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Abstract

A new ‘harmonic’ BRST method is presented for quantizing those dynamical
systems having second-class constraints which split into holomorphic and antiholo-
morphic algebras. These theories include those whose phase spaces are coadjoint
orbits of a compact semisimple Lie group. The method also applies to theories with
holomorphic first-class constraints which have nonvanishing brackets with their an-
tiholomorphic conjugates. An operatorial quantization, resembling supersymmetric
quantum mechanics, is presented. In addition, a general path integral is given and is
shown to reduce to that given by Batalin, Fradkin, and Vilkovisky.
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1. Introduction

Certain constrained systems, notably the D = 10 harmonic superstring and su-
perparticle [1,2], the Brink-Schwarz superparticle in four dimensions [2,3], and certain
coadjoint orbit theories such as particle spin dynamics on a Lie group [4], admit the
separation of the second-class constraints into two sets, one holomorphic and one an-
tiholomorphic, each of which not only closes under Poisson brackets with itself, but
has the property that either set and the first-class constraints together are also closed
under Poisson brackets. In these systems the holomorphic half of the second-class
constraints may be implemented as if they were first-class. This is fine for operator
quantization, but a BRST quantization is problematic, as the BRST charge would not
be hermitian. Operatorial implementation of such BRST charges has been consid-
ered previously [5] but in a formalism with a larger number of ghosts. Other authors,
most notably Batalin, Fradkin and Fradkina [6] and Egorian and Manvelian [7], have
considered generally the much harder feat of embedding theories into larger phase
spaces and transmuting the second-class constraints into first, avoiding the problem
altogether, but without taking into account any natural holomorphic structure or its
preservation or use in implementing the constraints. A new implementation of the
BRST-BFV technique for these second-class constraints is given here for systems ad-
mitting such holomorphic separations, epitomized by theories whose phase spaces are
the coadjoint orbits of semisimple

∗
Lie groups.

In the following sections the method is illustrated starting from the simplest
possible case. A more general system, spin dynamics on both SU(2) and SU(3), is
used to illustrate the general method. Finally, the implementation of the harmonic
BRST-BFV quantization in path integral form is discussed.

2. Harmonic States and Second-Class BRST charges

The harmonic BRST-BFV method starts from the same point as ref. [5] but
differs in its ghost structure. In order to make clear the method for dealing with
second-class constraints we start first with a simple example. The method supposes
that the second-class constraints may be separated into two sets of constraints each
of which is closed under the Poisson bracket operation, and whose Poisson brackets
with the Hamiltonian of the theory is included in its span. Consider the second-class
constraints q ≈ 0 and p ≈ 0. We may form them into annihilation and creation
operators a = p − iq, a∗ = p + iq and try imposing them on states. Of course, one
may not impose both operators, since their commutator is never zero. In the Gupta-
Bleuler method, one would impose the condition that the matrix elements of â and â†

∗ The construction of dynamical systems, especially two-dimensional gravity, directly from the
coadjoint orbits of infinite dimensional or non-compact Lie groups is also possible [8].
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vanish between physical states. This would leave the vacuum state, |0〉, as the only
physical state.

The harmonic BRST method introduces “ghost” operators ξ̂ and ˆ̄ξ which are
complex conjugates, anticommuting and canonical conjugates as well. The method

requires one to construct the nilpotent operators Θ̂ = ξ̂â and ˆ̄Θ = ˆ̄ξâ†, and impose
both. A typical (in general, unphysical) state is of the form

|ψ〉 = |ψ0〉+ ξ |ψ1〉 . (2.1)

The harmonicity conditions Θ̂ |ψ〉 = ˆ̄Θ |ψ〉 = 0 yield two conditions

â |ψ0〉 = 0,

â† |ψ1〉 = 0.
(2.2)

Now the two constraints are not applied to the same state, so there exists a solution
to the harmonicity conditions.

