Math 375 Week 7

7.1 Equivalence Relations Redux

- DEFINITION 1 Let S be a set. ~ is an equivalence relation on S if R satisfies the following three condidtions:

 i) for every s ∈ S, s ~ s (s is related to itself; reflexive);
 ii) for every s, t ∈ S, if s ~ t then t ~ s (symmetric);
 iii) for every s, t, u ∈ S, if s ~ t and t ~ u then s ~ u (transitive).

 DEFINITION 2 For any s ∈ S, let [s] denote the subset of S consistingt of all t ∈ S such that t ~ s. That is,

 [s] = {t ∈ S | t ~ s}.

 We call [s] the equivalence class of s under the relation ~.

 DEFINITION 3 A partition of a set S is a collection of nonempty disjoint subsets of S whose union is all of S.
 - **EXAMPLE 1** If \sim is the equivalence relation $\equiv \pmod{5}$ on \mathbb{Z} , then [0], [1], [2], [3], [4] form a partition of \mathbb{Z} . This situation is the norm for any equivalence relation.
 - **EXAMPLE 2** We saw that isomorphisn \cong was an equivalence relation on the set of all groups.
 - **THEOREM 4** Let \sim be an equivalence relation on S. Then the equivalence classes of \sim form a partition of S. That is, every element is in exactly one equivalence class. And conversely.
 - PROOF Let \sim be the equivalence relation. Since $s \sim s$ for any $s \in S$, it follows that $s \in [s]$. That is, no class is empty. Second, the union of all equivalence classes is clearly all of S since every element s of S lies in some equivalence class.

Finally we must show that any two classes are either disjoint or exactly the same. So suppose that two classes [s] and [t] are not disjoint, that is, that there is at least one element a in both [s] and [t]. We must show that [s] = [t]. (To do this we must show $[s] \subset [t]$ and $[t] \subset [s]$.) To

show $[s] \subset [t]$, let $b \in [s]$. Then: $b \sim s$. But $a \in [s]$, so $s \sim a$ and thus $b \sim a$. But $a \in [t]$ so $a \sim t$ and therefore $b \sim t$. That is, $b \in [t]$. So $[s] \subset [t]$ and similarly $[t] \subset [s]$.

The proof of the converse is an exercise. We'll never use it.

Another way to say the same thing is :

$$[s] = [t] \iff [s] \cap [t] \neq \emptyset$$

Notice that it is actually the equivalence classes mod n that we made into a group.

7.2 Cosets and the Equivalence Relation \sim_H

The most important use of an equivalence relation in elementary group theory has to do with the idea of cosets. Cosets are just the equivalence classes of a fancy equivalence relation on a group. Let's examine that relation.

- **THEOREM 5** Let H be a subgroup of a group G. Define $a \sim b \iff a^{-1}b \in H$. Then \sim is an equivalence relation on G.
 - **PROOF** We have seen this argument before. Reflexive: show $a \sim a$. Well

 $a \sim a \iff a^{-1}a \in H \iff e \in H.$

Symmetric: If $a \sim b$, show $b \sim a$. But

$$a \sim b \Rightarrow a^{-1}b \in H \Rightarrow (a^{-1}b)^{-1} \in H \Rightarrow b^{-1}a \in H \Rightarrow b \sim a.$$

Transitive: Given $a \sim b$, $b \sim c$, show $a \sim c$.

$$a \sim b, \ b \sim c \Rightarrow a^{-1}b, \ b^{-1}c \in H$$

 $\Rightarrow (a^{-1}b)(b^{-1}c) \in H$
 $\Rightarrow a^{-1}c \in H \Rightarrow a \sim c.$

Remember that any equivalence relation partitions the original set (here G) into mutually disjoint subsets called **equivalence classes**. Recall that we used the notation [a] to denote the set of all elements related to a. That is, $[a] = \{b \in G \mid a \sim b\}$. Here these equivalence classes are easy to describe.

DEFINITION 6 Let H be subgroup of a group G. For any element $a \in G$, the set aH is the **left coset of** H in G where $aH = \{ah | h \in H\}$.

LEMMA 7 If $H \leq G$ and \sim is the equivalence relation above, then $a \sim b \iff b \in aH$. (That is, [a] = aH.)

