the charges is the same re-

gardless of which potentials are used.
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2.2. Axions: Scalar and Two-Form

In four dimensions a system similar to electrodynamics is the free system of

equations for a three index antisymmetric tensor field strength
[5]
H = 1

3!Hαβγ dxα ∧
dxβ ∧ dxγ .

dH = 0,

d*H = 0.
(2.6)

These may be viewed as defining a free theory of either a two-form tensor B =

1
2Bαβdxα ∧ dxβ or a scalar field φ.

H = dB or *H = dφ. (2.7)

This expresses the same duality as Maxwell’s equations above, the duality exchanging

the field equations for the Bianchi identity and vice versa, but the two potentials here

look very different; so different that one has a large set of gauge invariances while the

other does not. We also find two very different looking conserved currents

jµ = *H
µ,

jµνρ = Hµνρ.
(2.8)

The current jµ is the Noether current for the global Peccei-Quinn symmetry
[6]
φ →

φ+ c, generated by

Q̃(c) =

∫
3M

c *H, (2.9)

while the current jµνρ, after saturating the Lorentz indices, leads to the Noether

charge,

QΩ = 1
2

∫
3M

Ωµνj
µν0 = 1

2

∫
3M

ΩµνΠµν
B , (2.10)

generating Kalb-Ramond gauge transformationsB → B+Ω. In order that the current

jµ(Ω) be conserved, it is necessary that the two-form Ω be closed: dΩ = 0. This is
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in perfect analogy with the Maxwell case. When Ω is exact with compact support,

Ω = dΛ, QΩ generates true gauge transformations B → B + dΛ, under which all

physical states must be invariant. Again, as in electromagnetism, this is to say that

QΩ is a constraint in the sense of Dirac and must annihilate all physical states. When

Ω is closed but not exact of compact support, QΩ generates a symmetry of the action

exactly analogous to the “large” gauge transformations of the Maxwell system.

3. Characterization of the Vacuum Manifold

3.1. Observables: Wilson Surfaces, Loops and Points

In the Aµ-representation, we can show that the charge Q̃(ξ), dual to the generator

of gauge transformations Q(λ), leads to the familiar Wilson
[7]

loop observable W [Γ]

for certain spatial topologies. We will suppose that the boundary at infinity of the

spatial slice is identified to a point; the slice is a three-sphere. Now we excise a

thickened loop, Γ, from the interior; 3M = S3\Γ. The dual charge may be written

Q̃(ξ) =

∫
3M

ξ ∧ dA =

∫
∂ 3M

A ∧ ξ. (3.1)

If ξ is chosen to be a one-form which is locally e dθ/2π, where dθ/2π links the loop Γ

once, then in the limit of vanishing loop thickness the charge becomes

Q̃( edθ2π ) = e

∮
Γ

A. (3.2)

The “current” flowing in the Wilson loop can be defined as j = *dξ, where the dual

is now taken in the three-dimensional space. The form ξ is the only closed, non-exact

one-form available in the spatial slice, so no other objects can be constructed from Q̃.

One can also immediately see that excising a point, for instance, will not lead to any

gauge invariant objects, for there will not be any closed, non-exact one-forms from

which to build such an object. This construction is a way of motivating the Wilson
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loop operator by removing from the spatial manifold the points where charges are

located. If the manifold has noncontractible loops, the Wilson operators are more

easily looked at as the left hand side of (3.2).

In general, one can define observables for the Maxwell system as the Wilson and

’t Hooft
[8]

loops

W [Γ] = exp
{
i e

∫
Γ

A
}

= exp
{
i Q̃( edθ2π )

}
,

W̃ [Γ] = exp
{
i g

∫
Γ

G
}

= exp
{
iQ( edθ

2π
)

}
,

(3.3)

upon which the charges (2.3) may act.