Upon taking the Poisson bracket of the two BRST charges, one finds a curious
thing. That is, the “Laplacian,”

−i{Θ, Θ̄} = 2ξ̄ξ + aa∗ = 2ξ̄ξ + p2 + q2, (2.3)

is the OSp(1, 1|2) invariant quadratic form. We recall the Parisi-Sourlas relation [9],∫
dξ̄ dξ dp dq f(2ξ̄ξ + p2 + q2) = 2πf(0), (2.4)

for differentiable functions f which vanish at infinity. This gives meaning to the im-
precise statement that the ξ and ξ̄ have negative dimension and cancel the dynamical
variables p and q. Moreover, for exponential functions, we find directly the interesting
relation

lim
β→∞

e−β(2ξ̄ξ+p2+q2) = 2π ξξ̄ δ(p)δ(q). (2.5)

The usual BRST operator is analogous to the exterior derivative operator d on
differential forms (with the ghosts playing the role of basis one-forms), except that
the inner product on the Hilbert space is not positive definite. This corresponds to
the product on forms (of mixed degree) (α, β) =

∫
α ∧ β which makes the exterior

derivative operator d, like the BRST charge, self-adjoint. If one were to consider the
constraint a ≈ 0 alone, the BRST operator would not be self-adjoint so one is forced

to consider the charges Θ̂ and ˆ̄Θ together. Now these operators are adjoints of each
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other, which must be reflected in the inner product. The correct inner product [10]
on the ghost Hilbert space of quantum states (which are simply functions of the ghost
coordinates ξ) is

(f, g) =

∫
dξ dξ̄ e−ξξ̄f∗(ξ̄)g(ξ). (2.6)

For this simple system one can prove an analog of the Hodge theorem. That is,
any state in the Hilbert space of functions of q and ξ can be written uniquely as a

harmonic state plus a Θ̂-exact state plus a ˆ̄Θ-exact state. (The states |χ±〉 below are
not unique, of course, but the terms containing them are.)

|φ〉 = |φ0〉+ Θ̂ |χ+〉+ ˆ̄Θ |χ−〉 ,

Θ̂ |φ0〉 = ˆ̄Θ |φ0〉 = 0.
(2.7)

From now on we will drop the hats over operators and trust that this will cause no
confusion. Whenever ξ̄ appears as a quantum operator, it is to be interpreted as the
derivative ∂

∂ξ . When ξ̄ appears as a classical variable it is a Grassmann variable and

satisfies the Poisson bracket relations {ξ, ξ̄} = {ξ̄, ξ} = 1.

3. SU(2) Particle Spin Dynamics

As a toy system we consider the action for a particle spin written in terms of
group variables [4], g ∈ SU(2),

Ispin = iλ

∫
dt Tr(σ3g

−1ġ). (3.1)

Being first-order in time derivatives, this model is reparametrization invariant and
has its dynamics determined solely by its constraints.

These constraints are

J1 ≈ 0,

J2 ≈ 0,

J3 − λ ≈ 0,

(3.2)

where the Ji are the generators of right translations of g. The first two are obviously
second-class while the last is first-class, and generates the only gauge invariance of
the model: g → g eiβ(t)σ3 .

In the Gupta-Bleuler method for quantizing this system [4], there are nontrivial
physical states only when λ is an integer. In this case, there are 2λ+ 1 independent
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states, which can be represented with rotation matrices

ψ(g) =
λ∑

m=−λ
ψmD

λ
m,λ(g). (3.3)

These states are obtained from the left action of SU(2) on a state which is a highest
weight state for the right action. Our goal is to find them from a BRST approach.

Here we wish to find nilpotent operators Θ and Θ̄ as before, but now there is also
a true first-class constraint involved. Thus we must find, in addition, a hermitian
BRST charge Ω which has Θ and Θ̄ as BRST invariant quantities:

{Θ,Ω} = 0,

{Θ̄,Ω} = 0,

{Ω,Ω} = {Θ,Θ} = {Θ̄, Θ̄} = 0.

(3.4)

These operators are easily found to be

Θ = ξJ+,

Θ̄ = ξ̄J−,

Ω = c(J3 − λ)− cξξ̄.
(3.5)

The physical states must satisfy

Θ |ψ〉 = 0,

Θ̄ |ψ〉 = 0,

Ω |ψ〉 = 0,

(3.6)

and are defined up to the addition of null states Ω |anything〉. If the polarization for
the ξ, ξ̄ dependence is chosen such that the states are functions of ξ only, then the
physical states are precisely those of (3.3).

