
SU-4238-405
October 1989

Axionic Black Holes from Massive Axions

Theodore J. Allen, Mark J. Bowick, and Amitabha Lahiri

Department of Physics

Syracuse University, Syracuse, NY 13244-1130

Abstract

A black hole may carry axionic charge in a theory which has gravity coupled to a

massless two-form Kalb-Ramond field. We show that this effect persists if the axion

has a topological mass term coupling the Kalb-Ramond potential to a U(1) gauge

field. Such mass terms arise in the low-energy effective theory of the string.
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I. Introduction

The stationary black hole solutions to Einstein’s equations in vacuo [1] are

uniquely characterized by the mass M and angular momentum J [2]. Generally one

expects that the gravitational field must be coupled to a massless field for a black hole

solution to acquire another parameter or charge. For the coupled Einstein-Maxwell

equations there are two additional parameters, the electric charge e and the magnetic

charge µ [3] and again there is a uniqueness theorem [4]. A great deal of the interest

and importance of these classical solutions derives from their uniqueness, since they

determine the final state of gravitational collapse of arbitrarily complicated states of

matter with sufficiently high mass. Charges, such as baryon number, which do not

appear to be coupled to a massless field generically decouple as they approach the

event horizon and cease to be observable [5].

Recently it was found that black holes may also carry axionic charge [6]. It

was assumed in [6] that the axion field was exactly massless and is the physical

mode of a two-form potential, called the Kalb-Ramond (KR) field. KR fields arise

in string theory as they naturally couple to the area element of the two-dimensional

worldsheet [7]. They also arise in supergravity models, and in cosmic strings arising

from the spontaneous breaking of anomalous U(1) symmetries [8]. In particular, KR

fields are contained in string theories compactified to four dimensions. A variety of

physical mechanisms, however, such as those associated with instantons, wormholes

and the generic compactification to four dimensions, are expected to generate masses

for axions. We will start by reviewing the massless case and its assumptions and then

proceed to the consideration of the massive case.

II. The Massless Case

We consider a two-form Bµν in four dimensions which interacts with gravity but

is massless. The action for this field is

S = 1
2

∫
d4x(H ∧ ∗H). (2.1)
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The field strength is given by H = dB. The field equations which follow from

this action,

d ∗H = 0, (2.2)

can be solved in a simply-connected space by introducing a scalar φ:

∗H = dφ. (2.3)

The Bianchi identity for H, dH = 0, becomes the field equation for φ,

φ = 0. (2.4)

The field φ has a global Peccei-Quinn U(1) symmetry,

φ→φ+ a, (2.5)

where a is any constant. It should be noted that this correspondence is only valid

for the free case, since off-shell these theories have different numbers of degrees of

freedom. One can most easily count the degrees of freedom for the two-form using

the canonical approach. On the phase space consisting of Bµν and its canonically

conjugate momentum Πµν there are first-class constraints, analogous to those of elec-

tromagnetism:

Π0i(x) ≈ 0,

∂iΠ
ij(x) ≈ 0.

(2.6)

In addition there is a reducibility condition on the last constraint of (2.6),

∂i∂jΠ
ij(x) ≡ 0. (2.7)

Thus there are exactly five first-class constraints on Bµν(x) and its momentum

Πµν(x). This leaves one degree of freedom in the configuration space. When the
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KR field becomes massive, there are two additional degrees of freedom. In the mo-

mentum representation, the associated modes are of the form

Bij(k) = λ[ikj], (2.8)

where each three-vector ~λ is orthogonal to the three-momentum ~k. The same argu-

ment also yields the correct degrees of freedom for both a massless and massive gauge

field. The KR symmetries (needed to keep the massless KR field equivalent to a scalar

particle) will restrict the types of terms which can be induced by renormalization or

instanton effects. If the definition of Hµνρ is modified to include the Chern-Simons

forms of the gauge and gravitational fields, as is the case in the low-energy limit of su-

perstring theory, then φ has the correct coupling to gauge and gravitational degrees of

freedom to be an axion. Here, however, we do not consider the Chern-Simons terms.

