
Math 375

Week 7

7.1 Equivalence Relations Redux

DEFINITION 1 Let S be a set. � is an equivalence relation on S if R satis�es the
following three condidtions:

i) for every s 2 S; s � s (s is related to itself; reexive);

ii) for every s; t 2 S, if s � t then t � s (symmetric);

iii) for every s; t; u 2 S, if s � t and t � u then s � u (transitive).

DEFINITION 2 For any s 2 S, let [s] denote the subset of S consistingt of all t 2 S such
that t � s. That is,

[s] = ft 2 Sj t � sg:

We call [s] the equivalence class of s under the relation �.

DEFINITION 3 A partition of a set S is a collection of nonempty disjoint subsets of S
whose union is all of S.

EXAMPLE 1 If � is the equivalence relation � (mod 5) on Z, then [0]; [1]; [2]; [3]; [4]
form a partition of Z. This situation is the norm for any equivalence
relation.

EXAMPLE 2 We saw that isomorphisnm �= was an equivalence relation on the set of
all groups.

THEOREM 4 Let � be an equivalence relation on S. Then the equivalence classes
of � form a partition of S. That is, every element is in exactly one
equivalence class. And conversely.

PROOF Let � be the equivalence relation. Since s � s for any s 2 S, it follows
that s 2 [s]. That is, no class is empty. Second, the union of all equiv-
alence classes is clearly all of S since every element s of S lies in some
equivalence class.

Finally we must show that any two classes are either disjoint or
exactly the same. So suppose that two classes [s] and [t] are not disjoint,
that is, that there is at least one element a in both [s] and [t]. We must
show that [s] = [t]. (To do this we must show [s] � [t] and [t] � [s].) To
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show [s] � [t], let b 2 [s]. Then: b � s. But a 2 [s], so s � a and thus
b � a. But a 2 [t] so a � t and therefore b � t. That is, b 2 [t]. So
[s] � [t] and similarly [t] � [s].

The proof of the converse is an exercise. We'll never use it.

Another way to say the same thing is :

[s] = [t] () [s] \ [t] 6= ;:

Notice that it is actually the equivalence classes mod n that we made
into a group.

7.2 Cosets and the Equivalence Relation �H

The most important use of an equivalence relation in elementary group
theory has to do with the idea of cosets. Cosets are just the equivalence
classes of a fancy equivalence relation on a group. Let's examine that
relation.

THEOREM 5 Let H be a subgroup of a group G. De�ne a � b () a�1b 2 H . Then
� is an equivalence relation on G.

PROOF We have seen this argument before. Reexive: show a � a. Well

a � a () a�1a 2 H () e 2 H:

Symmetric: If a � b, show b � a. But

a � b) a�1b 2 H ) (a�1b)�1 2 H ) b�1a 2 H ) b � a:

Transitive: Given a � b; b � c, show a � c.

a � b; b � c) a�1b; b�1c 2 H

) (a�1b)(b�1c) 2 H

) a�1c 2 H ) a � c:

Remember that any equivalence relation partitions the original set
(here G) into mutually disjoint subsets called equivalence classes. Re-
call that we used the notation [a] to denote the set of all elements related
to a. That is, [a] = fb 2 G j a � bg. Here these equivalence classes are
easy to describe.

DEFINITION 6 Let H be subgroup of a group G. For any element a 2 G, the set aH is
the left coset of H in G where aH = fahj h 2 Hg:
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LEMMA 7 If H � G and � is the equivalence relation above, then a � b () b 2
aH . (That is, [a] = aH .)

PROOF Let x 2 G. Then

a � b () a�1b 2 H () a�1b = h; h 2 H

() b = ah; h 2 H

() b 2 aH:

EXAMPLE 3 Let G = U(8) = f1; 3; 5; 7g and let H = f1; 5g. Then:

[1] = 1H = f1; 5g

[3] = 3H = f3; 7g

[5] = 5H = f5; 1g= 1H

[7] = 7H = f7; 3g= 3H

EXAMPLE 4 Let G = Z12 and H =< 4 >= f0; 4; 8g. Find the left cosets of H in G.
Note that each coset has the same number of elements and that cosets
are either disjoint or are identical, i.e., they partition G.

