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We examine the quantization of pseudoclassical dynamical systems, models that have classically anticommut-
ing variables, in the Schrödinger picture. We quantize these systems, which can be viewed as classical models
of particle spin, using the generalized Gupta-Bleuler method as well as the reduced phase space method
in even dimensions. With minimal modifications, the standard constructions of Schrödinger quantum me-
chanics of constrained systems work for pseudoclassical systems. We generalize the standard Schrödinger
norm and implement the correct adjointness properties of observables and constraints. We construct the
state space corresponding to spinors as physical wave functions of anticommuting variables, finding that
there are superselection sectors in both the physical and ghost subspaces. The physical states are isomorphic
to those of the Dirac-Kähler formulation of fermions though the inner product in Dirac-Kähler theory is not
equivalent to ours.

I. INTRODUCTION

Anticommuting variables, also called Grassmann
numbers, have a long history in theoretical physics,1–5

with applications ranging from the path integral formu-
lation of fermions to superspace constructions for super-
symmetric theories. Pseudoclassical mechanics, which
incorporates anticommuting dynamical variables, arises
as the ~→ 0 classical limit6,7 of quantum mechanical sys-
tems with spin. Despite the key role of anticommuting
variables in theoretical physics, the Schrödinger picture
approach to such systems heretofore has not received
full attention. We aim to remedy this oversight.

In their renowned paper on the use of anticommuting
variables to describe relativistic and non-relativistic spin
degrees of freedom, Berezin and Marinov7 posit a three
dimensional real vector-valued anticommuting variable
ξk with the real Grassmann-even action

S �

∫

dt
[
1

2
ω̃klξk ξ̇l − H(ξ)

]
, (1.1)

with H a real Grassmann-even function and ω̃ an imag-
inary symmetric 3 × 3 matrix, to describe the non-
relativistic spin degrees of freedom of a spin-1/2 particle.
The matrix ω̃ can be reduced to

ω̃kl � iδkl (1.2)

by a linear transformation of variables. With this choice
the kinetic term of the action is O(3) invariant, and the
full action will be likewise if the function H(ξ) is O(3)

invariant.
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Berezin and Marinov note from the form of the ac-
tion that the variables ξk may be taken as phase-space
coordinates and then define a Poisson bracket from the
(ortho)symplectic form ω̃kl that gives the correct equa-
tions of motion. After quantization, the operators ξ̂k

corresponding to the pseudoclassical variables ξk be-
come the generators of the Clifford algebra with three
Euclidean generators and satisfy the Pauli matrix anti-
commutation relations. Consistent with their abstract
approach to mechanics, Berezin and Marinov appeal to
the representation theory of Clifford algebras, and take
the space of states to be the essentially unique irreducible
representation of that algebra, which is the space of two-
component spinors.

While this approach is certainly elegant and efficient,
as a phase space method it bypasses the quantization
on configuration space and provides no insight into the
issues of dealing with first-order actions on configura-
tion space. When particle position is considered as an
additional configuration space variable, as Berezin and
Marinov7 also do in their paper, the resulting actions
have not only a global rotational (or Lorentz) invariance
that acts on both particle position and the Grassmann-
odd coordinates, but also a world-line supersymme-
try relating the Grassmann-even and -odd coordinates,
strongly suggesting their treatment on an equal footing.

Our purpose in this paper is to analyze pseudoclassi-
cal systems in D dimensions of the form introduced by
Berezin and Marinov through the explicit application of
Dirac’s methods for constrained systems and the use of
the Schrödinger representation for the quantum states
and their norms, assuming that all the ξi variables are
configuration space coordinates. Certainly, the approach
of taking the configuration space to be the full set of an-
ticommuting variables is not new, having been explored,
for example, by Mankoč Borštnik8,9 and Mankoč Boršt-
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nik and Nielsen,10 but our approach to implementing
quantization in the full Schrödinger representation does
appear to be new. Our work offers concrete insights into
both pseudoclassical mechanics and constrained quanti-
zation. We make as close an analogy with the standard
Schrödinger picture as we can by using the calculus of
anticommuting variables5,11,12 in the standard construc-
tions.

We denote left and right derivatives with respect to an
anticommuting variable ξ as ∂L/∂ξ and ∂R/∂ξ respec-
tively.

II. D � 2 ANTICOMMUTING VARIABLES

A. Pseudoclassical Hamiltonian System

As a system with one anticommuting coordinate is
something of a special case, which we will address later,
we start by analyzing in detail the system with two an-
ticommuting coordinates, proceed to the general case
of an even number of anticommuting coordinates, and
then come back to the one, three, and general odd-
dimensional cases later.

Barring for the moment actions with non-dynamical
Grassmann-odd parameters, the simplest non-trivial
pseudoclassical action for two real Grassmann-odd coor-
dinates ξ1 and ξ2 has the essentially unique Lagrangian,

L �
i

2
(ξ1ξ̇1 + ξ2ξ̇2) + iωξ1ξ2 , (2.1)

which is also the most general action invariant under
the rotation group SO(2). Here ω is a real Grassmann-
even constant. (In the form of (1.1), H(ξ) � − i

2 ǫi jξiξ j is
rotationally invariant and unique up to the addition of
a real Grassmann-even constant.) The Euler-Lagrange
equations of motion that follow from (2.1),

d

dt

(

∂RL

∂ξ̇i

)

�
∂RL

∂ξi
, (2.2)

are

ξ̇i � ω(ξ1δi2 − ξ2δi1) � −ωǫi jξ j . (2.3)

The Hamiltonian description, with Poisson brackets

{

f , g
}

�

∑

i�1,2

(

∂R f

∂ξi

∂L g

∂πi
+

∂R f

∂πi

∂L g

∂ξi

)

(2.4)

and canonical momenta,

πi �
∂RL

∂ξ̇i

�
i

2
ξi (2.5)

that do not depend on velocities ξ̇i , is complicated by
the presence of constraint functions on the phase-space

ϕi � πi −
i

2
ξi ≈ 0 , (2.6)

which are second-class in Dirac’s13 classification, be-
cause they do not have vanishing Poisson brackets with
themselves. These constraints reduce the dimension of
the phase space from four to two. Dirac’s methods for
analyzing both classical and quantum constrained sys-
tems are well explained in the literature.13–18

On the physical phase space defined by the constraints
(2.6), the Hamiltonian is equal to

H � πi ξ̇i − L � −iωξ1ξ2 , (2.7)

but the evolution of the system on the physical phase
space defined by the constraints (2.6) must stay in that
phase space. In other words, the constraints must be
conserved in time. The most general Hamiltonian that
agrees with (2.7) on the physical phase space is

H′ � −iωξ1ξ2 + λiϕi , (2.8)

where the λi are Grassmann-odd phase space functions.
The coefficients λi are determined by requiring that

the constraints remain zero on the reduced phase space,

ϕ̇i �
{

ϕi ,H
′}
� i(λi −ωǫi jξ j )+*,

∂Lλ j

∂ξi
− i

2

∂Lλ j

∂πi

+-ϕ j ≈ 0 .

