
Math 375

Week 8

1.1 (External) Direct Products

Consider the following general situation: let G and H be two sets (not
necessarily distinct). Consider the set of pairs

G�H = f(g; h)j g 2 G; h 2 Hg:

This set is usually called the (external) direct product of G and H .
A familiar example is R�R which we usually write as R2. When both
G and H are groups, there is a natural way to add or multiply elements
of such a set together: simply add or multiply componentwise, just as
we do in R2.

(g1; h1)(g2; h2) = (g1g2; h1h2)

where the �rst product is computed in G and the second in H . Notice
that this is a binary operation on G�H .

THEOREM 0 G �H is a group using the operation above and is usually denoted by

G�H .

PROOF (i) Closure: Given (g1; h1); (g2; h2) 2 G�H ,

(g1; h1)(g2; h2) = (g1g2; h1h2) 2 G�H:

(ii) Associativity:

((g1; h1)(g2; h2))(g3; h3) = (g1g2; h1h2)(g3; h3)

= ((g1g2)g3; (h1h2)h3)

= (g1(g2g3); h1(h2h3))

= (g1; h1)(g2g3; h2h3)

= (g1; h1)((g2; h2)(g3; h3))

(iii) Identity: If eG and eH are the identities of G and H then (eG; eH)
is the identity of G�H .
(iv) The inverse of (g; h) is (g�1; h�1) since everything takes place com-
ponentwise.
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This same construction process can be carried out with n groups
where n is any positive integer. (In fact, it is even possible to do this
with an in�nite number of groups.) Given groups G1; : : : ; Gn we can
create the direct product

G1 �G2 � � � � �Gn = f(g1; g2; : : : ; gn)j gi 2 Gig:

Again the group operation is de�ned componentwise. For the most part
we will concentrate on products of two groups.

EXAMPLE 0 Consider Z4 � Z6. Find jZ4 � Z6j. Determine < (2; 2) > and its order.
Find �(1; 3). Are (1; 3) and (3; 1) in the same coset of < 2; 2 >?

SOLUTION Since there are 4 choice for the �rst component and 6 for the second,
Find jZ4 � Z6j = 24. Next,

< (2; 2)>= f(0:0); (2; 2); (0; 4); (2; 0); (0; 2); (2; 4)g:

The inverse of (1; 3) is (3; 3). Now (1; 3) and (3; 1) are in the same coset of
< (2; 2) > if and only if �(1; 3)+(3; 1) = (3; 3)+(3; 1) = (2; 4) 2< 2; 2 >.
Yes.

EXAMPLE 1 Consider U(9)� Z9. Find its order. Find (2; 2)�1. Find < 4; 6 >. Are
(2; 2) and (3; 3) in the same coset of < 4; 6 >?

SOLUTION Since there are 6 choice for the �rst component and 9 for the second,
Find jZ4 � Z6j = 54. Next, (2; 2)�1 = (5; 7) since (2; 2)(5; 7) = (1; 0).

< (4; 6) >= f(0:0); (4; 6); (7; 3); (1; 0)g:

Now (2; 2) and (3; 3) are in the same coset of < (4; 6) > if and only if
(2; 2)�1(3; 3) = (5; 7)(3; 1) = (6; 8) 2< (4; 6) >. No.

EXAMPLE a) The most familiar example is if we let G = H = (R;+). Then
G � H = R � R which yields the addditive part of the ordinary
vector space R2. By taking the product of n factors or copies of
R we can obtain (Rn;+) the additive group of n-tuples of real
numbers.

b) Z2 � S3. Its order is 12, the product of the number of elements in
Z2 with the number of elemnents in D3. What are these elements?

LEMMA 1 For any groups G and H ,

jG�H j =
n
jGjjH j if both jGj and jH j are �nite.

1 otherwise.
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SOLUTION In the �nite case, we have jGj choices for the �rst component and jH j
choices for the second. Therefore

jG�H j = jGjjH j;

that is, the order of a product is the product of the orders. The in�nite
case is obvious.

EXAMPLE 3 It is not the case that the product of cyclic groups is always cyclic.
Consider Z3 � Z3. If (a; b) 2 Z3 � Z3 then

(a; b) + (a; b) + (a; b) = (3a; 3b) = (0; 0) = e:

Of course this means that ja; bj j 3. But jZ3 � Z3j = 3 � 3 = 9, so no
element of Z3 � Z3 is a generator even though Z3 is cyclic.

LEMMA 2 G�H is abelian if and only if G and H are both abelian.

PROOF We have G and H abelian

()

�
g1g2 = g2g1 8g1; g2 2 G

h1h2 = h2h1 8h1; h2 2 H

() (g1g2; h1h2) = (g2g1; h2h1) 8g1; g2 2 G; 8h1; h2 2 H

() (g1; h1)(g2; h2) = (g2; h2)(g1; h1) 8(g1; h1); (g2; h2) 8 2 G�H

() G�H abelian

EXAMPLE 4 D3 � Z3 is a non-abelian of order 18. So now you can construct lots of
non-abelian groups by using products where one of the factors is Dn, Sn,
Q8, or GL(n) where n > 1. For example, give me a non-abelian group
of order 16.