PROOF Let $x \in G$. Then

$$a \sim b \iff a^{-1}b \in H \iff a^{-1}b = h, h \in H$$

 $\iff b = ah, h \in H$
 $\iff b \in aH. \blacksquare$

EXAMPLE 3 Let $G = U(8) = \{1, 3, 5, 7\}$ and let $H = \{1, 5\}$. Then:

$$[1] = 1H = \{1, 5\}$$

$$[3] = 3H = \{3, 7\}$$

$$[5] = 5H = \{5, 1\} = 1H$$

$$[7] = 7H = \{7, 3\} = 3H$$

- **EXAMPLE 4** Let $G = \mathbb{Z}_{12}$ and $H = \langle 4 \rangle = \{0, 4, 8\}$. Find the left cosets of H in G. Note that each coset has the same number of elements and that cosets are either disjoint or are identical, i.e., they partition G.
- **EXAMPLE 5** Let $G = S_3$, $H = A_3 = \{(1), (123), (132)\}$. Notice that

$$(1) \sim g \iff (1)^{-1}g \in A_3 \iff g \in A_3.$$

So $[(1)] = (1)A_3 = A_3$. Notice that

$$(12) \sim g \iff (12)^{-1}g \in A_3 \iff (12)g \in A_3 \iff g \text{ is odd.}$$

Therefore $[(12)] = (12)A_3 = \{(12), (13), (23)\}$. Since the left cosets (equivalence classes) of A_3 partition S_3 , we know we can stop looking for other left cosets. The two we found already yield all of S_3 . They are A_3 and $(12)A_3 = \{(12), (23), (13)\}$ which are disjoint and partition S_3 . Notice each class has the same number of elements.

EXAMPLE 6 Let $G = \mathbf{Z}$ and let $H = 5\mathbf{Z} = \{\dots, -10, 5, 0, 5, 10, \dots\} = \{5n \mid n \in \mathbf{Z}\}$. *H* is clearly a subgroup. We saw that the equivalence classes of \sim were $[a] = \{a + 5n \mid n \in \mathbf{Z}\} = a + H = a + 5\mathbf{Z}$. In particular:

$$5\mathbf{Z} = 0 + 5\mathbf{Z} = \{\dots, -10, 5, 0, 5, 10, \dots\} = \dots = [-5] = [0] = [5] = \dots$$
$$1 + 5\mathbf{Z} = \{\dots, -9, -4, 1, 6, 11, \dots\} = \dots = [-4] = [1] = [6] = \dots$$

and so on.

EXAMPLE 7 Let $G = GL(n, \mathbf{R})$ and let $H = SL(n, \mathbf{R}) = \{A \in GL(n, \mathbf{R}) \mid \det A = 1\}$. Notice that

$$A \sim B \iff A^{-1}B \in SL(n) \iff \det A^{-1}B = 1$$
$$\iff \det B \det A^{-1} = 1$$
$$\iff \det B (\det A)^{-1} = 1$$
$$\iff \det A = \det B.$$

Thus we get an equivalence class or left coset for $SL(n, \mathbf{R})$ for each different non-zero real number.

Now we could have started out using a similar equivalance relation: Let $H \leq G$ and define the equivalence relation \approx defined by $a \approx b \iff ba^{-1} \in H$. (It is an easy check to see that this is an equivalence relation.) We would then find that $a \approx b \iff b \in Ha = \{ha \mid h \in H\}$. The set Ha is called the **right coset** of the subgroup H in G.

- **EXAMPLE 8** It is not true that aH = Ha for all $H \leq G$. Clearly, we ust look at nonabelian groups to find an example. Let $G = D_4$ and $H = \{r_0, v\}$. Then: $r_{90}H = \{r_{90}, d'\}$ while $Hr_{90} = \{r_{90}, d\}$. This is a very important example. However, do notice that both cosets do have the same number of elements in them.
- **EXAMPLE 9** Let $G = S_3$ and $H = S_2 = \{(1), (12)\}$. Compare the right and left cosets of H in G.

The right cosets:

$$H(1) = H = H(12)$$

$$H(13) = \{(13), (132)\} = H(132)$$

$$H(23) = \{(23), (123)\} = H(123)$$

The left cosets are:

$$(1)H = H = (12)H$$

$$(13)H = \{(13), (123)\} = (123)H$$

$$(23)H = \{(23), (132)\} = (132)H$$

Notice that the number of left cosets is the same as the number of right cosets. However, in general $aH \neq Ha$. Notice that all the cosets, left or right have the same number of elements. We will prove that this last observation is true in general.