(2.9)
Equation (2.9) can be made to hold identically, not just
weakly, when we choose

λi �
3

4
ωǫi jξ j −

i

2
ωǫi jπ j , (2.10)

from which we have

H′ � − i

4
ωξ1ξ2 +

1

2
ω(ξ2π1 − ξ1π2) + iωπ1π2

� iω
(

π1 +
i

2
ξ1

) (

π2 +
i

2
ξ2

)

. (2.11)

B. Wave functions, involution, and operators

Generalizing from the standard quantum mechanics,
we take the wave functions for the quantum states to be
complex Grassmann-valued functions of the coordinates
ξi , defined through their power series,

ψ � ψ(ξ1 , ξ2) � ψ0 + ψ1ξ1 + ψ2ξ2 + ψ3ξ1ξ2 , (2.12)

with complex-valued (Grassmann-even) coefficients ψi .
While the Grassmann coordinates ξi are taken to be

real, ξ∗
i
� ξi , because of the properties of the involution

(ξ∗)∗ � ξ ,
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(ξθ)∗ � θ∗ξ∗ (2.13)

that generalizes complex conjugation to Grassmann vari-
ables, the complex conjugate of a product of two odd el-
ements of a Grassmann algebra is (ξθ)∗ � θ∗ξ∗ � −ξ∗θ∗.
This involution property, when combined with anticom-
mutativity, yields the unfamiliar result that the product
of two real anticommuting numbers is imaginary, as is
the product of two imaginary anticommuting numbers.
The properties of classical variables under complex con-
jugation carry over to the adjointness properties of their
corresponding quantum operators.

In the Schrödinger representation the phase space
variables are replaced by the operators

ξ̂i � ξi ,

π̂i � i~
∂L

∂ξi
. (2.14)

In what follows, we use units where ~ � 1.

C. Inner product and physical states

In keeping with the analogy to the commuting case,
we take the inner product to be proportional to the SO(2)

invariant Grassmann integral over configuration space.
In the notation of (2.12),

∫

φ∗ψ dξ1dξ2 � φ∗3ψ0 + φ
∗
2ψ1 − φ∗1ψ2 − φ∗0ψ3 . (2.15)

With an explicit factor of i, the Grassmann integral (2.15)
gives an inner product,

〈φ |ψ〉 � i

∫

φ∗ψ dξ1dξ2 � 〈ψ |φ〉∗ , (2.16)

that yields a manifestly real norm, but one that is not pos-
itive definite on the full space of wave functions (2.12).
However, as in the case of gauge theories, the inner prod-
uct need only be positive definite on the space of phys-
ical states. States of non-positive norm are unphysical
“ghost” states.

D. Generalized Gupta-Bleuler Quantization

In Dirac quantization, physical states are annihilated
by all first-class constraints. Second-class constraints
cannot be imposed this way as they do not commute
amongst themselves. The physical states in the pres-
ence of second-class constraints can be found by impos-
ing the generalized Gupta-Bleuler conditions,19–21 which
are that the physical matrix elements of all second-class

constraints vanish. Thus, the constraint matrix elements
between physical states must satisfy

〈φ |ϕ̂1 |ψ〉 � −(φ∗3ψ1 − φ∗1ψ3) − 1

2
(φ∗0ψ2 − φ∗2ψ0) � 0 ,

〈φ |ϕ̂2 |ψ〉 � −(φ∗3ψ2 − φ∗2ψ3) +
1

2
(φ∗0ψ1 − φ∗1ψ0) � 0 .

Because the matrix elements of a Grassmann-odd op-
erator between two states of the same Grassmann par-
ity vanish automatically, the task of identifying physical
states reduces to finding states of definite Grassmann
parity such that matrix elements of the constraints be-
tween states of opposite parity vanish. We find that

〈φeven |ϕ̂1 |ψodd〉 � −(φ∗3ψ1) − 1

2
(φ∗0ψ2) � 0 ,

〈φeven |ϕ̂2 |ψodd〉 � −(φ∗3ψ2) +
1

2
(φ∗0ψ1) � 0 , (2.17)

are satisfied when 2(φ3/φ0)∗ � −(ψ2/ψ1) � (ψ1/ψ2).

These conditions yield an orthonormal basis for the
wave functions of the full Schrödinger state space,

|0〉 � 1 +
i

2
ξ1ξ2 ,

|1〉 � 1√
2

(ξ1 + iξ2) ,

|0̄〉 � 1 − i

2
ξ1ξ2 ,

|1̄〉 � 1√
2

(ξ1 − iξ2) . (2.18)

The inner product (2.16) gives

〈α|β〉 � δαβ � −〈ᾱ |β̄〉 , (2.19)

for α � 0, 1 and β � 0, 1, and the matrix elements of the
constraints vanish in the physical basis |α〉,

〈α|ϕ̂k |β〉 � 0 , (2.20)

decomposing the full Schrödinger Hilbert space into a
physical space and an orthogonal negative-norm “ghost”
space,

HSchrödinger � Hphysical ⊕ Hghost . (2.21)

The constraint operators each map the physical state
space to the ghost state space and vice versa:

ϕ̂k |α〉 � −
ik

√
2
ǫαβ |β̄〉 ,

ϕ̂k |ᾱ〉 �
(−i)k

√
2
ǫαβ |β〉 , (2.22)

where ǫ01 � −ǫ10 � 1 and ǫ00 � ǫ11 � 0.

The remaining condition on an inner product is the
self-adjointness of all observables. Anticommuting
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variables, being nilpotent, cannot be observables, but
nonetheless ξ̂i is self-adjoint,

(

ξiψ(ξ1 , ξ2)
) ∗

� ψ(ξ1 , ξ2)∗ξi , (2.23)

and we have 〈φ |ξ̂iψ〉 � 〈ξ̂iφ |ψ〉, or ξ̂†
i
� ξ̂i . Although ξi

is real, its conjugate momentum πi is purely imaginary.
The momentum operator π̂i should therefore be anti-
self-adjoint, which one can check by direct calculation:

∫

φ∗
(

i
∂L

∂ξi
ψ

)

dξ1 dξ2 � −
∫ (

i
∂L

∂ξi
φ

)∗
ψ dξ1 dξ2 ,

(2.24)
and so π̂†

i
� −π̂i .

Up to a constant factor, the only observable in this
system is the Hamiltonian corresponding to Eq. (2.11),

Ĥ′ � iω
(

π̂1 +
i

2
ξ̂1

) (

π̂2 +
i

2
ξ̂2

)

, (2.25)

which is manifestly self-adjoint.
Because the Hamiltonian (2.25) comes from the

Grassmann-even Hamiltonian (2.11), the physical eigen-
states can be taken to have definite Grassmann parity.
We find

Ĥ′|0〉 � −ω
2
|0〉 ,

Ĥ′|1〉 � ω

2
|1〉 . (2.26)

The ghost states, though unphysical, are also eigenstates
of the Hamiltonian (2.25).