EXAMPLE 5 Let G = S3, H = A3 = f(1); (123); (132)g. Notice that

(1) � g () (1)�1g 2 A3 () g 2 A3:

So [(1)] = (1)A3 = A3. Notice that

(12) � g () (12)�1g 2 A3 () (12)g 2 A3 () g is odd:

Therefore [(12)] = (12)A3 = f(12); (13); (23)g. Since the left cosets
(equivalence classes) of A3 partition S3, we know we can stop looking
for other left cosets. The two we found already yield all of S3. They are
A3 and (12)A3 = f(12); (23); (13)g which are disjoint and partition S3.
Notice each class has the same number of elements.

EXAMPLE 6 Let G = Z and let H = 5Z = f: : : ;�10; 5; 0; 5; 10; : : :g = f5n j n 2 Zg.
H is clearly a subgroup. We saw that the equivalence classes of � were
[a] = fa+ 5n j n 2 Zg = a+H = a+ 5Z. In particular:

5Z = 0 + 5Z = f: : : ;�10; 5; 0; 5; 10; : : :g = : : : = [�5] = [0] = [5] = : : :

1 + 5Z = f: : : ;�9;�4; 1; 6; 11; : : :g = : : := [�4] = [1] = [6] = : : :

and so on.
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EXAMPLE 7 Let G = GL(n;R) and letH = SL(n;R) = fA 2 GL(n;R) j detA = 1g.
Notice that

A � B () A�1B 2 SL(n) () detA�1B = 1

() detB detA�1 = 1

() detB(detA)�1 = 1

() detA = detB:

Thus we get an equivalence class or left coset for SL(n;R) for each
di�erent non-zero real number.

Now we could have started out using a similar equivalaence relation:
Let H � G and de�ne the equivalence relation � de�ned by a � b ()
ba�1 2 H . (It is an easy check to see that this is an equivalence relation.)
We would then �nd that a � b () b 2 Ha = fha j h 2 Hg. The set
Ha is called the right coset of the subgroup H in G.

EXAMPLE 8 It is not true that aH = Ha for all H � G. Clearly, we ust look at
nonabelian groups to �nd an example. Let G = D4 and H = fr0; vg.
Then: r90H = fr90; d

0g while Hr90 = fr90; dg. This is a very important
example. However, do notice that both cosets do have the same number
of elements in them.

EXAMPLE 9 Let G = S3 and H = S2 = f(1); (12)g. Compare the right and left cosets
of H in G.

The right cosets:

H(1) = H = H(12)

H(13) = f(13); (132)g= H(132)

H(23) = f(23); (123)g= H(123)

The left cosets are:

(1)H = H = (12)H

(13)H = f(13); (123)g= (123)H

(23)H = f(23); (132)g= (132)H

Notice that the number of left cosets is the same as the number of right
cosets. However, in general aH 6= Ha. Notice that all the cosets, left
or right have the same number of elements. We will prove that this last
observation is true in general.
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THEOREM 8 (Properties of Cosets) Let H be a subgroup of G.

a) a 2 aH ;

b) aH = bH or aH \ bH = ;;

c) aH = bH () a�1b 2 H ;

d) aH = H () a 2 H ;

e) jaH j = jbH j = jH j;

f) aH = Ha () H = aHa�1;

g) aH is a subgroup of G () a 2 H (() aH = H).

PROOF A Since e 2 H , then a = ae 2 aH . Alternately, a � a) a 2 [a] = aH .

B Cosets are just the equivalence classes of the relation �H and are, there-
fore, equal or disjoint.

C aH = bH () b 2 aH () a � b () a�1b 2 H . (The �rst ()
uses the previous fact that cosets are either disjoint or equal.)

D H = a () eH = H () e�1a 2 H () a 2 H .