The axionic charge in a spatial volume V was defined in [6] to be

qaxionic =

∫
V

H =

∮
∂V

B. (2.9)

It is not difficult to prove [6] that the coupled Einstein-axion field equations admit

the solution

ds2 = −(1− 2M
r )dt2 +

dr2

(1− 2M
r )

+ r2dΩ2,

B = q$,

(2.10)

with $ a harmonic generator of the second cohomology of the spacetime. In this

section we give an alternative proof of uniqueness (up to diffeomorphisms and KR

gauge transformations) which generalizes to the massive case. We assume staticity,

asymptotic flatness and regularity of the horizons. By staticity we mean that there

exists a time-like Killing vector which Lie derives the fields and is also hypersurface

orthogonal. (We will call a spacetime stationary if there exists a time-like Killing

vector which is not hypersurface orthogonal.) Asymptotic flatness means that the

spacetime metric approaches the Minkowski metric at least as fast as 1
r . Finally,
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regularity of the horizons is the requirement that all fields remain finite at all of

the spacetime horizons. In the following we will denote the hypersurface orthogonal

Killing vector by ξµ. If we define the projection operator

Πµ
ν = δµν + λ−2ξµξν , (2.11)

where λ is the length of the Killing vector ξµ, λ2 = −ξµξµ, the Frobenius condition

for hypersurface orthogonality can be expressed as

Πµ
νΠσ

τ∇[µξσ] = 0. (2.12)

The uniqueness proof in both the massless and the massive case hinges on a

simple relation between the projection of the spacetime divergence of a p-form Ω,

which is Lie derived by the Killing vector ξ, and the hypersurface divergence of its

hypersurface projection, ω. This divergence relation is

Dα(λωαµ1···µp−1) = λΠµ1
ν1
· · ·Πµp−1

νp−1∇βΩβν1···νp−1, (2.13)

where Dα is the induced connection on the hypersurface. The first step in the proof

of uniqueness is to consider both the field strength Hµνρ and its spacetime dual ∗Hµ

and to project both of them down to the hypersurface. We shall denote the projected

fields by hµνρ and dµ respectively. Using the divergence relation (2.13), the equation

of motion and the Bianchi identity, we have

Dµ(λhµνρ) ∝ λ∇µHµνρ = 0,

Dµ(λdµ) = λ∇µ ∗Hµ = 0.
(2.14)

We assume that the field strengths fall off at infinity (where the metric is flat) at least

as fast as 1
r2 and that we can find potentials φ and bµν which fall off to zero as fast
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as 1
r and satisfy

d = Dφ,

h = Db.
(2.15)

Then we multiply (2.14) by the appropriate potentials and integrate by parts to obtain

0 =

∫
V

bνρDµ(λhµνρ) = −
∫
V

λh2 ⇒ h = 0,

0 =

∫
V

φDµ(λdµ) = −
∫
V

λd2 ⇒ d = 0.

(2.16)

The region V is that region of a hypersurface which is outside of all horizons and

extends out to infinity. On the horizons, the Killing vector ξµ becomes null, so λ

goes to zero. As we are assuming that the fields are finite at the horizons and vanish

sufficiently rapidly at infinity, the surface integrals resulting from the integration by

parts must vanish. Since the projections h and d are both zero on any region V as

above, and since these regions foliate spacetime, it follows that the field strength Hµνρ

vanishes in all regions of spacetime outside of the horizons and that the spacetime is

a vacuum spacetime. Israel’s vacuum uniqueness theorem [9] takes care of the proof

of the uniqueness of the metric.

III. The Massive Axion

In theories where the axion is described by a two form potential, such as super-

string theories, there may be a mass term for this potential and, indeed, we expect

that generically such mass terms should be present in the low energy limit of the

string theory. What we show below is that these terms do not spoil the existence and

uniqueness of the solutions (2.10) to the coupled KR-Einstein field equations. This is

so primarily because the existence of the KR symmetry greatly restricts the form of

the interactions in which Bµν may partake. The mass term which we investigate is the

so-called topological mass term. We consider some generic U(1) gauge field Aµ with

which Bµν may interact. In some sense, this is the natural field to consider adding
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to the action, since when we are done, the KR field will eat the two physical modes

of the gauge field necessary to become massive. Alternatively, one may consider that

the gauge field will eat the single degree of freedom of the KR field to become massive

itself.

Consider, then, the free action for Bµν and Aµ,

Skin = 1
2

∫
d4x[H ∧ ∗H + F ∧ ∗F ], (3.1)

to which we add the topological mass term

Smass = m

∫
d4x[B ∧ F ]. (3.2)

As usual, H = dB and F = dA. This topological mass term is gauge invariant since

it transforms into a total derivative,

δSmass = m

∫
d4x[dΛ ∧ F ], (3.3)

under a Kalb-Ramond gauge transformation δB = dΛ. This term is, of course,

invariant under U(1) gauge transformations as well.

The equations of motion which follow from the action (3.1) and (3.2) are

d ∗H = mF,

d ∗F = −mH.
(3.4)

Applying d∗ to both equations and substituting, we obtain the massive Klein-Gordon

equations

( −m2)H = 0,

( −m2)F = 0.
(3.5)

Obviously, we are describing massive degrees of freedom. If we assume that the

spacetime is simply connected, we may solve the first equation of (3.4) by introducing
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a scalar field φ,

∗H = dφ+mA. (3.6)

One can see that the axion φ isn’t gauge invariant. In fact, we can force the axion to

be the longitudinal degree of freedom by choosing the gauge

mφ+ ∂µA
µ = 0, (3.7)

and in doing, obtain the Klein-Gordon equation for the U(1) field.