E. Comparison with Reduced Phase Space Quantization

1. Dirac brackets and the reduced phase space

Since the physical evolution of a classical constrained
system must remain on the “constraint surface” where
the second-class constraints vanish, it is possible to set
the constraints identically to zero both inside and outside
of Poisson brackets and work purely with functions on
the constraint surface, the reduced phase space. We ex-
amine this approach to quantization here. Consistency
requires that the Poisson bracket on the full phase space
be replaced by the Dirac bracket13 on the reduced phase
space,

{ f , g}DB � { f , g} − { f , ϕn }∆nm{ϕm , g} , (2.27)

where ∆nm is the inverse matrix to {ϕn , ϕm }. The con-
straints ϕm ≈ 0 can be taken to be strongly zero because
the Dirac bracket of anything with a constraint vanishes
identically,

{ f , ϕk }DB � { f , ϕk } − { f , ϕn }∆nm{ϕm , ϕk }

� { f , ϕk } − { f , ϕn }δn
k ≡ 0 . (2.28)

The Dirac bracket has the same symmetry properties as
the Poisson bracket and satisfies the Jacobi identity.

In our case, the matrix of Poisson brackets of the con-
straints is

{ϕk , ϕℓ } � −iδkℓ , (2.29)

so the Dirac bracket becomes

{ f , g}DB � { f , g} − i{ f , ϕk }{ϕk , g} . (2.30)

The full phase space is four-dimensional while the con-
straint surface is two-dimensional. The two coordinates
ξ1 and ξ2 can be used as phase space coordinates on the
constraint surface. Their Dirac brackets are

{ξi , ξ j }DB � {ξi , ξ j } − i{ξi , ϕk }{ϕk , ξ j }
� 0 − iδikδk j � −iδi j , (2.31)

so that the Dirac bracket of functions f (ξ1 , ξ2) and
g(ξ1 , ξ2) on the constraint surface is

{ f , g}DB � −i
∑

k�1,2

(

∂R f

∂ξk

∂L g

∂ξk

)

. (2.32)

2. Operators and states

As ξ1 and ξ2 are coordinates of the two-dimensional
reduced phase space, for quantization in the Schrödinger
picture one must choose one position coordinate and one
canonical momentum to proceed. Neither ξ1 nor ξ2 can
fulfill either role as each has non-vanishing Dirac bracket
with itself.

Instead, following the holomorphic representation,4,11

we consider the complex phase space coordinates,

η �
1√
2

(ξ1 + iξ2) ,

η̄ �
1√
2

(ξ1 − iξ2) , (2.33)

which satisfy

{η, η}DB � {η̄, η̄}DB � 0 , {η, η̄}DB � −i . (2.34)

For quantization we need operators that satisfy the Dirac
anticommutation relations,

ˆ̄ηη̂ + η̂ ˆ̄η � i~E{η̄, η}DB � ~ , (2.35)

and can proceed with quantization in the Schrödinger
picture by taking states to be functions of η alone,

ψ � ψ(η) � ψ0 + ψ1η , (2.36)
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and the operators η̂ and ˆ̄η acting upon them to be

η̂ � η ,

ˆ̄η � ~
∂L

∂η
. (2.37)

Again, we use units in which ~ � 1 in what follows. As
we are working in the reduced phase space, the con-
straints were eliminated before quantization, so all we
need do now is construct the inner product and find the
spectrum.

3. Inner product

While the wave function is a function of η, its complex
conjugate is a function of η̄. Thus it is necessary to
consider inner products of holomorphic form,4,11

〈φ |ψ〉 �
∫

φ∗(η̄)ψ(η)M(η̄, η) dη dη̄ , (2.38)

whereM(η̄, η) is a measure factor needed to enforce the
adjointness relations coming from the complex conjugate
nature of the variables η̄ and η, η∗ � η̄. We need to have

η̂† � ˆ̄η �
∂L

∂η
, (2.39)

or, for any two states φ and ψ,

〈 ˆ̄ηφ |ψ〉 �
∫ (

∂Lφ

∂η

)∗
ψ(η)M(η̄, η) dη dη̄

�

∫

φ∗(η̄) ηψ(η)M(η̄, η) dη dη̄

� 〈φ |η̂ψ〉 . (2.40)

Similarly, it is necessary that η̂ = ˆ̄η†, or

〈η̂φ |ψ〉 �
∫

(ηφ)∗ψ(η)M(η̄, η) dη dη̄

�

∫

φ∗(η̄)η̄ ψ(η)M(η̄, η) dη dη̄

�

∫

φ∗(η̄)
∂Lψ

∂η
M(η̄, η) dη dη̄

� 〈φ | ˆ̄ηψ〉 . (2.41)

For the adjointness conditions Eqs. (2.40) and (2.41) to
hold, it is necessary and sufficient that up to an overall
factor,

M(η̄, η) � 1 + η̄η � exp(η̄η) . (2.42)

With the measure Eq. (2.42), the inner product on states
ψ(η) � ψ0 + ψ1η and φ(η) � φ0 + φ1η is

〈φ |ψ〉 �
∫

φ∗ψ exp(η̄η) dη dη̄ � ψ∗0φ0 + ψ
∗
1φ1 . (2.43)

This inner product leads to positive definite norms for
states. Because the constraints have been implemented
prior to quantization, there is no ghost sector.

Note that the basis eigenstates in this system, |0〉 and
|1〉, have wave functions, 1 and η respectively, with defi-
nite Grassmann parity that correspond to the Grassmann
parities of the equivalent states found under Gupta-
Bleuler quantization. The similarity between the states
of the two different quantizations is stronger than just
their Grassmann parities, however.

4. Gupta-Bleuler and Reduced Phase Space Wave Function

Correspondence

The Gupta-Bleuler configuration space, rather than the
reduced phase space, can also be parametrized by the η
and η̄ coordinates of Eq. (2.33), allowing us to rewrite the
physical Gupta-Bleuler wave functions given in Eq. (2.18)
as the reduced phase space ones times the square root of
the reduced phase space measure factor,

|0〉 � 1 +

i

2
ξ1ξ2 � 1 +

1

2
η̄η �

√
e η̄η �

√
M ,

|1〉 � 1√
2

(ξ1 + iξ2) � η � η
√

e η̄η � η
√
M , (2.44)

which is to say

(

ψn (ξ1 , ξ2)
)

GB
�

(

ψn (η)
√
M

)

RPS
. (2.45)

The inner product on the physical Gupta-Bleuler space of
states is the integral over the ξ1, ξ2 configuration space,
which can be reparametrized as an integral over the η, η̄
reduced phase space, making the orthonormality of the
one set understandable in terms of the other.