Let's turn to the cyclic question. Notice that (1; 1) in Z2 � Z3 has
order 6 (by direct observation). So Z2 � Z3 is cyclic. But Z3 � Z3 was
not. Why? In the �rst case the powers of the individual generators did
not interfere with one another while they did in the second case. What
we need is a good way to compute the order of an element (g; h) of a
product group via the orders of g and h.

THEOREM 3 Let g 2 G and h 2 H . If jgj and jhj are both �nite, then j(g; h)j =
lcm(jgj; jhj) in G�H .

PROOF This proof is very similar in spirit to the proof that the order of a product
of disjoint cycles in Sn was the lcm of their orders.

Let m = jgj and n = jhj and let lcm(m;n) = L. Then there are
integers k; j so that km = L and jn = L. Notice that

(g; h)L = (gL; hL) = ((gm)k; (hn)j) = (eG; eH) = e;
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so j(g; h)j j L. On the other hand if j(g; h)j = p, then (g; h)p = e so
(gp; hp) = (eG; eH) which means that jgj j p and jhj j p. But L is the
smallest integer that is divisible by both jgj and jhj. Therefore L � p so
j(g; h)j= L.

EXAMPLE a) Use the formula to check the orders of (2; 2) in Z4 � Z6 and (4; 6)
in U(9)� Z9 that were calculated earlier.
Find the order of (5,6) in Z6 � Z24. (Answer: 12)

b) Find the order of (J; r30) 2 Q8 �D12. (Answer: 12)

COROLLARY 4 Let G and H be cyclic groups of �nite orders m and n. G�H is cyclic

if and only if (m;n) = 1.

PROOF Let gcd(m;n) = d. Then m = ad and n = bd and we have seen that
lcm(m;n) = abd. Notice that mn = abd2. So

mn = lcm(m;n) () abd2 = abd () d = 1 () gcd(m;n) = 1:

Now let G =< g > and H =< h >. Then jgj = m and jhj = n and
jG�H j = mn. So

jG�H j = j(g; h)j () mn = lcm(m;n) () gcd(m;n) = 1:

COROLLARY 5 Let Zm � Zn �= Zmn () gcd(m;n) = 1.

EXAMPLE 6 What is the smallest value of n (greater than 1) that makes Z30 � Zn
cyclic?

EXAMPLE 7 Show that Z� Z is not cyclic.

SOLUTION Assume that it is, and that it is generated by (m;n). Notice that m 6= 0,
else all the multiples of (m;n) = (0; n) would look like (0; kn), which is
clearly not all of Z � Z. Similarly n 6= 0. Now (1; 0) 2 Z =< (m;n) >
so there must be some k 2 Z so that

k(m;n) = (1; 0):

But then

(km; kn) = (1; 0) ()
n
km = 1
kn = 0

()
n
k 6= 0
k = 0

:

Contradiction
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EXAMPLE 8 Of course product groups can have subgroups. For example in Z�Z we
have such subgroups as 2Z � 3Z (show this?) or f(k; k)j k 2 Zg. You
can show that if A is a subgroup of G and B is a subgroup of H , then
A � B is a subgroup of G � H . But not all subgroups of products are
products of subgroups as the example f(k; k)j k 2 Zg shows.

1.2 Finite Abelian Groups

Much e�ort has been spent on classifying �nite groups of all types
(abelian and non-abelian). I strongly encourage you to read pages 355{
357 in your text which pro�les three living mathematicians who were
crucial to solving a certain part of the classi�cation problem.

The classi�cation scheme for �nite abelian groups has been known
for a long time, and you are now in a position to understand it. Here's
a simple example of the sort of problem that I am referring to. Suppose
that G = U(36), the group of units mod 36. With a bit of e�ort, you can
show that jU(36)j= 12. Of course the group is abelian. Is it isomorphic
to a more familiar group? It turns out to be isomorphic to Z2 � Z6,
which is a much \simpler" group to understand. How do I know that
these groups are isomorphic? Well,: : : that takes some work.

The classi�cation scheme for �nite abelian groups uses the Funda-
mental Theorem of Arithmetic. Recall that any positiive integer
n � 2 can be factored uniquely into a product of primes. For example

200 = 23 � 52

48 = 24 � 3

300 = 22 � 3 � 52

We'll see that there's a similar theorem that shows we can \factor" �nite
abelian groups into porducts of cyclic groups whose orders are powers of
primes. Of course we know all about these latter groups.

There is one di�erence in the factorization process, however. Let's
take 16 as an example. Using the Fundamental Theorem of Arithmetic,
we would simply write

16 = 24:

However, when classifying abelian groups of order 16, we know that the
following �ve groups are not isomorphic (why?):
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Z16 = Z24

Z8 � Z2 = Z23 � Z2

Z4 � Z4 = Z22 � Z22

Z4 � Z2 � Z2 = Z22 � Z2 � Z2

Z2 � Z2 � Z2 � Z2 = Z2 � Z2 � Z2 � Z2

It turns out that if G is abelian and its order is 16, then it must be
isomorphic to one of the �ve groups listed above.