THEOREM 8 (Properties of Cosets) Let H be a subgroup of G.

a) $a \in aH$; b) aH = bH or $aH \cap bH = \emptyset$; c) $aH = bH \iff a^{-1}b \in H$; d) $aH = H \iff a \in H$; e) |aH| = |bH| = |H|; f) $aH = Ha \iff H = aHa^{-1}$; g) aH is a subgroup of $G \iff a \in H$ ($\iff aH = H$).

PROOF A Since $e \in H$, then $a = ae \in aH$. Alternately, $a \sim a \Rightarrow a \in [a] = aH$.

- B Cosets are just the equivalence classes of the relation \sim_H and are, therefore, equal or disjoint.
- C $aH = bH \iff b \in aH \iff a \sim b \iff a^{-1}b \in H$. (The first \iff uses the previous fact that cosets are either disjoint or equal.)
- D $H = a \iff eH = H \iff e^{-1}a \in H \iff a \in H.$
- E Define the mapping $\phi : H \to aH$ by $\phi h = ah$. We have seen that this map is injective, and by definition of aH it is surjective. Therefore, |H| = |aH|. Similarly |bH| = |H| so |aH| = |bH|.
- $F \quad aH = Ha \iff (aH)a^{-1} = (Ha)a^{-1} \iff aHa^{-1} = H. \text{ Here}$ $aHa^{-1} = \{aha^{-1} \mid h \in H\}.$
- G $aH \leq G \Rightarrow e \in aH \Rightarrow eH = aH \Rightarrow H = aH$. Of couse this says that $a \in H$. Conversely, $a \in H \Rightarrow aH = H \Rightarrow aH$ is a subgroup.

Part (e) of this theorem is very important. Let G be a finite group. Because the cosets of H partition G we can write

$$G = a_1 H \cup a_2 H \cup \dots \cup a_k H, \qquad a_i H \cap H a_j = \emptyset.$$

Notice that finiteness of G is important because it means that the number of cosets is finite and the number of elements in each coset is finite. Therefore

$$|G| = |a_1H| + |a_2H| + \dots + |a_kH| = |H| + |H| + \dots + |H| = k|H|.$$

Thus, |H|||G|. So we have shown:

7.3 Lagrange's Theorem

- **THEOREM 9** (Lagrange's Theorem) Let H be a subgroup of a finite group G. Then |H|||G|.
- **DEFINITION 10** The number of distinct right cosets of H in G is called the **index** of H in G and is denoted by [G : H] or by |G : H|. (Note: if G is infinite, then the index of H in G may or may not be infinite.)
- **COROLLARY 11** For finite groups G, Lagrange's theorem says $|G| = [G:H] \cdot |H|$.

EXAMPLE a) $[S_n : A_n] = 2$

- **b**) $[S_n : S_{n-1}] = n$
- c) $[S_n:D_n] = n!/2n = (n-1)!/2$
- d) $[GL(n):SL(n)] = \infty$
- e) [Z:2Z] = 2
- f) If $GL(\mathbf{R}, n)^+ = \{A \in GL(\mathbf{R}, n)^{\dagger} \det A > 0\}$, then $[GL(\mathbf{R}, n) : GL(\mathbf{R}, n)^+] = 2$.
- g) $[\mathbf{Z} : n\mathbf{Z}] = n$ (*n* a positive integer).
- h) $[\mathbf{R}^* : \mathbf{R}^+] = 2.$

Note: The converse of Lagrange's theorem is false. That is, if $d \mid |G|$, then G need not have a subgroup of order d. The simplest example is with A_4 . $|A_4| = 12$ and $6 \mid 12$. Now A_4 has $\frac{4\cdot 3\cdot 2}{3} = 8$ elements (3-cycles) of order 3. Suppose that H < G and |H| = 6. Then let $a \in A_4$ be a 3-cycle such that $a \notin H$. Since $[A_4 : H] = 2$, the only two cosets of H are H and aH. So $a^2H = H$ or $a^2H = aH$. In the first case, $a^3H = aH \Rightarrow H = aH$, a contradiction. In the second case, $a^3H = a^2H \Rightarrow H = a^2H = aH$, again a contradiction.