The actions of the global generators on the loop observables are

eiQ(λ) W [Γ] e−iQ(λ) = ei e
∫

Γ
λ W [Γ],

eiQ̃(ξ) W̃ [Γ] e−iQ̃(ξ) = ei g
∫

Γ
ξ W̃ [Γ],

eiQ(λ) W̃ [Γ] e−iQ(λ) = W̃ [Γ],

eiQ̃(ξ) W [Γ] e−iQ̃(ξ) = W [Γ],

(3.4)

As for the Maxwell case, the consideration of one set of potentials for the ax-

ion system (2.6) leads to a conjugate set of “observables.” For the Kalb-Ramond

potentials Bµν we consider the Peccei-Quinn, or axion,
[9]

charge

Q(a) =

∫
3M

a(x)H, (3.5)

where a(x) must be a locally constant function. Of course, if the spatial slice 3M
is S3, then the charge is fairly trivial, but suppose we excise a two-surface Σ from

the interior of the slice; 3M = S3\Σ. Then, let a(x) be the function which links the

surface Σ once: a(x) = 1 if x is inside Σ and a(x) = 0 otherwise. The Wilson surface

7



observable is just the axion charge enclosed by the surface:

W [Σ] = exp
{
iκ

∮
Σ

B
}
. (3.6)

Generalized Wilson surfaces first appeared in the work of P. Orland,
[3]

as order-disorder

parameters useful for distinguishing the phases in the continuum limit of abelian n-

form theories in D dimensions.

Analyzing the axion system with the scalar potential, we need to find a topology

with non-trivial two-forms, so let us excise a point p. The ‘Wilson point’ observable

will be

W̃ (p) = exp{i ε φ(p)}. (3.7)

This we recognize as the phase of a charge-ε Higgs field at a given point p. It is the

obvious dual of the Wilson surface observable defined above.

3.2. Charge Quantization Conditions

We have shown how gauge transformations and observables arise from the topol-

ogy of spatial slices 3M. It is interesting to put the Dirac monopole charge quanti-

zation and axion charge quantization conditions into the same language.

If a point is excised from the interior of the spatial slice 3M, one has the possi-

bility of having charges reside at the point. The Dirac monopole charge quantization

condition follows from demanding that any Wilson loop have the limiting value 1 as

the loop is shrunk to a point.

W [Γ]→ 1 as Γ→ p. (3.8)

For any continuous family of loops Γt one can show that the Wilson loops satisfy

W [Γ1] = exp
{
i e

∫
Σ

F
}
W [Γ0], (3.9)

where Σ =
⋃

t∈[0,1]

Γt is the surface swept out by the family of curves Γt. If the
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end curves Γ0,1 are both points and the surface Σ spanned by the curves encloses a

monopole, then the Dirac quantization condition is the immediate consequence.

2πn = e

∮
F = 4π e g. (3.10)

Exactly analogous to the Dirac quantization condition is the quantization of axion

charge
[10]

over a spatial slice 3M = S3. The argument above is repeated with Wilson

surfaces instead sweeping out the whole volume, starting from the center, r = 0, and

ending at the point at infinity. The condition reads

W [Σr=∞] = exp
{
i κ

∫
V

H
}
W [Σr=0] ⇒ 2πn = κQaxion. (3.11)

3.3. Vacuum Angles

Until now, we have considered only the structure of the pure gauge theory in

the absence of matter. Whether or not a Wilson operator is an observable depends

on the matter content of the theory. In electromagnetism with charges quantized in

units of some elementary charge e, the Wilson loops W [Γ] are observables and can be

measured as the Aharonov-Bohm phases of a beam of elementary charges traversing

the loops Γ. By inspecting (3.4), one can see that the action of eiQ(λ) is no longer

a symmetry unless λ satisfies a quantization condition forcing the exponents to be

integral multiples of 2πi for any closed curves in the manifold;

e

2π

∫
Γ

λ ∈ Z ∀Γ ∈ π1( 3M). (3.12)

The physical states of the system, the so-called θ-states, form a representation of each

global Z gauge symmetry

ei nQ(λ)

∣∣∣wΓ , θλ

〉
= ei n θλ

∣∣∣wΓ , θλ

〉
,〈

wΓ , θλ

∣∣∣W [Γ]
∣∣∣wΓ , θ′λ

〉
= wΓ δθλ,θ′λ .