E De�ne the mapping � : H ! aH by �h = ah. We have seen that this
map is injective, and by de�nition of aH it is surjective. Therefore,
jH j = jaH j. Similarly jbH j = jH j so jaH j = jbH j.

F aH = Ha () (aH)a�1 = (Ha)a�1 () aHa�1 = H . Here
aHa�1 = faha�1 j h 2 Hg.

G aH � G ) e 2 aH ) eH = aH ) H = aH: Of couse this says that
a 2 H . Conversely, a 2 H ) aH = H ) aH is a subgroup.

Part (e) of this theorem is very important. Let G be a �nite group.
Because the cosets of H partition G we can write

G = a1H [ a2H [ � � � [ akH; aiH \Haj = ;:

Notice that �niteness ofG is important because it means that the number
of cosets is �nite and the number of elements in each coset is �nite.
Therefore

jGj = ja1H j+ ja2H j+ � � �+ jakH j = jH j+ jH j+ � � � jH j = kjH j:

Thus, jH j
�
�
�jGj. So we have shown:
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7.3 Lagrange's Theorem

THEOREM 9 (Lagrange's Theorem) Let H be a subgroup of a �nite group G. Then

jH j
�
�
�jGj.

DEFINITION 10 The number of distinct right cosets of H in G is called the index of H
in G and is denoted by [G : H ] or by jG : H j. (Note: if G is in�nite,
then the index of H in G may or may not be in�nite.)

COROLLARY 11 For �nite groups G, Lagrange's theorem says jGj = [G : H ] � jH j.

EXAMPLE a) [Sn : An] = 2

b) [Sn : Sn�1] = n

c) [Sn : Dn] = n!=2n = (n� 1)!=2

d) [GL(n) : SL(n)] =1

e) [Z : 2Z] = 2

f) If GL(R; n)+ = fA 2 GL(R; n)j detA > 0g, then [GL(R; n) :
GL(R; n)+] = 2.

g) [Z : nZ] = n (n a positive integer).

h) [R� : R+] = 2.

Note: The converse of Lagrange's theorem is false. That is, if
d j jGj, then G need not have a subgroup of order d. The simplest
example is with A4. jA4j = 12 and 6 j 12. Now A4 has 4�3�2

3
= 8

elements (3-cycles) of order 3. Suppose that H < G and jH j = 6. Then
let a 2 A4 be a 3-cycle such that a =2 H . Since [A4 : H ] = 2, the only
two cosets of H are H and aH . So a2H = H or a2H = aH . In the
�rst case, a3H = aH ) H = aH , a contradiction. In the second case,
a3H = a2H ) H = a2H = aH , again a contradiction.

There are some important yet easy to prove consequences of La-
grange's theorem. First recall that if x 2 G, then < x > is the cyclic
subgroup of G consisting of all the powers of x, fxnj n 2 Zg. Of course
j < x > j = jxj.

So if G is �nite and H =< x >, then Lagrange says: jH j
�
�
�jGj, so

jxj
�
�
�jGj. That is,
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COROLLARY 12 If G is �nite and x 2 G, then jxj
�
�
�jGj.

Thus, if jGj = n and x 2 G, then jxj
�
�
�n so n = kjxj for some integer

k. Thus
xjGj = xn = xkjxj = (xjxj)k = ek = e:

We have proven

COROLLARY 13 If G is a �nite group of order n = jGj, then xn = e for all x 2 G.

COROLLARY 14 Fermat's Little Theorem For all integers a and all primes p, ap =
a mod p.

EXAMPLE 11 43 = 4 mod 3, i.e., 64 = 1 mod 3.

PROOF Use the division algorithm to write a = qp + r with 0 � r � p � 1.
That is, r 2 U(p) = fo; 1; : : : ; p� 1g = G. From previous work, because
\modding" is a group homomorphism, we can mod before or after mul-
tiplying. So a = r mod p, so ap = rp mod p. So ETS that rp = r mod p.
But r 2 G = U(p) and jGj = p � 1, so by the previous corollary,
rjGj = rp�1 = 1, i.e. rp�1 = 1 mod p. Therefore, rp = r mod p.