In this case we should notice that there is an ordering ambiguity in the last term
of the BRST operator Ω given in (3.5). For the case λ > 0 the operator is correct as
written, while if λ < 0 the order of ξ and ξ̄ must be reversed (and the sign changed
because of the Grassmann character of these ghosts.) In effect the normal ordering
ambiguity means that there is no restriction that the coupling λ in the model be an
integer, since a normal ordering constant, taking any value between 0 and −1, can
be added to ξξ̄.

Ω = c(J3 − λ)− c(ξξ̄ + α), −1 ≤ α ≤ 0. (3.7)

4. More General Systems

5



The SU(2) spin system is too trivial to display all of the features of the general
case. More complicated behavior is displayed by the dynamics on a higher rank

(compact) group manifold. The action is similar to the spin case.

IG = i

∫
dt Tr(Kg−1ġ). (4.1)

Here K is some fixed Lie algebra element of the group G. The constraints of this
model [4] are the various components of IR + K ≈ 0 where IR is the generator of G
acting on the right. The first-class constraints may given by the components

Tr(KIR) + Tr(K2) ≈ 0,

Tr(K̄(ρ)IR) ≈ 0,
(4.2)

where K̄(ρ) and K span the Lie algebra CK of the stability group of K. The K̄(ρ)
may be chosen to satisfy Tr(K̄(ρ)K) = 0 and form an algebra by themselves. The

second-class constraints are the remaining components

Tr(E±αI
R) ≈ 0, (4.3)

with E±α ∈ C⊥K .

As explained in ref. [4], there must be conditions on K to ensure that the space
of physical states in the Gupta-Bleuler approach is not empty. If K satisfies these
conditions, then there will be a unique state in the representation of IR satisfying the

constraints.

Before we proceed to the examination of the SU(3) case, let us prove that there

always exist operators satisfying the relations (3.4). We assume there is an algebra of
holomorphic constraints A and an algebra F of first-class constraints such that A⊕F
is also closed under Poisson brackets. For the spin model and its generalizations, the

algebra A⊕F is the Borel subalgebra of the Lie group, while F contains the Cartan
subalgebra and perhaps some of the raising operators. The crucial observation is that
each set tA = {tai|ai ∈ A} is also an algebra with Poisson bracket relations

{tai, taj} = tfkij tak, (4.4)

and so, therefore, is tA ⊕ F . Strictly speaking, the object t is an abstract variable
which may take values in the ground field, but is not required to do so. It should be

thought of as some scalar generator of the polynomials over the ground field. We also
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note that the BRST charge for the algebra tA is homogeneous of degree one.

Q(tA) = tQ(A). (4.5)

It follows that if we construct the BRST charge for the algebra tA⊕F , we obtain

Q(tA⊕F) =: tΘ + Ω, (4.6)

and the nilpotency of Q(tA⊕F) for all t yields the relations

{Θ,Θ} = {Ω,Ω} = {Θ,Ω} = 0. (4.7)

The rest of the relations in (3.4) follow from complex conjugation. As an example we
construct the operators Θ and Ω for the SU(3) model with K = αT8 and examine
the physical states. We choose the Cartan subalgebra {T3, T8}, the simple roots as

α1 = (1, 0) and α2 = (−1
2 ,
√

3
2 ), and the generators of SU(3) as Ta = 1

2λa.

Ω = c8(T8 − α−
√

3
2 (ξ2ξ̄2 + ξ12ξ̄12))

+ c1(T1 − 1
2(ξ12ξ̄2 + ξ2ξ̄12))

+ c2(T2 − i
2(ξ12ξ̄2 − ξ2ξ̄12))

+ c3(T3 − 1
2(ξ12ξ̄12 − ξ2ξ̄2))

− i
2εijkbicjck,

Θ = ξ2Eα2 + ξ12Eα2+α1.

(4.8)

If we expand out the general state as

|ψ〉 = |ψ0〉+ ξ2 |ψ2〉+ ξ12 |ψ12〉+ ξ2ξ12 |ψ3〉 , (4.9)

and impose the harmonicity conditions and BRST conditions (3.6), we obtain the
following relations for the zero ghost number sector.