(3.13)

This an abelian version of the Hosotani flux-breaking mechanism,
[11]

which breaks the

global U(1)b1 (b1 = dimH1
c ( 3M)) gauge symmetry down to H1

c ( 3M; Z) = Zb1 . In a
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pure Maxwell system, none of the Wilson loops is an observable, and the states must

form a representation of the global U(1)b1 gauge symmetry. The quantities θλ will

have an invariant meaning for all λ ∈ H1( 3M) and there will be a new parameter

describing the vacuum. If we transcribe the U(1) gauge theory analysis above to the

Kalb-Ramond axion system, the analogous statements become

ei nQ
Ω
∣∣∣wΣ , θΩ

〉
= ei n θΩ

∣∣∣wΣ , θΩ

〉
,〈

wΣ , θΩ

∣∣∣W [Σ]
∣∣∣wΣ , θ′Ω

〉
= wΣ δθΩ,θ

′
Ω
.

(3.14)

The Wilson surfaces are observables and can be measured by the Aharonov-Bohm

phases of fundamental strings propagating along the closed surface Σ, yielding the

axionic charge of the state. If a point p has been excised from 3M to create non-trivial

two-cohomology, then the vacuum angle θ is the value of the scalar axion at that point

p. Here we are assuming that there are instantons which mediate transitions from

one n-state to another, such as occurs in QCD.
[12]

It is known that there are such

instantons in the Kalb-Ramond theory in 3+1 dimensions
[3,10]

and in the U(1) gauge

theory on the spacetime S1×R.
[13]

In the absence of instanton tunneling transitions,

the n-vacua are good quantum vacua and the global gauge symmetry is completely

broken.

As for QCD, these theta angles can show up in the action. They are implemented

in the path integral by adding total derivative terms to the action:

Stopological = θλ

∫
d*j(λ). (3.15)

Actions similar to (3.15), in that forms on the manifold have been used in their

construction, have been considered by Nair and Schiff.
[14]
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4. Axionic Charge and Quantum Hair

Although we have little to say directly about the purely scalar version of axionic

hair, which is more like the linking of two loops rather than the linking of a surface

and a point, we do point out that there is a parallel in the theta structure of the

Kalb-Ramond theory. For rational theta, θ = k/N , the global symmetry group is

H2
c ( 3M,ZN ), which is exactly the symmetry left when a charge N scalar gets a VEV

and there is a charge 1 object in the theory. In a theory of an uncharged scalar, the

string is a singularity and the field around it is not a vacuum. That is to say, the field

strength is non-vanishing and the string has a divergent energy. However, when there

is a gauge field coupling to a charged scalar, there can be a “vacuum” string solution

where the field strengths vanish outside the string. The equations of motion for the

topologically coupled two- and one-forms describing the charged scalar theory,

d*H = mF,

d*F = −mH,
(4.1)

are no more than the London equations, and may be cast either as the original

equations of motion for the interacting Kalb-Ramond and abelian gauge fields with

the action
[4]

S =

∫
1
2H ∧ *H + 1

2F ∧ *F +mB ∧ F, (4.2)

or as the equations of motion for the Stückelberg action

S =

∫
1
2F ∧ *F + 1

2m
2(A+

1

m
dφ) ∧ *(A+

1

m
dφ), (4.3)

once the identification

*H = dφ+mA, (4.4)

is made. In (4.1) the ‘current’ is jem = m*H. If the operator d* is applied to the

second equation, one finds that the field strengths satisfy the massive Klein-Gordon
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equation d*d*F = −m2F . In keeping with the philosophy of the previous sections,

we work at the level of the field equations (4.1), needing the action only for the sake

of identifying the momenta conjugate to the potentials we choose to describe the

system.

