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Abstract

In this note it is demonstrated that the unitary propagator is obtained from the

pseudoclassical system proposed as a first-quantized version of the Dirac particle by

Berezin and Marinov. The action for the system is written in a form which has

manifest global supersymmetry on the worldline.
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1. Introduction

Little is known of the point particle versions of quantum field theories while

much is known about quantum field theories. On the other hand, string theories are

understood only in their first-quantized form. By understanding well the connection

between field theories and their point particle versions, one may hope to understand

the connection between strings in a first-quantized form and in a form suitable for

nonperturbative calculations.

In this note it is demonstrated that the unitary propagator is obtained from a

Batalin-Fradkin-Vilkovisky [1] quantization of the action proposed by Berezin and

Marinov [2] for the pseudoclassical description of the Dirac electron.

When computing the propagator, other authors [3,4] have found a factor of γ5.

Such a factor ruins the unitarity of the propagator, which must be unitary since the

Batalin-Fradkin-Vilkovisky path integral is manifestly unitary. The reconciliation is

arrived at when the second-class constraints are treated carefully.

The pseudoclassical version of the Dirac electron is a nice example of a system

whose second-class constraints may be treated in canonical quantization in an elegant

fashion.

2. The Classical Dirac Electron

The first classical action for the Dirac electron using anticommuting variables was

written by Berezin and Marinov [2].

S =

∫
dτ [−m

√
−ẋ2 +

i

2
(ξµξ̇µ + ξ5ξ̇5)− (uµξ

µ + ξ5)λ]. (1)

In this action the variables ξµ, ξ5 and λ are anticommuting while xµ is commuting.
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The notation uµ is a shorthand for ẋµ/
√
−ẋ2. The canonical momenta

Pµ = muµ + iλ(−ẋ2)−
1
2 (ξµ + uνξ

νuµ),

Pξ =
i

2
ξ,

P5 =
i

2
ξ5,

Pλ = 0,

(2)

lead to the constraints

Pλ ≈ 0,

P 2 +m2 ≈ 0,

Pµξ
µ +mξ5 ≈ 0,

Pξµ −
i

2
ξνηµν ≈ 0,

P5 −
i

2
ξ5 ≈ 0.

(3)

The first three of these are first-class while the last two are second-class. The two

second-class constraints may be removed by introducing the Dirac brackets

{ξµ, ξν}DB = iηµν ,

{ξ5, ξ5}DB = i.
(4)

The Hamiltonian, which is a linear combination of the constraints

H = λ1(P 2 +m2) + λ2(Pµξ
µ +mξ5),

generates the equations of motion

ẋµ = 2λ1Pµ + ξµλ2,

Ṗµ = 0,

ξ̇µ = iPµλ2,

ξ̇5 = imλ2.

(5)
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One may fix a gauge by choosing the multipliers to be

λ1 =
1

2m
,

λ2 = 0.
(6)

This Hamiltonian yields a simple set of equations of motion.

The constraint (P 2 + m2) generates τ reparametrizations just as it does for the

scalar particle, while the constraint (P ·ξ+mξ5) generates translations in an anticom-

muting time, which we might call ϑ. This system is an example of a one-dimensional

supersymmetric theory. This can be demonstrated by writing the theory in a man-

ifestly supersymmetric form. We accomplish this by pairing up the fields which are

superpartners into single superfields which are functions of both τ and ϑ. We define

the following superfields

Xµ(τ, ϑ) = xµ(τ) + iϑξµ(τ),

X5(τ, ϑ) = ξ5(τ) + ϑφ5(τ),

E(τ, ϑ) = e0(τ) + ϑe1(τ).

(7)

The five superfields Xµ and E are commuting superfields while X5 is anticommuting.

The supersymmetric covariant derivative, D, and the supersymmetry generator, Q,

defined by

D :=
d

dϑ
− iϑ d

dτ
,

Q :=
d

dϑ
+ iϑ

d

dτ
,

(8)

satisfy the algebra

Q2 = i
d

dτ
,

D2 = −i d
dτ
,

QD +DQ = 0.