F. The Primed Variables of Hanson, Regge & Teitelboim

Instead of replacing the Poisson brackets with Dirac
brackets in a system with second-class constraints, Han-
son, Regge, and Teitelboim14 show that one can replace
the canonical variables, or indeed any dynamical vari-
ables, by primed versions that agree on the constraint
surface and whose Poisson brackets with any other quan-
tity also agree with the Dirac brackets of those quantities
on the constraint surface. These are the so-called primed
variables,

A′ � A − {A, ϕn }∆nmϕm ≈ A , (2.46)

where again ∆nm is the inverse matrix to {ϕn , ϕm }. The
Dirac bracket satisfies the weak equalities14

{A, B}DB ≈ {A′, B′} ≈ {A′, B} ≈ {A, B′} . (2.47)
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Because the matrix of Poisson brackets of the constraints
is constant, the primed versions of the ξi variables with
the constraints (2.6),

ξ′k �
1

2
ξk − iπk , (2.48)

have strongly vanishing Poisson brackets with the con-
straints

{ϕ j , ξ
′
k } � 0 . (2.49)

These primed variables will be important for extending
this system to general Hamiltonians.

III. D � 2N ANTICOMMUTING VARIABLES

To handle the D � 2N case, we generalize the measure
for computing inner products of wave functions analo-
gously to the construction for commuting coordinates,

dµ2N � dµ2N−2 (i dξ2N−1dξ2N ) � iN dξ1 . . . dξ2N . (3.1)

As we already have the quantization for D � 2 case,
we here show how to go from D � 2N − 2 to D � 2N .
Suppose thatΨ+

2N−2(ξ1 , ξ2 , . . . ξ2N−2) is a positive norm
physical state for D � 2N − 2 variables with definite
Grassmann parity. Then if ψ+

2N
(ξ2N−1 , ξ2N ) is also a

positive norm physical state of definite Grassmann par-
ity for a system consisting of just the two variables ξ2N−1

and ξ2N , then

| + + 〉2N � Ψ
+

2N−2ψ
+

2N (3.2)

is a positive norm physical state of definite Grassmann
parity for the system consisting of D � 2N anticommut-
ing variables.

Similarly, suppose that Ψ−2N−2(ξ1 , ξ2 , . . . ξ2N−2) is a
negative norm ghost state for D � 2N − 2 variables with
definite Grassmann parity. Then if ψ−

2N
(ξ2N−1 , ξ2N ) is a

negative norm ghost state of definite Grassmann parity
for a system consisting of just the two variables ξ2N−1

and ξ2N , then

| − − 〉2N � Ψ
−
2N−2ψ

−
2N (3.3)

is also positive norm physical state of definite Grassmann
parity for the system consisting of D � 2N anticommut-
ing variables. One has to check that the norms work as
stated and that the Gupta-Bleuler conditions hold. This
is straightforward, if tedious. Similarly, the states

| + − 〉2N � Ψ
+

2N−2ψ
−
2N ,

| − + 〉2N � Ψ
−
2N−2ψ

+

2N (3.4)

are negative norm ghost states. Thus we have 22N−1
�

2D−1 physical states and an equal number of ghost states.
The total number of physical and ghost states is 2D−1

+

2D−1
� 2D , the total number of terms in a function of D

anticommuting variables.

IV. D � 2N + 1 ANTICOMMUTING VARIABLES

A. One anticommuting variable, N � 0

We begin by considering the special case of a single
real anticommuting variable, with an eye to the gen-
eral case. The case of a single anticommuting variable
has also been examined by Bordi and Casalbuoni,22 and
Bordi, Casalbuoni, and Barducci.23

With only one anticommuting variable, and absent
anticommuting constant parameters, the only possible
term in the Lagrangian is the kinetic term,

L �
i

2
ξξ̇ . (4.1)

The equation of motion for ξ is that it is a constant.
The momentum of the system does not depend on the
velocity,

π �
∂RL

∂ξ̇
�

i

2
ξ , (4.2)

so there is a constraint

ϕ � π − i

2
ξ ≈ 0 , (4.3)

and the only dynamics are that the system obeys the
constraint, because the Hamiltonian vanishes identically.
The phase space consists of the single variable ξ. Ef-
fectively there is just “half a degree of freedom.” The
only way to quantize this system is to use the Gupta-
Bleuler quantization to impose the constraint. In the
Schrödinger representation, the wave function is a linear
function of ξ,

ψ(ξ) � ψ0 + ψ1ξ , (4.4)

with ψ0 and ψ1 being complex numbers. Because the
Poisson brackets, as we will see, are {π, ξ} � {ξ, π} � 1,
the Dirac quantization rule gives the momentum opera-
tor (in ~ � 1 units)

π̂ � i
∂L

∂ξ
. (4.5)

In analogy to the quantum mechanics of one commut-
ing variable, we set the inner product to be the integral

〈φ |ψ〉 �
∫

φ∗(ξ)ψ(ξ) dξ � φ∗1ψ0 + φ
∗
0ψ1 . (4.6)

Since the variable ξ is real, (φ0 + φ1ξ)∗ � φ∗0 + φ∗1ξ.
Gupta-Bleuler quantization requires the constraint to
have vanishing matrix elements between any two physi-
cal states, namely

〈φ |ϕ̂ |ψ〉 � i(φ∗1ψ1 −
1

2
φ∗0ψ0) � 0 , (4.7)
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which implies that up to an overall phase, there is just a
single normalized physical state of positive norm,

ψphys(ξ) �
1
4
√

2

(

1 +

1√
2
ξ

)

, (4.8)

and a single orthogonal ghost state of negative norm,

ψghost(ξ) �
1
4
√

2

(

1 − 1√
2
ξ

)

. (4.9)

The states are eigenstates of
√

2ξ̂′ with eigenvalues ±1.

√
2ξ̂′ψphys(ξ) � +ψphys(ξ) ,√
2ξ̂′ψghost(ξ) � −ψghost(ξ) . (4.10)

Note that if we were to take our single anticommut-
ing variable to be imaginary, ζ � iξ, we would change
the sign of the kinetic term. This will be important in
considering the Lorentzian case.

It is important to mention that keeping the Lagrangian
as (4.1) with a positive overall sign but positing an imag-
inary ξ, or equivalently, having a negative sign for the
Lagrangian and a real ξ, makes it impossible to impose
the constraint (4.3) through the integral (4.7) because that
expression becomes proportional to a positive definite
expression, 〈ψ |ϕ̂ |ψ〉 ∝ ψ∗

1
ψ1 + ψ∗0ψ0/2.