Applying d to both sides of the equations (4.1), we find that the usual Bianchi

identities follow, again leading to topological charges

Q̃(ξ) =

∫
3M

ξ ∧ dA,

Q̃(c) =

∫
3M

c *H.

(4.5)

The equations of motion lead to the charges very similar to before, with one crucial

difference, an extra term proportional to m, whose origin is the non-invariance of the

Lagrangian density in (4.2).

Q(λ) =

∫
3M

λαΠα
A,

QΩ = 1
2

∫
3M

Ωij(Π
ij
B +mεijkAk)

(4.6)

The charges (4.6), which act independently when m = 0, now do not commute. The

global generators for the charges (4.6) have a co-cycle in their commutation relations:

exp(iQ(λ)) exp(iQΩ) = eim
∫

3M λ∧Ω exp(iQΩ) exp(iQ(λ)). (4.7)

When m 6= 0 the two large gauge transformations are not independent. Let us

consider the black hole geometry which can carry axionic charge by virtue of its

non-trivial second cohomology. If the U(1) gauge group is compact, then all the

charges are quantized in multiples of some smallest unit e. Under a large U(1) gauge
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transformation using λ = dχ, with χ→ 2π/e as |x| → ∞, all states must be invariant.

This has the effect of quantizing the allowable Ω in (4.6). We find

m

e

∮
r=∞

Ω ∈ Z. (4.8)

If there are fundamental strings in the theory, the large Kalb-Ramond gauge trans-

formations must leave the Wilson surfaces invariant as well:

eiQ
Ω

W [Σ]e−iQ
Ω

= eiκ
∮

Σ
Ω W [Σ]⇒ κ

2π

∮
Σ

Ω ∈ Z. (4.9)

If the string coupling κ
2π and the mass coefficient m

e are not rationally related, then

there will be no allowable large Kalb-Ramond gauge transformations at all.

Let us examine the scalar representation of the algebra of large gauge transfor-

mations (4.7). We denote the generator eiQ(λ) by U(ω) when the limiting value of eχ

is ω, where ω ∈ [0, 2π) and λ = dχ. We also denote by V (nΩ) the generator eiQ
Ω

where the winding number of Ω given in eq. (4.8) is nΩ. Thus (4.7) becomes

U(ω)V (nΩ) = eiωnΩV (nΩ)U(ω). (4.10)

As usual, the states are labeled by charge Q

U(ω) |Q〉 = eiωQ |Q〉 , (4.11)

which we wish to preserve as a representation of the subgroup of the full group of

transformations (4.10). If there were no cocycle in the relations (4.10) then the irreps

would be labeled by an angle as well. In the presence of the cocycle, the states may

be labeled by an angle, just as in the massless case, but now the large Kalb-Ramond
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gauge transformation also changes the charge sector:

V (nΩ) |Q, θ〉 = eiθnΩ |Q+ nΩ, θ〉 ,

U(ω) |Q, θ〉 = eiωQ |Q, θ〉 .
(4.12)

This representation is reducible, being the product of an irreducible representation

and a circle. That is, the states may be redefined so that everything is independent

of the angle θ.

If there is a Wilson surface observable, W [Σ], as in (4.9), which breaks the large

Kalb-Ramond gauge transformations completely,

U(−ω)W [Σ]U(ω) = W [Σ],

V (n)W [Σ]V (−n) = eiκnW [Σ],
(4.13)

then the states are labeled by axionic charge instead of a vacuum angle.