(9)

Using the properties (9) and the superfields (7), we may construct an action which is
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manifestly invariant under the global supersymmetry transformations

δΦ = εQΦ, (10)

for any superfield Φ. The action

S =

∫
dτdϑ[− 1

2E
DXµD2Xµ +

1

2E
X5DX5 +mX5] (11)

is also invariant under local τ -reparametrizations

δXµ = εẊµ,

δX5 = iD(εDX5),

δE =
d

dτ
(εE) + i(Dε)(DE),

(12)

with ε a commuting function of τ and ϑ.

When written out in component form,

S =

∫
dτ

[
1

2e0
(ẋ2 + iξ · ξ̇ +

e1

e0
ξ · ẋ+ iξ5ξ̇5 + φ2

5 −
e1

e0
ξ5φ5) +mφ5

]
, (13)

the action (11) can easily be seen to be equivalent to the action written by Berezin

and Marinov (1). A locally supersymmetric superfield formulation has been written

by Brink, Deser, Zumino, Di Vecchia, and Howe [5] for the massless case. To write a

locally supersymmetric version for the massive case, presumably one should treat X5

as a D = 1 spinor and introduce a D = 1 supermetric.

3. Quantization

Upon quantization, the anticommuting variables ξµ and ξ5 will become

operators with anticommutators given by the Dirac brackets (4). Berezin and

Marinov have identified the quantum operators corresponding to ξµ and ξ5 as the

elements of the Dirac gamma algebra i
√

h̄
2γ5γµ and i

√
h̄
2γ5. In fact, as we shall
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see, the situation is more subtle than this. The second-class constraints must be

handled carefully in order to obtain a consistent quantization. First let us observe

that there are an even number of Grassmann variables and an odd number of second-

class constraints on those variables. The reduced phase space is thus odd dimensional.

The variables ξµ are easily separated into pairs conjugate under the Dirac brackets

(4):

η1 =
ξ0 + ξ3√

2
,

η∗1 =
−ξ0 + ξ3√

2
,

η2 =
ξ1 + iξ2√

2
,

η∗2 =
ξ1 − iξ2√

2
,

(14)

satisfying the relations

{ηi, η∗j}DB = iδij. (15)

The constraint on ξ5 is not as easily solved. In fact, because it is second-class,

it cannot be imposed on a state directly. The easiest way to take it into account

is to follow Bordi and Casalbuoni [3] in imposing the condition that the Hilbert

space separate into physical states and unphysical states which are orthogonal to the

physical states. Further, we suppose that the constraint maps physical into unphysical

states. This is the condition:∫
dξ5 χ

∗(ξ5)[P̂5 − iξ5/2]χ(ξ5) = 0. (16)

This implies that the physical states are all proportional to χα = (
√

2 + eiαξ5), all

with the same value of α. All of the wavefunctions are then of the form

Ψ = χα(ξ5)φ(η∗1, η
∗
2, x), (17)

with φ, as well as χα, of mixed Grassmann parity. The wavefunction φ is specified
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by four complex functions φij(x):

φ(η∗1, η
∗
2, x) = φ00(x) + φ10(x)η∗1 + φ01(x)η∗2 + φ11(x)η∗1η

∗
2. (18)

This φ carries exactly the same information as a Dirac spinor wavefunction and trans-

forms as a spinor under SO(3, 1) rotations.

We may find an operator for ξ5 which realizes the relation (4) as an anticommu-

tation relation. This operator is

ξ̂5 =
∂

∂ξ5
− ξ5

2
, (19)

which, strangely enough, is the direct transcription of the last constraint in (3) into

operator form. To realize the relations (15) one assigns the operators

η1→ i
∂

∂η∗1
,

η2→ i
∂

∂η∗2
.

(20)

The constraints then become the conditions

0 = ( −m2)φij(x),

0 = meiαχ−α(−ξ5)φ(η∗1, η
∗
2, x) + χα(−ξ5)(i

√
2ξ̂µ∂µ)φ(η∗1, η

∗
2, x).

(21)

This last condition cannot be satisfied unless α = 0, π or φ(η∗1, η
∗
2, x) ≡ 0. Thus

one is forced to choose α = 0, π in order to obtain any quantum theory at all. For

these values of α the fermionic constraint is equivalent to the condition

(±m+
√

2iξ̂ · ∂)φ(η∗1 , η
∗
2, x) = 0. (22)

If we require the norm of the state functions

〈χα|χα〉 =

∫
dξ5 χ

∗
α(ξ5)χα(ξ5) =

√
8 cos α , (23)

to be positive, then α must be zero.
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The condition (22) is obviously the Dirac equation, and does not contain an extra

factor of γ5. The correct propagator may be obtained by the BFV prescription.

