This is the reference section of the document

The complete document is divided into five sections:

- Introduction and Historical Background
- Notation and Definitions
- General Theorems
- Hyperbolic Results
- References

[Ca] C. Caratheodory.

[C-M] H. S. M. Coxeter and W. O. J. Moser.
*Generators and Relations for Discrete Groups.*
Springer-Verlag. New York. 1980.
Pages 52--61.

[Co] H. S. M. Coxeter.
"The non-Euclidean symmetry of Escher's picture 'Circle Limit III.'"
*Leonardo,* Vol. 12 . 1979. Pages 19--25.

[D-H] A.W.M.Dress and D.H.Huson.
"On tilings of the plane."
*Geometrae Dedicata,* Vol. 24 . 1987 Pages 269--296.

[D1] D. J. Dunham.
"Creating hyperbolic Escher patterns."
*M.C.Escher: Art and Science.*
H.S.M. Coxeter et al. (Editors).
North-Holland. Amsterdam. 1986
Pages 241--248.

[D2] D. J. Dunham.
"Hyperbolic symmetry."
*Computers and Mathematics with Applications,*
Vol. 12B. Pages 139--153.

[FT] L. Fejes Toth
*Regular Figures.*
Pergamon Press. Oxford. 1964.

[G] M. J. Greenberg.
*Euclidean and Non-Euclidean Geometries: History and Development (3rd Ed).*
W. H. Freeman. New York. 1994.

[G-S 1979] B. Grunbaum and G. C. Shephard.
"Incidence symbols and their applications"
*Proceedings of Symposia in Pure Mathematics, Vol. XXXIV: Relations
Between Combinatorics and Other Parts of Mathematics.*
American Math. Soc. Providence, RI. 1979.

[G-S 1987] B. Grunbaum and G. C. Shephard.
*Tilings and Patterns.*
W. H. Freeman. New York. 1987.

[G-S 1989] B. Grunbaum and G. C. Shephard.
*Tilings and Patterns: An Introduction.*
W. H. Freeman. New York. 1989.

[G-V] J. Gerretsen and P. Verdendium.
"Polygons and theory."
*Fundamentals of Mathematics, Vol.II: Geometry.*
H. Behnke et al. (Editors).
MIT Press. Cambridge, MA. 1974.
Pages 265--290.

[H-CV] D.Hilbert and S. Cohn-Vossen.
*Geometry and the Imagination.*
Chelsea. New York. 1952.
Pages 98--114.

[H] D. H. Huson.
"The generation and classification of tile-k-transitive tilings on the
Euclidean plane, sphere, and hyperbolic plane."
*Geometrae Dedicata,* Vol. 47. 1993.
Pages 295--310.

[K-F] F. Klein and R. Fricke.
*Theorie der Ellitischen Modulfunctionen, Vol. 1.*
B. G. Teubner. Leipzig. 1890.
Pages 98--114.

[L] J. Lehner.
*A Short Course in Automorphic Functions.*
Holt, Rinehardt and Winston. New York. 1966.

[Mag] W. Magnus.
*Noneuclidean Tesselations and Their Groups.*
Academic Press. New York. 1974.
Pages 81--85.

[Mar] G. E. Martin.
*Transformation Geometry: An Introduction to Symmetry.*
Springer-Verlag. New York. 1982.
Page 199.

[P] A. Pugh. Polyhedra: A Visual Approach. Univ. of California Press. Berkeley, CA. 1976. Pages 177--182.

[R] J. F. Rigby.
"Butterflies and snakes."
*M.C.Escher: Art and Science.*
H.S.M. Coxeter et al. (Editors).
North-Holland. Amsterdam. 1986.
Pages 211--220.

[W] T. R. S. Walsh.
"Characterizing the vertex neighbourhoods of semi-regular polyhedra."
*Geometriae Dededicata,* Vol. 1. 1972.
Pages 117--123.

[We] J. Weeks. KaleidoTile. Tiling software. From Weeks' description of the program: "Use KaleidoTile to create tesselations of the sphere, Euclidean plane and hyperbolic plane. The tesselations are dynamic: the user moves a "basepoint" to smoothly transform, say, a dodecahedron into an icosahedron (or a rhombicosadodecahedron or a . . .). All tesselations may be freely rotated or translated, giving a sense of realism and fluidity."

[Z] J. Zaks.
"Semi-regular polyhedra and maps."
*Geometriae Dededicata,* Vol. 7. 1978.
Pages 465--478.

Author: Kevin Mitchell (mitchell@hws.edu)

Last Update: 13 February 1996.