B. Three anticommuting variables

We now generalize to the case of three anticommuting
variables, the first case treated by Berezin and Marinov,7

handled here in our Schrödinger formalism. After di-
agonalization of the kinetic terms, the most general La-
grangian is

L �

i

2
ξk ξ̇k + iωkǫi jkξiξ j , (4.11)

which contains three arbitrary commuting constants, ωk .
A further rotation of the ξi and ωk allows the reduction
of the Lagrangian to

L �
i

2
ξk ξ̇k + iωξ1ξ2 , (4.12)

which has the same form as the Lagrangian (2.1), except
now the kinetic term contains the additional piece i

2ξ3ξ̇3.
As a consequence, we might try to anticipate the result
of the explicit quantization. Since the Lagrangian (4.12)
separates into two non-interacting parts, one involving
ξ1 and ξ2 and having the form of the two-variable sys-
tem analyzed earlier, and the other involving ξ3 and
having the form analyzed in the preceding section, the
basis states of the three-variable system can be written

in terms of products of the basis states of those two sim-
pler systems. The Hamiltonian that commutes with the
constraints will be identical to (2.11).

Note that when we compare the three-variable system
to the two-variable system, two of the constraints and
two of the equations of motion are the same but there is
one additional constraint, which has the same form as
the other two constraints,

ϕ3 � π3 −
i

2
ξ3 ≈ 0 , (4.13)

and one additional equation of motion,

ξ̇3 � 0 . (4.14)

As we know, the one-variable system has a Hamiltonian
that vanishes identically, and so the Hamiltonian for the
three-variable system has the same form as Eq. (2.11),
although the wave functions can have ξ3 dependence.

We now give the results of explicit quantization.

1. States

With three Grassmann coordinates, the “measure”
will now be the Grassmann-odd product i dξ1 dξ2 dξ3.
With this measure, normalizable states cannot have a
definite Grassmann parity. For the system described by
(4.12), the wave functions of the system can be factorized
as

Ψ(ξ1 , ξ2 , ξ3) � ψ(ξ1 , ξ2) u(ξ3) . (4.15)

If the two-dimensional wave functions ψ(ξ1 , ξ2) have
definite Grassmann parity, then it is easy to see that the
matrix elements of the first two second-class constraints
will vanish if the two-dimensional factors of the wave
functions are either both in Hphysical or both in Hghost of
the two-variable Hilbert space (2.21);

〈Φ|ϕ̂1,2 |Ψ〉 � i

∫

(φ v)∗ϕ̂1,2ψ u dξ1 dξ2 dξ3

� i

∫

(v∗ũ)(φ∗ϕ̂1,2ψ) dξ1 dξ2 dξ3

� 0 , (4.16)

where ũ is either u(−ξ3) or u(ξ3), depending on whether
the Grassmann parities of φ(ξ1 , ξ2) and ψ(ξ1 , ξ2) are
the same or different respectively. The matrix elements
of the third constraint are

〈Φ|ϕ̂3 |Ψ〉 � i

∫

(φ v)∗ϕ̂3ψ u dξ1 dξ2 dξ3

� i

∫

v∗ φ∗ϕ̂3ψ u dξ1 dξ2 dξ3

� i

∫

(v∗ϕ̂3ũ) (φ∗ψ) dξ1 dξ2 dξ3
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� i

∫

(v∗ϕ̂3ũ) dξ3

∫

φ∗ψ dξ1 dξ2 , (4.17)

where ũ(ξ3) is (−1)gφu((−1)gφ+gψξ3), where gφ and
gψ denote the Grassmann parities of φ and ψ, respec-

tively. The second factor,
∫

φ∗ψ dξ1 dξ2, vanishes unless
gφ � gψ . In that case, ũ � (−1)gφu and there are two
solutions that make the matrix elements (4.17) vanish,
both of which have u � v, namely

u(ξ3) � v(ξ3) �
1
4
√

2

(

1 ± ξ3√
2

)

. (4.18)

The norm of a product wave function ψ(ξ1 , ξ2) u(ξ3)

is the product of the norms of its factors,

〈ψ u |ψ u〉 � i

∫

u∗ ψ∗ψ u dξ1 dξ2 dξ3

�

(∫

u∗u dξ3

) (

i

∫

ψ∗ψ dξ1 dξ2

)

. (4.19)

Consequently, the positive norm physical states are
spanned by the orthonormal basis

|0〉 � 1
4
√

2

(

1 +
i

2
ξ1ξ2

)

(

1 +
ξ3√

2

)

,

|1〉 � 1
4
√

8
(ξ1 + iξ2)

(

1 +
ξ3√

2

)

,

|0′〉 � 1
4
√

2

(

1 − i

2
ξ1ξ2

)

(

1 − ξ3√
2

)

,

|1′〉 � 1
4
√

8
(ξ1 − iξ2)

(

1 − ξ3√
2

)

. (4.20)

The negative norm ghost states are spanned by the
orthogonal anti-normal basis

|0̄〉 � 1
4
√

2

(

1 − i

2
ξ1ξ2

)

(

1 +
ξ3√

2

)

,

|1̄〉 � 1
4
√

8
(ξ1 − iξ2)

(

1 +
ξ3√

2

)

,

|0̄′〉 � 1
4
√

2

(

1 +
i

2
ξ1ξ2

)

(

1 − ξ3√
2

)

,

|1̄′〉 � 1
4
√

8
(ξ1 + iξ2)

(

1 − ξ3√
2

)

. (4.21)

The large Schrödinger Hilbert space once again splits
as in Eq. (2.21), but this time both the physical and
ghost Hilbert spaces have dimension four. Each of these
Hilbert spaces is the reducible 2⊕ 2 representation of the
three-dimensional Clifford algebra.

2. Physical spectrum

The states (4.20) are eigenstates of the Hamiltonian:

Ĥphys |0〉 � −
ω

2
|0〉 , Ĥphys |0′〉� −

ω

2
|0′〉 ,

Ĥphys |1〉 � +

ω

2
|1〉 , Ĥphys |1′〉� +

ω

2
|1′〉 . (4.22)

3. Matrix elements of ξ̂i and Pauli algebra

We find the matrix elements of the position operators
ξ̂i in the physical basis {|0〉, |1〉} to be

〈α| ξ̂k |β〉 �
1
√

2
(σk )βα , (4.23)

where σk are the standard Pauli matrices. It is instructive
to note that the diagonal entries in σ3 in Eq. (4.23) result
from the even or odd definite Grassmann parities of the
ψ(ξ1 , ξ2) pieces (4.15) of the basis states |0〉 and |1〉 of
(4.20).

While the matrix elements of the ξ̂k yield the Pauli
matrices, the ξ̂k operators themselves do not form a Clif-
ford algebra; they are still nilpotent generators of a Grass-
mann algebra. However, the ξ̂′

k
operators corresponding

to Eq. (2.48) do form a Clifford algebra, although one not

obeying a definite Pauli algebra, either
√

2ξ̂′
i
ξ̂′

j
� +iǫi jk ξ̂

′
k

or
√

2ξ̂′
i
ξ̂′

j
� −iǫi jk ξ̂

′
k
, unless one restricts to a superse-

lection sector. In the physical sectors that Pauli algebra is
left-handed, while in the ghost sectors it is right-handed.