To begin the BFV quantization, one first computes the BRS charge. Because the

constraints do not form an abelian algebra, there is a term containing more than one

ghost. The ghosts c1 and b1 are anticommuting while c2 and b2 are commuting. The

BRS charge is

Ω = c1(P 2 +m2) + c2(P · ξ +mξ5)− i

2
c2c2b1 + b̄1π1 + b̄2π2. (24)

It is simplest to choose the gauge-fixing function to be

Ψ = −(b1λ1 + b2λ2)/∆τ. (25)

The propagator is computed from the BFV path integral

ZBFV =

∫
DP DQei

∫
dτ (PQ̇−H0+{Ψ,Ω}DB). (26)

Here P and Q stand for all of the phase space degrees of freedom, including the

ghosts and the Lagrange multiplier variables. The canonical Hamiltonian, H0, of any

reparametrization invariant action (such as the Berezin-Marinov action (1)) vanishes,

thus the “Hamiltonian” governing τ evolution is just the “gauge fixing” piece

H = −{Ψ,Ω}DB
= λ1(P 2 +m2)− λ2(ξ · P +mξ5) + iλ2c2b1 + bib̄i.

(26)

Imposing the Feynman boundary conditions that the positive (negative) energy par-

ticles move forward (backward) in time on the motion of the particle, one finds from

the xµ equations of motion that λ1 must be restricted to nonnegative values:

ẋµ =
∂H

∂Pµ
= 2λ1P

µ − λ2ξ
µ. (27)

Unlike the simple case of the bosonic particle, there is a nontrivial ghost integral

to evaluate. With the ghost boundary conditions ci = πi = 0, the ghost integrations

7



lead to a factor

δ2(b̄f )δ2(b̄i) sdet−1

(
∂2

∂τ2 iλ2
∂
∂τ

0 ∂2

∂τ2

)
= δ2(b̄f )δ2(b̄i), (28)

which will be implicit in the following.

The path integral over the variable ξ5 can be done as in Bordi and Casalbuoni

[3], or directly by discretization of the integral

K(ξf |ξi) :=

ξ(τ )=ξf∫
ξ(0)=ξi

Dξ ei
∫ τ

0
dt( i

2
ξξ̇+ηξ) = (ξf − ξi + iητ)e−ξfξi/2. (29)

This expression is not the propagator, but the symbol of the propagator [6], since it

does not preserve the physical states under time evolution. The propagator defined

from the symbol

K̃(ξf |ξi) = K(ξf |ξi)eξfξi (30)

preserves the orthogonality of the physical states χo and the unphysical states χπ

under τ evolution. ∫
dξf dξi χ

∗
π(ξf )K̃(ξf | − ξi)χo(ξi) = 0. (31)

The rest of the transition amplitude is easy to evaluate. The full propagator is

K(xf , ηf , ξ5f |xi, η∗i , ξ5i) =

∫
dλ2 d

4p
eip·(xf−xi)

p2 +m2 − iε
· (ξ5f − ξ5i − imλ2) eξ5fξ5i/2eηf ·η

∗
i eiλ2p·ξ.

(32)

The boundary conditions must be handled carefully. The transition element (32)

must be evaluated between physical states. In particular, the ξ5 dependence is crucial.
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To obtain the correct propagator, we take the matrix element of (32) between states

whose dependence on ξ5 is physical. Thus

〈xf , ηf |xi, η∗i 〉 =

∫
dξ5i dξ5f χ

∗
o(ξ5f )K(xf , ηf , ξ5f |xi, η∗i ,−ξ5i)χo(ξ5i)

∝
∫
d 4p

eip·(xf−xi)

p2 +m2 − iε(m−
√

2p · ξ),
(33)

with ξµ identified as the expressions in (14), is the the Dirac propagator when the

identification

√
2ξµ→ γµ (34)

is made. There is no factor of γ5 to spoil unitarity, which is as it must be since the

Hamiltonian path integral is manifestly unitary.
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