(T8 − α) |ψ0〉 = T3 |ψ0〉 = 0,

Eα2 |ψ0〉 = Eα2+α1 |ψ0〉 = 0,

T− |ψ12〉 = |ψ2〉 ,
Eα2 |ψ12〉 = Eα2+α1 |ψ2〉 = 0,

E−α2 |ψ2〉+ E−α2−α1 |ψ12〉 = 0,

E−α2 |ψ3〉 = E−α2−α1 |ψ3〉 = 0,

(T8 − α−
√

3
2 ) |ψ2〉 = (T8 − α−

√
3

2 ) |ψ12〉 = 0,

(T3 − 1
2) |ψ12〉 = 0,

(T8 − α) |ψ3〉 = T3 |ψ3〉 = 0.

(4.10)

The only solutions to these conditions are that |ψ0〉 is a highest weight state with
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weight (0, α), |ψ3〉 is a lowest weight state of the same weight, and all other compo-
nents vanish.

In general there might be more than one physical state, but this situation occurs
already in ordinary BRST quantization, where one must choose the ghost number of
the states also. To this end we introduce the “second-class ghost number” operator
N2,

N2 =
∑

ξαξ̄α, (4.11)

which satisfies

[N2,Θ] = Θ,

[N2, Θ̄] = −Θ̄,

[N2,Ω] = 0.

(4.12)

On harmonic states we may diagonalize the operator N2 as well as the ghost number
operator

Ngh =
∑

cβbβ ,

[Ngh,Θ] = [Ngh, Θ̄] = 0,

[Ngh,Ω] = Ω.

(4.13)

In an operator quantization the second-class ghost number is superselected, because
the operators are conserved by the time evolution under the Hamiltonian and the
inner product (2.6) does not mix different ghost numbers. Thus we may choose these
ghost numbers appropriately for each physical state, if it is necessary.

5. Path Integral Formulation

An operatorial quantization is quite useful in itself, but the real power of the
BRST quantization lies in the flexibility it gives in the path integral formulation. A
criterion for constructing a path integral quantization is that the there should be some
formulation of these theories which reduces to the BFV Hamiltonian path integral
in the appropriate limit. A crucial clue is given by the delta function relation (2.5).
Since each of Θ and Θ̄ generates its own “BRST” transformation, we would like a
path integral which is invariant under all of the BRST transformations.

In the BFV approach to quantization, one is allowed to deform the BFV invariant
Hamiltonian by any BRST exact function, since they both describe the same physics.

HBRST
∼= HBRST + {Ω,Ψ} = HBFV . (5.1)

It would be nice simply to mimic this for the holomorphic constraints and deform the
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Hamiltonian by any Θ exact function.

HBFV → HBFV + {Θ,Φ}. (5.2)

This general Θ deformation, however, is not allowed because it would spoil the invari-
ance under Θ̄ transformations. The Hamiltonian, then, is deformable only by very
special Θ exact functions; those that are also Θ̄ exact.

HBFV
∼= HBFV + {Θ, βΘ̄}. (5.3)

Here β is any constant, which should be imaginary if the Hamiltonian is to be real.
Our first ansatz, then, is that a correct path integral is

ZΨ,β =

∫
Dµ exp

i

h̄

∫
dt(iξ̄ξ̇+pq̇+bċ+ c̄ ˙̄b+πλ̇−HBRST−β{Θ, Θ̄}−{Ω,Ψ}). (5.4)

In this path integral, the “measure,” Dµ, is the canonical measure over all of the
original phase space variables, ghost phase space variables, Lagrange multiplier phase
space variables and second-class ghost phase space variables. We will use the rest
of this section to argue its equivalence to the BFV path integral with second-class
constraints [11] and, using it, to construct a more general path integral in the Batalin-
Fradkin-Vilkovisky form.

There are restrictions on the gauge fermion Ψ in order that there be a BFV
theorem guaranteeing the path integral’s independence of the parameter β and the
gauge fermion Ψ. To conserve the ghost numbers Ngh and N2, Ψ must have ghost
number −1 and second-class ghost number zero. To guarantee manifest unitarity,
both Ψ and β must be imaginary. We impose the conditions

{Θ,Ψ} = {Θ̄,Ψ} = 0, (5.5)

to ensure that the generating functional ZΨ,β is both Θ and Θ̄ invariant.