( −m2)Aµ = 0. (3.8)

Alternatively, we may solve the second equation of motion in (3.4) using a dual

potential Gµ for the field strength F :

∗F = dG−mB + p$. (3.9)

Choosing the gauge

divB +mG = 0, (3.10)

and making the large gauge transformation B′ = B + p
m$, we find the equation of

motion for the new B′,

( −m2)B′ = 0. (3.11)

Thus B becomes massive by swallowing the U(1) gauge field. Again, there is a single

unique static solution of the massive Kalb-Ramond- Einstein-Maxwell field equations.

To prove this, we must consider the projections of both Fµν and Hµνρ and their
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spacetime duals. Let us denote these projections by

Fµν → fµν ,

∗Fµν → eµν ,

Hµνρ → hµνρ,

∗Hµ → dµ.

(3.12)

We compute

Dρ(λh
µνρ) = λΠµ

αΠν
β∇γHαβγ = −λmeµν ,

Dµ(λfµν) = λmdν ,
(3.13)

multiply each by the appropriate field strength, and integrate over the region between

the horizon and spatial infinity.∫
V

eµν [Dρ(λh
µνρ) + λmeµν ] = 0,

∫
V

dν[Dµ(λfµν)− λmdν ] = 0.

(3.14)

To finish the proof we integrate by parts using the equations of motion, and argue that

the boundary terms vanish by the assumptions of asymptotic flatness and regularity

of the horizon. ∫
V

λm(hµνρh
µνρ + eµνe

µν) = 0,

∫
V

λm(dνd
ν + fµνf

µν) = 0.

(3.15)

Thus, both Fµν and Hµνρ vanish throughout the region V , since the metric is positive

definite on the hypersurface. This holds for any of the hypersurfaces defined by

orthogonality to ξ, which foliate spacetime, from which it follows that Fµν and Hµνρ

vanish everywhere in spacetime. Therefore, the axionically charged black hole solution

(2.10) holds and is unique for the topologically massive case as well. Note that the

black hole is not allowed to carry any U(1) charge for the field which couples to the

axion, since the integral of F over any closed surface around the black hole is zero.
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IV. Stückelberg Lagrangian

There is another Lagrangian which will yield a massive axion, while still allowing

a solution with an axionic charge q. The gauge invariance must now be put in by hand

with the aid of a Stückelberg-type mechanism. This involves introducing a vector field

χ, which is similar to the field A of the previous section, but has a fundamentally

different coupling with the KR field, B. The Lagrangian is written as

L = 1
2H ∧

∗H + 1
2m

2(B − q$ − dχ) ∧ ∗(B − q$ − dχ). (4.1)

Again, the quantity $ is a harmonic generator of the second cohomology of the

spacetime background we are considering. This Lagrangian still has the Kalb-Ramond

symmetry B→B + dΛ, χ→χ+ Λ. The equations which follow from this action are

d ∗H −m2 ∗(B − q$ − dχ) = 0,

d ∗(B − q$ − dχ) = 0.
(4.2)

We may choose a gauge in which χ is set to zero. The relevant equations are then

divH = m2(B − q$),

div ∗(B − q$) = ∗H.
(4.3)

The quantities whose divergences appear on the left hand side are assumed to be

Lie-derived by the Killing vector ξµ, so we can apply the divergence relation to them.

After some short algebra, we again obtain equalities which imply that Hµνρ = 0, and

Bµν = q$µν .

V. Discussion

We have demonstrated, under fairly mild assumptions, that an axion which gets

a mass through either a topological or Stückelberg mechanism can give rise to an

axionic charge on a black hole. We have not investigated axions coming specifically

from the low-energy limit of string theory, as we have neglected the Chern-Simons
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terms in the KR field strength. Neither have we analyzed the complicated terms in the

string-theory effective action of the form
∫
B ∧X8 necessary for the Green-Schwarz

anomaly cancellation. We shall just point out that one of these terms,
∫
B ∧ tr(F 4),

generally leads to topological mass terms of the form m
∫
B∧F upon compactification

to four dimensions [10,11]. We would like to argue that mass terms of the Stückelberg

type (4.1) are not realistic from the point of view of string theory, simply because

there are no obvious massless vector fields with the right couplings in the low-energy

limit necessary to play the role of Stückelberg fields. Such terms are not ruled out,

however, if one’s only criterion is gauge invariance.
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