Notice that the list above has been arrived at in the most mechanical
of ways. Since 16 = 24, we have paritioned 4 into a sum of positive
integers in as many ways as possible (disregarding order) on the right
hand of each equality above. That is, 4 = 4 = 3+1 = 2+2 = 2+1+1 =
1+1+1+1. In a similar fashion we can �nd all possible partitions of 5.

5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1:

We are now ready to state:

THEOREM 6 (The Fundamental Theorem of Finite Abelian Groups) Let G

be a �nite abelian group of order jGj > 1. Then G is isomorphic to the

direct product of �nitely many cyclic groups of prime power order. The

prime powers that occur as orders of the factors are uniquely determined

by G. In particular,

G �= Zpn1
1

� Zpn2
2

� � � � � Zpnk
k

;

where the p's are primes such that jGj = pn1
1
� pn2

2
� � �pn3

3
. Note the pi

need not be distinct primes.

PROOF The proof is quite long and in Chapter 12. For now I want to concentrate
on how to use the theorem.

EXAMPLE 9 What group is V4, the Klein Four-Group? We know it is abelian and
of order 4. Since 4 = 22 = 21 � 21, then by the Fundametal Theorem
above, V4 is either Z22 = Z4 or Z2 � Z2. But we know that g2 = e for
all elements in V4. So V4 has no element of order 4. Therefore it cannot
be cyclic. So V4 is isomorphic to Z2 � Z2.

EXAMPLE 10 Classify all abelian groups of order less than 20. I will get you started.

SOLUTION We will use the fundamental theorem above and the partitions of the
factorizations of the various orders. First notice that if p is prime, then
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an abelian group of prime order must be isomorphic to Zp. The Funda-
mental Theorem allows for no other possiblity. This takes care of abelian
groups of orders: 2, 3, 5, 7, 11, 13, 17, 19

jGj = 4 = 22 = 21 � 21 ) G �=

�
Z4

Z2 � Z2

jGj = 6 = 2 � 3) G �= Z2 � Z3
�= Z6

jGj = 8 = 23 = 22 � 21 = 2 � 2 � 2) G �=

(
Z8

Z4 � Z2

Z2 � Z2 � Z2

jGj = 9 = 32 = 31 � 31 ) G �=

�
Z9

Z3 � Z3

jGj = 10 = 2 � 5) G �= Z2 � Z5
�= Z10

jGj = 12 = 22 � 3 = 2 � 2 � 3) G �=

�
Z4 � Z3

�= Z12

Z2 � Z2 � Z3 = Z2 � Z6

Fill in the rest up to order 20.

EXAMPLE 11 Let's return to the U(36) example. Since it has 12 elements and is
abelian, it is isomorphic to either Z4 � Z3 or Z2 � Z6. Now Z4 � Z3

is cyclic and of order 12 so it is isomorphic to Z12. From Marc's U(n)

program, U(36) is not cyclic, so it must be isomorphic to Z2 � Z6. (As
a check: Note that U(n) has six elements of order 6: 5, 7, 11, 23, 29,
31. So does Z2 � Z6: (0,1), (0,5), (1,2), (1,4), and (1,6). Both have two
elements of order 3: 13, 25 and (0,2), (0,4). Both have three elements of
order 2: 17, 19, 35 and (0,3), (1,0), (1,3).

EXAMPLE 12 Consider U(180). It has 48 elements. BY FTFAG, it must be isomorphic
to one of the following:

48 = 16 � 3! Z16 �Z3
�= Z48

48 = 2 � 8 � 3! Z2 �Z8 �Z3
�= Z2 �Z24

48 = 4 � 4 � 3! Z4 �Z4 �Z3
�= Z4 �Z12

48 = 2 � 2 � 4 � 3! Z2 �Z2 �Z4 �Z3
�= Z2 �Z2 �Z12

�= Z2 �Z4 �Z6

48 = 2 � 2 � 2 � 2 � 3! Z2 �Z2 �Z2 �Z2 �Z3
�= Z2 �Z2 �Z2 �Z6

Now Marc's U(n) gives the following data. There are no elements
of order 12 or 24; 7 elements of order 2, 2 elements of order 3, 8 elements
of order 4, 14 elements of order 6, and 16 elements of order 12. U(180)
cannot be with of the �rst two groups which have elements of order 24
and or 48. Similarly, it cannot be Z2�Z2�Z2�Z6 since this group has no
elements of order 12. So let's look at Z4�Z12 and Z2�Z4�Z6. Z4�Z12
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has 3 elements of order 2: (2,0), (2,6), and (0,6) while Z2 �Z4 �Z6 has
has 7 elements of order 2: (0,0,3), (0,1,3), (1,0,3), (1,1,3), (0,1,0), (1,0,0),
(1,1,0). So U(180) must be this latter group.

EXAMPLE 13 Write a Java version of Marc's U(n) program for massive extra credit.