C. General D � 2N + 1

As with even dimensions, for the general odd dimen-
sional case, we generalize the measure for computing
inner products of wave functions analogously to the con-
struction for commuting coordinates, setting

dµ2N+1 � dµ2N (dξ2N+1) � iN dξ1dξ2 . . . dξ2N+1 . (4.24)

As we already have the quantization for D � 2N case,
we show here how to go from D � 2N to D � 2N+1. Sup-
pose thatΨ+

2N
(ξ1 , ξ2 , . . . ξ2N ) is a positive norm physical

state for D � 2N variables with definite Grassmann par-
ity. Then if ψ+

2N+1(ξ2N+1) is the positive norm physical
state (which, as we saw, must have mixed Grassmann
parity) for a system consisting of just the single variables
ξ2N+1, then

| + + 〉2N+1 � Ψ
+

2Nψ
+

2N+1 (4.25)

is a positive norm physical state of mixed Grassmann
parity for the system consisting of D � 2N + 1 anticom-
muting variables.

Similarly, suppose that Ψ−
2N

(ξ1 , ξ2 , . . . ξ2N ) is a nega-
tive norm ghost state for D � 2N variables with definite
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Grassmann parity. When ψ−2N (ξ2N−1 , ξ2N ) is the nega-
tive norm ghost state for a system consisting of just the
variable ξ2N+1, then

| − − 〉2N+1 �Ψ
−
2Nψ

−
2N+1 (4.26)

is also a positive norm physical state of mixed Grass-
mann parity for the system consisting of D � 2N + 1
anticommuting variables. Again, one has to check that
the norms work as stated and that the Gupta-Bleuler
conditions hold, which is somewhat tedious. Similarly,
the states

| + − 〉2N+1 �Ψ
+

2Nψ
−
2N+1 ,

| − + 〉2N+1 �Ψ
−
2Nψ

+

2N+1 (4.27)

are negative norm ghost states. Thus we have 22N
�

2D−1 physical states and an equal number of ghost states.
The total number of physical and ghost states is 2D−1

+

2D−1
� 2D , the total number of terms in a function of D

anticommuting variables.

V. LORENTZIAN METRICS

If the metric for the ξ variables is not Euclidean but
Lorentzian with signature (−,+,+,+, . . .), we can map
the system in variables ξ0 , ξ1 , . . . ξD−1 to the Euclidean
case with variables ξ1 , ξ2 , . . . ξD , for instance by defining
a new real Grassmann variable ξD � iξ0. We saw at the
end of section IV A that a time-like Grassmann variable
must be imaginary, or no physical states of just that one
variable can exist. With this redefinition to map to the
Euclidean case, the analysis can then proceed for the D
real Grassmann variables ξ1 , ξ2 , . . . ξD with Euclidean
signature. In D � 3 + 1 dimensions, for example, in
terms of the original Lorentzian variables the positive
norm physical states are

|0〉 �
(

1 +
i

2
ξ1ξ2

) (

1 +
1

2
ξ0ξ3

)

,

|1〉 � 1√
2

(ξ1 + iξ2)

(

1+
1

2
ξ0ξ3

)

,

|2〉 � 1√
2

(

1 +

i

2
ξ1ξ2

)

(ξ3 − ξ0) ,

|3〉 � 1

2
(ξ1 + iξ2) (ξ3 − ξ0) ,

|0′〉 �
(

1 − i

2
ξ1ξ2

) (

1 − 1

2
ξ0ξ3

)

,

|1′〉 � 1√
2

(ξ1 − iξ2)

(

1 − 1

2
ξ0ξ3

)

,

|2′〉 � 1√
2

(

1 − i

2
ξ1ξ2

)

(ξ3 + ξ0) ,

|3′〉 � 1

2
(ξ1 − iξ2) (ξ3 + ξ0) , (5.1)

while the ghost states are

|0̄〉 �
(

1 +
i

2
ξ1ξ2

) (

1 − 1

2
ξ0ξ3

)

,

|1̄〉 � 1√
2

(ξ1 + iξ2)

(

1−1

2
ξ0ξ3

)

,

|2̄〉 � 1√
2

(

1 +
i

2
ξ1ξ2

)

(ξ3 + ξ0) ,

|3̄〉 � 1

2
(ξ1 + iξ2) (ξ3 + ξ0) ,

|0̄′〉 �
(

1 − i

2
ξ1ξ2

) (

1 +
1

2
ξ0ξ3

)

,

|1̄′〉 � 1√
2

(ξ1 − iξ2)

(

1 +
1

2
ξ0ξ3

)

,

|2̄′〉 � 1√
2

(

1 − i

2
ξ1ξ2

)

(ξ3 − ξ0) ,

|3̄′〉 � 1

2
(ξ1 − iξ2) (ξ3 − ξ0) . (5.2)

VI. SUPERSELECTION SECTORS

A. Even dimensions

As explained in Sec. (III), in the case that D is even,
the physical wave functions are the products

ψphys(ξ1 , ξ2 , . . . ξD ) �

D/2
∏

n�1
∏

sm�1

ψsn

in
(ξ2n−1 , ξ2n ) (6.1)

of 2D wave functions with an even number of ghost fac-
tors. Here the superscript sn is the sign of the norm of
the state, with sn � +1 for physical states, and sn � −1
for ghost states. Because ghost states are orthogonal
to physical states, we can see that the Hilbert space of
physical states is a sum of superselection sectors

Hphys �

⌊D/2⌋
⊕

k�0
1≤ j1< j2<···< j2k≤⌊D/2⌋

Hj1 j2 ··· j2k , (6.2)

where Hi1 i2 ··· i2k is spanned by products of the form (6.1)
with the negative norm factors in “slots” j1, j2, . . . , j2k .
In other words, s j1 � s j2 � . . . � s j2k � −1 and the rest of
the sm � +1. Each of the superselection sectors Hi1 i2 ··· i2k

has dimension 2⌊D/2⌋ ,

dimHi1 i2 ··· i2k � 2⌊D/2⌋ , (6.3)

and there are

2⌊D/4⌋
∑

n�0

( ⌊D/2⌋
2n

)

� 2⌊D/2⌋−1 (6.4)
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different superselection sectors.

The ghost states are of similar form,

ψghost(ξ1 , ξ2 , . . . ξD ) �

D/2
∏

n�1
∏

sm�−1

ψsn

in
(ξ2n−1 , ξ2n ) , (6.5)

but with an odd number of negative norm factors. There
are also 2⌊D/2⌋−1 different ghost superselection sectors.