To see this, we let the phase of the Wilson surface expectation value be given by

the axionic charge

〈Qax|W [Σ]|Qax〉
| 〈Qax|W [Σ]|Qax〉 |

= eiκQax , (4.14)

and find, using (4.10) and (4.12), that the states of axionic charge are

|Q, Qax〉 =

∫
dθ√
2π

ei
m
e
θQax |Q, θ〉 . (4.15)

Thus there are both types of dual topological charges corresponding to Wilson

surfaces (2.9) and points (2.10) and Wilson and ’t Hooft lines (2.3). The ZN quantum

hair examined by Krauss and Preskill et al.
[15]

is described in this language as the

detection of ’t Hooft lines by Wilson lines, and not the detection of a Wilson point

by a Wilson surface. That is to say, a charge e object, when transported around a

string carrying flux 2π/Ne, will pick up a phase e2πi/N . This happens regardless of

the mass of the gauge field, and depends only upon the total flux, which is confined to
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the string by the superconductivity of the vacuum. The flux in the string singularity

is quantized in the vacuum by virtue of the ‘charge’ of the Stückelberg scalar. The

Kalb-Ramond field is assumed to be given by (4.4). If the ‘mass’ in eq. (4.4) is

quantized, m = Ne, the flux in the string becomes quantized in units of 2π/N if the

scalar field φ is to be single-valued around the string. A charge e Wilson loop can

still detect the flux in the string, however. This is the origin of ZN quantum hair.

This hair is different from axionic hair, which is the detection of a Wilson point by a

Wilson surface. The existence of axionic hair is similarly unaffected by the mass of

the the Kalb-Ramond gauge field.
[16]

5. Discussion

The relationship between a theory and its dual is more complicated than it may

seem at first sight. For a theory of an abelian p-form field strength in D spacetime

dimensions, there are descriptions either in terms of a p − 1-form potential or a

D− p− 1-form potential. If there are observables corresponding to the Wilson loops

in both cases, then the vacua of the theory are generically inequivalent in the sense

that they are classified by the dimensions of the cohomology spaces Hp−1( (D−1)M) or

HD−p−1( (D−1)M) depending on which potential is used. Even though it is the vacua

which are different, there can be dynamical consequences
[17]

of this inequivalence.

Once there are charges coupling to the potentials in the theory, the issue of equivalence

becomes more complicated. We avoided the issue of sources by excising regions from

the spatial manifold and considering only the source-free equations on the remaining

part. In the absence of sources, the dual theories are equivalent, except for their vacua.

Depending on the theory, there may be θ-vacua even when there are no observables

and the θ structure generically will be different for different potentials.

It should be mentioned that topological currents can be constructed for the field

equations of U(1) Chern-Simons theory in 2+1 dimensions as well, and lead directly
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to the vacuum structure there. The topological current and its charge are

jµ(λ) = λα*A
αµ,

Q(λ) =

∫
j0
(λ) =

∫
λαΠα

A.
(5.1)

In this respect, the only real difference between the Chern-Simons theory and the

Maxwell theory is that there are only topological vacuum states in the Chern-Simons

theory while the full Maxwell theory has photon states as well.

The issue of duality is interesting not only in four dimensions. Some time ago,

Orland noted the equivalence of Hodge duality and duality in statistical mechanics
[3]

and was able to show that n th rank theories are disordered in D = n + 2 but

not in D = n + 3 and higher. Recently it has been argued that ten-dimensional

strings are solitons in a theory of ten-dimensional five-branes and vice versa.
[18]

This

duality is interesting for the reason that while string theory is believed to be strongly

coupled, the five-brane theory, in agreement with ref. [3], is weakly coupled. Thus,

if a perturbation theory for five-branes can be constructed, it should be valid when

string perturbation theory is not. It might be interesting to investigate one aspect

of this duality; the “axion” in D = 10. The two dual charges are constructed from

two-cocycles and from six-cocycles. What was the scalar axion in four dimensions will

become a six-form axion. If there are instantons in string theory which can change

the axionic charge by integral values, it may be that there is a separate phase of

the theory wherein the dual topological charges, thought of as Wilson operators, get

VEVs signaling compactification of six dimensions. Of course, if the string—five-

brane duality is exact, it should explain how the seemingly different field theoretic

vacua are actually connected and somehow the same.
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