Because the new term in the Hamiltonian, β{Θ, Θ̄}, is BRST invariant, we may
use the usual argument [12,13] to shift Ψ infinitesimally. We change variables in the
path integral by the shift

δzi = {zi,Ω}ε, ε =
i

h̄

∫
δΨ dt. (5.6)

The generating functional ZΨ,β is therefore independent of the gauge fermion Ψ. The
Hamiltonian, under the conditions (5.5), is invariant under Θ:

{(HBRST + {Ω,Ψ}+ β{Θ, Θ̄}),Θ} = 0, (5.7)

so that we may treat βΘ̄ as a separate gauge fermion and shift β by the same argu-
ment. (Strictly speaking, we need only one of the conditions {Θ,Ψ} = 0 or {Θ̄,Ψ} = 0
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to be able to shift β by this argument.)

δzi = {zi,Θ}ε, ε =
i

h̄

∫
Θ̄ δβ dt. (5.8)

It is also not difficult to prove for the general case of Grassmann even constraints
that the delta function relation (2.5) becomes

lim
β→−∞

e−iβ{Θ,Θ̄} = πNδN (ξi)δ
N(ξ̄j)det(i{ai, a∗j})δN (<ai)δN (=aj). (5.9)

Here the symbols ai and a∗j , i, j = 1, . . . , N stand for the holomorphic and anti-

holomorphic constraints whose real and imaginary parts, <ai, =ai, are the original
second-class constraints. This expression has the virtue of having the correct measure
factor for the second-class constraints while also providing delta functions to fix out
the second-class ghosts. If, in addition to requiring the gauge fermion to satisfy the

Θ invariance condition (5.5), we also specify

Ψ = Ψ|ξ=ξ̄=0, (5.10)

then the Poisson bracket {Ω,Ψ} is identical to the Dirac bracket {Ω,Ψ}DB. Since
the generating functional ZΨ,β is independent of β, we take the limit as in (5.9) and
restrict the gauge fermion as in (5.10), and we recover the BFV generating functional.

It is possible to implement the path integral (5.4) in the most general BFV form

if the BRST charge is modified with the help of a single canonically conjugate pair
of real anticommuting ghosts. With these ghosts, denoted by ρ and σ, having ghost
numbers −1 and 1 respectively, a new nilpotent BRST charge, Q, may be constructed.

Q = Ω + σ{Θ, Θ̄}. (5.11)

This BRST charge allows a most general form for the generating functional

Z
Ψ̃

=

∫
Dµ exp

i

h̄

∫
dt(iξ̄ξ̇ + pq̇ + bċ + c̄ ˙̄b+ πλ̇+ ρσ̇ −HBRST − {Q, Ψ̃}). (5.12)

This path integral reduces to (5.4) if the new gauge fermion is related to the old one
by

Ψ̃ = Ψ + ρβ. (5.13)
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6. Discussion

The main result of the present work is the construction of a formalism which
can handle holomorphic and antiholomorphic second-class constraints along with
first-class constraints, or holomorphic first-class constraints which have nonvanish-
ing brackets with their antiholomorphic conjugates. Only the case of Grassmann
even irreducible constraints has been considered. The generalization to the reducible
case appears to pose no difficulty, while the case of some or all Grassmann odd second-
class constraints ought to parallel the Grassmann even case exactly, with Grassmann
even ghosts for the odd constraints, although this has not been explicitly checked.

The BRST invariant operators Θ, Θ̄ and {Θ, Θ̄} have interesting analogs in other
systems. Besides the analog of the exterior derivative operator d, and its adjoint δ,
there is the analog of supersymmetric quantum mechanics where the Hamiltonian
is {Θ, Θ̄}. These operators also formally resemble holomorphic and antiholomorphic
exterior connections having “curvature” form {Θ, Θ̄}. Such analogs might yield useful
insights for systems which can be described by the present formalism.

This brings up the question of the range of applicability of the harmonic BRST-
BFV method. There are many systems which have a holomorphic structure. All
of these systems owe their holomorphic structures to some inherent group structure.
The more general question of how to impose holomorphic constraints is also inter-
esting. There are related questions, involving reality conditions [14], in Ashtekar’s
new variables approach to gravity. The author knows of no characterization of the
systems which admit harmonic BRST-BFV quantizations and conjectures that the
method is applicable to systems more general than those following from a Lie group
action.
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