B. Odd dimensions

In the case of odd D, we introduce the obvious notation
for the single-variable wave functions ψs (ζ) of Eqs. (4.8)
and (4.9),

ψ±(ζ) �
1
4
√

2

(

1 ± 1√
2
ζ

)

, (6.6)

that have inner products

∫

ψs1∗(ζ)ψs2 (ζ) dζ � s1δs1 s2 . (6.7)

The physical states can be seen as states of form

ψphys(ξ1 , . . . , ξD ) �

*....,
⌊D/2⌋
∏

n�1
∏

sm� sD

ψsn

in
(ξ2n−1 , ξ2n )

+////-
ψsD (ξD ) ,

(6.8)
while the ghost states satisfy the product condition
∏

sm � − sD . There are now 2⌊D/2⌋ physical superselec-
tion sectors, twice as many as in the even D case. Each
superselection sector has dimension 2⌊D/2⌋ as in the even
D case. The counting is the same for the ghost states.

VII. GENERAL HAMILTONIANS AND STABILITY OF THE
GUPTA-BLEULER CONDITIONS

One can check that the ξ̂′
i
operators acting on a physi-

cal state yield a physical state, and acting on a ghost state
yield a ghost state; that is, the ξ̂′

i
operators do not change

the sign of the norm of a state. Further, they map any
superselection sector, whether ghost or physical, onto it-
self. In contrast, the constraint operators ϕ̂i do change
the sign of the norm of a state, so they map physical
states into ghost states, and vice versa. The ξ̂′

i
and ϕ̂ j

operators anticommute with each other,

ξ̂′i ϕ̂ j + ϕ̂ j ξ̂
′
i � 0 , (7.1)

which can be expressed through the commutative dia-
gram 7.2 below.

Hphys

ξ̂′
i−→ Hphysyϕ̂ j

yϕ̂ j

Hghost

−ξ̂′
i−→ Hghostyϕ̂ j

yϕ̂ j

Hphys

ξ̂′
i−→ Hphys

(7.2)

The maps are all onto and, if done twice, give back the
state scaled by 1/2, as expressed by the anticommutation
relations

ξ̂′i ξ̂
′
j + ξ̂

′
j ξ̂
′
i � δi j (7.3)

and

ϕ̂i ϕ̂ j + ϕ̂ j ϕ̂i � δi j , (7.4)

which extend the commutative diagram 7.2 to the larger
toroidal diagram 7.5 below.

Hphys Hphys Hphys

Hghost Hghost Hghost

Hphys Hphys Hphys

ξ̂′
i

ξ̂′
i

−ξ̂′
i

−ξ̂′
i

ξ̂′
i

ξ̂′
i

ϕ̂ j ϕ̂ j ϕ̂ j

ϕ̂ j ϕ̂ j ϕ̂ j

1
2 · id 1

2 · id

1
2 · id

1
2 · id (7.5)

In either commutative diagram 7.2 or 7.5, the space
Hphys can be any physical superselection sector Hi1 i2 ··· i2k

or any sum of physical superselection sectors, so it is
consistent to restrict the physical space to any of the iso-
morphic physical superselection sectors,Hi1 i2 ··· i2k , yield-
ing the physical Hilbert space as a 2⌊D/2⌋-dimensional
irreducible module of the Clifford algebra generated by
the ξ̂′

i
, Eq. (7.3).

Because the general Hamiltonian Ĥphys � H(ξ̂′), as
in the D � 2 case Eq. (2.11), is built from the primed
ξ̂′

i
operators, the energy eigenstates will span the physi-

cal Hilbert space, no matter which of the superselection
sectors is chosen for the physical Hilbert space. The
Gupta-Bleuler conditions,

〈φphys |ϕ̂i |ψphys〉 � 0 , (7.6)
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will thus hold for all times if they hold at any one time,
because the time evolution of an initially physical state in
one superselection sector remains in the same physical
superselection sector. Thus, the matrix elements (7.6) are
zero for all time.

The commutative diagram 7.5 also makes clear that
there is a symmetry between the physical and ghost sec-
tors. The determination of which sectors are physical
and which are ghost is an artifact of the choice of the
sign of the inner product. If the other sign of the in-
ner product (from Eq. (3.1) or Eq. (4.24)) is chosen, the
physical and ghost sectors are swapped.

VIII. EQUIVALENCE TO DIRAC-KÄHLER FERMIONS

Wave functions taking values in the space of antisym-
metric tensors, equivalent to being valued in the space
of differential forms, and a wave equation for a spin 1/2
particle in terms of them has a very long history, going
back to Ivanenko and Landau24 in 1928. In the early
1960s, Kähler25–27 found a mapping of the Dirac equa-
tion onto inhomogeneous differential forms. These ideas
have been further developed by Graf28 and many others.
Dirac-Kähler fermions have also been proposed29 as a
solution to the fermion doubling problem on the lattice.
The existence of the identical sectors was noticed by Benn
and Tucker30; Banks, Dothan, and Horn31; and Becher
and Joos.29 In D � 3 + 1, the four sectors—in our case,
two physical and two ghost—have been posited31 as a
solution to the family problem of the standard model.
Jourjine32 argued recently that when the masses of the
four generations are degenerate or sufficiently close, only
three of the generations are observable and the fourth is
hidden.

The space of complex-valued functions of D Grass-
mann variables, FD , is isomorphic to the space of in-
homogeneous differential forms on RD with complex
coeffcients,

FD � ΛC(RD ) �

D
⊕

p�0

Λ
p

C
(RD ) , (8.1)

by the bĳection

aµ1µ2 ···µkξ
µ1ξµ2 · · · ξµk ←→

aµ1µ2 ···µk (
√

2)k dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµk . (8.2)

Left multiplication of a function on Grassmann space
by a Grassmann variable ξν, which is the effect of the
operator ξ̂ν , corresponds to wedging the corresponding
form by dxν,

ξ̂ν ←→
√

2 dxν∧ , (8.3)

while the action of the associated momentum, π̂ν � i ∂
L

∂ξν ,
corresponds to a contraction with the corresponding vec-
tor,

π̂ν ←→ i
1√
2

eν , (8.4)

where eν dxµ � δ
µ
ν . Thus the operator for the primed

coordinates, ξ̂′µ �
∂L

∂ξµ
+

1
2η

µνξν , corresponds exactly to

the Clifford product25–27 applied to the corresponding
form,

ξ̂′µ ←→ 1√
2

dxµ ∨ . (8.5)

Specifically, under this correspondence we have

ϕ
(

ξ̂′µψ
)

�
1√
2

dxµ ∨ ϕ(ψ) , (8.6)

and

ϕ
(√

2ξ̂′µ∂µψ
)

� dxµ ∨ ∂µϕ(ψ) . (8.7)

When the commuting variables xµ are added to the
action7, the wave functions become functions of both the
xµ and the ξν . The inner product between states becomes

〈φ |ψ〉 �
∫

RD

dD x i ⌊
D
2 ⌋

∫

φ∗(x , ξ) ψ(x , ξ) dξ1 · · · dξD .