There are some important yet easy to prove consequences of Lagrange's theorem. First recall that if $x \in G$, then $\langle x \rangle$ is the cyclic subgroup of G consisting of all the powers of x, $\{x^n | n \in \mathbb{Z}\}$. Of course $|\langle x \rangle| = |x|$.

So if G is finite and $H = \langle x \rangle$, then Lagrange says: |H| ||G|, so |x| ||G|. That is,

COROLLARY 12 If G is finite and $x \in G$, then |x|||G|.

Thus, if |G| = n and $x \in G$, then |x| | n so n = k|x| for some integer k. Thus

$$x^{|G|} = x^n = x^{k|x|} = (x^{|x|})^k = e^k = e.$$

We have proven

- **COROLLARY 13** If G is a finite group of order n = |G|, then $x^n = e$ for all $x \in G$.
- **COROLLARY 14** Fermat's Little Theorem For all integers a and all primes p, $a^p = a \mod p$.
 - **EXAMPLE 11** $4^3 = 4 \mod 3$, i.e., $64 = 1 \mod 3$.
 - PROOF Use the division algorithm to write a = qp + r with $0 \le r \le p 1$. That is, $r \in U(p) = \{o, 1, \dots, p - 1\} = G$. From previous work, because "modding" is a group homomorphism, we can mod before or after multiplying. So $a = r \mod p$, so $a^p = r^p \mod p$. So ETS that $r^p = r \mod p$. But $r \in G = U(p)$ and |G| = p - 1, so by the previous corollary, $r^{|G|} = r^{p-1} = 1$, i.e. $r^{p-1} = 1 \mod p$. Therefore, $r^p = r \mod p$. At this point we can now classify certain types of groups.
- **COROLLARY 15** If a group G is of prime order p, then G is cyclic.
 - PROOF Let |G| = p, where p is prime. Let x be any element of G that is not the identity element. Then |x|||G| implies that either |x| = 1 and so x = e (impossible) or |x| = p which implies that $\langle x \rangle = G$. Notice that we have shown that any non-identity element will be a generator in this case. (This is not true of all cyclic groups, \mathbb{Z}_4 is not generated by 2.)

Thus there is only one group of order n where n is 2, 3, 5, and 7 and it is isomorphic to \mathbf{Z}_n (i.e., its Cayley table looks like that of \mathbf{Z}_n) Compare with S_2 with \mathbf{Z}_2 . There is only one group of order 3. We know there are at least two different groups of order 4, Z_4 and V_4 . One of them is not cyclic. In fact V_4 is the smallest non-cyclic group. You might try to show that these are the only two possible groups of order 4. Which of these is $\mathbf{Z}_2 \oplus \mathbf{Z}_2$? We know of at least two groups of order 6, \mathbf{Z}_6 and D_3 . We have seen that D_3 is tha same as S_3 . D_3 is the smallest non-abelian group we have seen. Is there a smaller one? Are there other groups of order 6?

7.4 Consequences for Small Groups

- **EXAMPLE 12** Suppose that G is a group of order p^2 where p is prime. Show that either G is cyclic or $g^p = e$ for all $g \in G$.
 - SOLUTION Suppose that G is not cyclic. Then we must show that $g^p = e$ for all $g \in G$. But $|g| ||G| = p^2$, so |g| is either 1, p, or p^2 . The last case is impossible for we have assumed that G is not cylic. But then we are done, for now |g| is either 1 or p and in either case $g^p = e$.
- **EXAMPLE 13** Suppose that G is a group of order p^2 where p is prime. Show that G must have a proper subgroup of order p.
 - SOLUTION Break it into cases: G is either cyclic or not. What does our work above tell you about the latter case? In the former, if you have an element g of order p^2 , can you find an element of order p?
- **EXAMPLE 14** Let G be a non-abelian group of order 2p where $p \neq 2$ is prime. Show G has a cyclic subgroup of order p and it also has p elements of order 2.
 - SOLUTION We know that if $a \in G$ with $a \neq e$, then |a| | 2p, so |a| = 2 or p or 2p. If |a| = 2p, then G would be cyclic and hence abelian. If $a^2 = e$ for all elements in G, then we showed (about week 2 or 3) that G would be abelian. This is also a current homework problem. So G has some element a of order p and $H = \langle a \rangle$ is a cyclic subgroup of order p. Le g be any one of the remaining p elements not in H. Note that $G = H \cup gH$. By cancellation $g^2 \notin aH$ (else $g^2H = gH \Rightarrow gH = H$), so $g^2 \in H$. Further, |g| is either 2 or p. (Why?)