(8.8)
If we denote the action of the bĳectionϕ : FD → ΛC(RD )

on an element ψ ∈ FD as ϕ(ψ), the inner products in the
two spaces, which lead to indefinite norms, are related
by

〈φ |ψ〉 � i ⌊
D
2 ⌋2−D/2

∫

RD

ϕ(φ∗) ∧ ϕ(ψ) . (8.9)

This inner product differs from the usual positive defi-
nite inner product for Dirac-Kähler wave functions given
by

〈ϕ(φ) |ϕ(ψ)〉 �
∫

RD

ϕ(φ) ∧ ∗ϕ(ψ) , (8.10)

where ϕ(φ) is the complex conjugate of the form ϕ(φ)

and ∗ is the Hodge star operator that maps p-forms

to (D − p)-forms. Note that ϕ(φ∗) � (−1)p(p−1)/2ϕ(φ)

when ϕ(φ∗) is a form of degree p. Mankoč Borštnik
and Nielsen10 have also found the relationship between
Grassmann quantum mechanical wave functions and
Dirac-Kähler fermions, but do so from the operatorial
point of view and take the standard positive-definite in-
ner product, (8.10).
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IX. DISCUSSION AND CONCLUSIONS

Quantized pseudoclassical systems in the Schrödinger
realization using the generalized Gupta-Bleuler method
exhibit rich interdependences among the reality of the
variables, the Grassmann parity of the wave func-
tions, and the split between physical and ghost states,
though this structure has heretofore been hidden be-
cause the quantization of pseudoclassical theories in the
Schrödinger realization has been relatively less studied
in comparison to the path integral quantization. The
existence of the Schrödinger realization has been as-
sumed by Bordi, Casalbuoni, and Barducci,22,23 who also
first found the physical states given in Eq. (4.8), and
by Mankoč Borštnik.8 Delbourgo33 considered nonrel-
ativistic spin systems represented by the Schrödinger
picture quantum mechanics of two anticommuting vari-
ables, and relativistic systems represented by four anti-
commuting variables. He also considered more general
involutions on these variables.

The present quantization of pseudoclassical theories
in the Schrödinger realization using Dirac’s machinery
for constrained systems appears to be the first to examine
these systems not purely in terms of operators and their
representations, but also to construct explicit wave func-
tions and an explicit indefinite inner product, and to ex-
amine the adjointness properties of the operators under
that inner product following from the involution prop-
erties of the Grassmann variables. The present quanti-
zation also explicitly realizes the Dirac-Kähler formula-
tion of fermions in the language of Grassmann calculus
rather than differential forms; the two descriptions are
isomorphic.

In D � 3 + 1, the physical states (5.1) have been
looked at from a more abstract operatorial point of
view by Mankoč Borštnik9,34 and Mankoč Borštnik and
Nielsen,10,35,36 which is closer to our Gupta-Bleuler quan-
tization than to the reduced phase space quantization
that the abstract approach of Berezin and Marinov7

most closely resembles. Crucially, Mankoč Borštnik and
Nielsen10 examine operators, ãa and ˜̃aa , that play a cen-
tral role in their analysis and correspond (up to constant
factors) to our constraints ϕ̂ j ≈ 0 and primed variables

ξ̂′
j
, respectively.

We have seen that in this Gupta-Bleuler quantization,
adding one more real Grassmann coordinate to a sys-
tem with an even number of Grassmann variables has
two effects. The first is that the number of physical
states will double because the ghost state for the new
variable can pair with ghost states of the previous sys-
tem to make physical states in the combined system. In
terms of the quantum mechanics, these new states are
in a different superselection sector; one can then choose

whether to include one or both of these superselection
sectors. The second effect is to make the physical states
be of mixed Grassmann parity, because the “measure”
in the integral defining the inner product will now have
odd Grassmann parity. By contrast, the reduced phase
space quantization has a positive definite inner product
and so always produces an irreducible representation of
the Clifford algebra; adding one more Grassmann co-
ordinate to the system does not lead to a doubling of
the number of physical states and there are no supers-
election sectors in a reduced phase space quantization.
This should not be surprising as it is well known37–39 that
reduced phase space quantizations are not always equiv-
alent to other quantizations of the same constrained sys-
tem.

We have also seen that the behavior of the Grass-
mann coordinates under the involution, in other words,
whether the variables are taken to be real or imaginary,
has an effect on the quantum system. In the trivial case,
the quantum mechanics of an imaginary Grassmann
variable cannot have a Schrödinger realization unless
the kinetic term is negative because the constraint can-
not otherwise be imposed.

Since the behavior of the pseudoclassical variables un-
der the involution determines the adjointness properties
of the corresponding quantum operators, the timelike
ξ0 must have reality properties opposite to the space-
like ξi , and their corresponding quantum operators, the
gamma matrices γ0 and γi , therefore must have opposite
self-adjointness properties.

We have not paid much attention in the present work to
systems with more than just anticommuting degrees of
freedom, nor have we considered the physical meaning
of the Lorentzian case, but Berezin and Marinov7 argue
that while the ξ0 needs to be present for manifest Lorentz
invariance, one needs to remove it dynamically by impos-
ing a pseudoclassical “Dirac equation” constraint, which
dynamically removes the ξ0 from the system in a co-
variant way. Doing so leads to the Dirac equation and
world-line supersymmetry. In the present work we have
not examined the rich systems with both anticommut-
ing and commuting variables, only mentioning them in
passing in Sec. VIII in order to make a connection to
Dirac-Kähler fermions. Nonetheless, our methods can
be fruitfully brought to bear on the full range of actions
that include both commuting and anticommuting clas-
sical variables.
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Appendix A: D � 3 + 1 Gamma matrix representation

In the 3 + 1 dimensional case, the primed variables
lead to operators

ξ′µ � ξµ − {ξµ , ϕα}∆αβϕβ � ξµ − i(πµ − i

2
ξµ) ,

ξ̂′µ �
∂L

∂ξµ
+

1

2
ηµνξν , (A1)

that satisfy the anticommutation relations

ξ̂′µ ξ̂′ν + ξ̂′ν ξ̂′µ � ηµν � diag(−,+,+,+) . (A2)

The ξ̂′µ can be represented by scaled Dirac gamma ma-

trices;
√

2 ξ̂′µ → γµ. In the unprimed (i.e. |+ +〉 sector)
physical basis (5.1), we define

ψ0 |0〉 + ψ1 |1〉 + ψ2 |2〉 + ψ3 |3〉 �
*...,
ψ0

ψ1

ψ2

ψ3

+///-
(A3)

and find that the representation of the ξ̂′µ in this basis
is

√
2 ξ̂′0 �

*...,
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

+///-
� −iσ2 ⊗ σ3 ,

√
2 ξ̂′1 �

*...,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+///-
� 1 ⊗ σ1 ,

√
2 ξ̂′2 �

*...,
0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0

+///-
� −1 ⊗ σ2 ,

√
2 ξ̂′3 �

*...,
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

+///-
� σ1 ⊗ σ3 . (A4)
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