If |g| = p, then

$$g^2| = \frac{p}{\gcd(p,2)} = p.$$

But $\langle g^2 \rangle$ is a subgroup of $\langle g \rangle$ and since both subgroups have order p, they must be equal. But $g^2 \in H$ implies that $\langle g^2 \rangle$ is a subgroup of H and since $\langle g^2 \rangle = \langle a \rangle$ then $a \in H$. But this is a contradiction. So the order of g must have been 2.

Let's apply this last result to a non-abelian group G of order $2 \times 3 = 6$. The example shows that we have an element x of order 3 and an element a of order 2. Then $\langle x \rangle = \{e, x, x^2\} = H$. And G is composed of the two disjoint cosets: $G = H \cup aH$, where $aH = \{a, ax, ax^2\}$. Of course this means that $G = \{e, x, x^2, a, ax, ax^2\}$. We know that $a^2 = e$

7.4 Consequences for Small Groups

since it has order 2. Let's see if we can fill in the Cayley Table for $G = \{e, x, x^2, a, ax, ax^2\}$. Here's what we know so far:

	e	x	x^2	a	ax	ax^2
e	e	x	x^2	a	ax	$a x^2$
x	x	x^2	e			
x^2	x^2	e	x			
a	a	a x	ax^2	e	x	x^2
ax	ax	ax^2	a		e	
$a x^2$	ax^2	a	ax			e

The rest is a homework problem. Can we fill in the spot in the xrow and a-column? Show that the only possibilities (since the table is a Latin Square) are that xa equals either ax or ax^2 . Suppose that xa = ax; then show from the group table that the group ends up being abelian. (Can you give a better reason: if xa = ax, show that all the a's would commute with all the x's and since every element in G is written using a's and x's, G would be abelian.) Therefore, we must have $xa = ax^2$. And now the rest of the table can be filled in.

- **EXAMPLE 15** Find all possible groups (up to isomorphism) of order 8 or less.
 - SOLUTION If |G| = 1, then the group consists of the identity element alone. If |G| is p = 2, 3, 5, 7, these values of p are prime, so G is cyclic of order p and so $G \cong \mathbb{Z}_p$.

Now suppose that |G| = 4. Either G is cyclic (and isomorphic to \mathbb{Z}_4), or it is not. Suppose that $G = \{e, a, b, c\}$ is not cyclic. Then since the order of each element must divide the order of the group and since only e has order 1, then |a| = |b| = |c| = 2. So G is abelian, and from the Fundamental Theorem of Finite Abelian Groups, we must have $G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \cong V_4$.

What about |G| = 6? If G is abelian, then the Fundamental Theorem again says that $G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_3 \cong \mathbb{Z}_6$, so in fact G is cyclic. If G is not abelian, then it must be the non-abelian group of order 6 whose table we filled in above. This table should be familiar: it is D_3 (which we have also seen is isomorphic to S_3 by interpretting the motions of the triangle as permutations of the vertices 1, 2, 3 of the the triangle).

What about groups of order 8? Which do we know? Suppose G is abelian. Then the maximum order of its elements could be 8, 4, or 2. If G is abelian, then by the Fundamental Theorem for Finite Abelian Groups, G is isomorphic to either \mathbf{Z}_8 , $\mathbf{Z}_2 \oplus \mathbf{Z}_4$, or $\mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$. If G is not abelian, it has no element of order 8 (else it would be cyclic). If it has no elements of order 4, then all its non-identity elements would be order 2. But then G would be abelian. So G has an element of order 4,

call it x and let $\langle x \rangle = H$. As in the order 2*p*-example, choose $a \notin H$. Then $G = H \cup aH$ again. so $G = \{e, x, x^2, x^3, a, ax, ax^2, ax^3\}$. Now it gets trickier. See if you can figure out what the possibilities are for xa this time!!! I will give you a boat load of extra credit if you can figure out all the possibilities.