At this point we can now classify certain types of groups.

COROLLARY 15 If a group G is of prime order p, then G is cyclic.

PROOF Let jGj = p, where p is prime. Let x be any element of G that is not

the identity element. Then jxj
�
�
�jGj implies that either jxj = 1 and so

x = e (impossible) or jxj = p which implies that < x >= G. Notice that
we have shown that any non-identity element will be a generator in this
case. (This is not true of all cyclic groups, Z4 is not generated by 2.)

Thus there is only one group of order n where n is 2, 3, 5, and 7
and it is isomorphic to Zn (i.e., its Cayley table looks like that of Zn)
Compare with S2 with Z2. There is only one group of order 3. We know
there are at least two di�erent groups of order 4, Z4 and V4. One of them
is not cyclic. In fact V4 is the smallest non-cyclic group. You might try
to show that these are the only two possible groups of order 4. Which of
these is Z2�Z2? We know of at least two groups of order 6, Z6 and D3.
We have seen that D3 is tha same as S3. D3 is the smallest non-abelian
group we have seen. Is there a smaller one? Are there other groups of
order 6?



8 Math 375

7.4 Consequences for Small Groups

EXAMPLE 12 Suppose that G is a group of order p2 where p is prime. Show that either
G is cyclic or gp = e for all g 2 G.

SOLUTION Suppose that G is not cyclic. Then we must show that gp = e for all

g 2 G. But jgj
�
�
�jGj = p2, so jgj is either 1, p, or p2. The last case is

impossible for we have assumed that G is not cylic. But then we are
done, for now jgj is either 1 or p and in either case gp = e.

EXAMPLE 13 Suppose that G is a group of order p2 where p is prime. Show that G
must have a proper subgroup of order p.

SOLUTION Break it into cases: G is either cyclic or not. What does our work above
tell you about the latter case? In the former, if you have an element g
of order p2, can you �nd an element of order p?

EXAMPLE 14 Let G be a non-abelian group of order 2p where p 6= 2 is prime. Show G
has a cyclic subgroup of order p and it also has p elements of order 2.

SOLUTION We know that if a 2 G with a 6= e, then jaj
�
�
�2p, so jaj = 2 or p or 2p.

If jaj = 2p, then G would be cyclic and hence abelian. If a2 = e for
all elements in G, then we showed (about week 2 or 3) that G would
be abelian. This is also a current homework problem. So G has some
element a of order p and H =< a > is a cyclic subgroup of order p. Le g
be any one of the remaining p elements not in H . Note that G = H[gH .
By cancellation g2 =2 aH (else g2H = gH ) gH = H), so g2 2 H .
Further, jgj is either 2 or p. (Why?)

If jgj = p, then

jg2j =
p

gcd(p; 2)
= p:

But < g2 > is a subgroup of < g > and since both subgroups have order
p, they must be equal. But g2 2 H implies that < g2 > is a subgroup of
H and since < g2 >=< a > then a 2 H . But this is a contradiction. So
the order of g must have been 2.

Let's apply this last result to a non-abelian group G of order 2�3 =
6. The example shows that we have an element x of order 3 and an
element a of order 2. Then < x >= fe; x; x2g = H . And G is composed
of the two disjoint cosets: G = H [ aH , where aH = fa; ax; ax2g. Of
course this means that G = fe; x; x2; a; ax; ax2g. We know that a2 = e
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since it has order 2. Let's see if we can �ll in the Cayley Table for
G = fe; x; x2; a; ax; ax2g. Here's what we know so far:

� e x x2 a ax ax2

e e x x2 a ax ax2

x x x2 e
x2 x2 e x
a a ax ax2 e x x2

ax ax ax2 a e
ax2 ax2 a ax e

The rest is a homework problem. Can we �ll in the spot in the x-
row and a-column? Show that the only possibilities (since the table is a
Latin Square) are that xa equals either ax or ax2. Suppose that xa = ax;
then show from the group table that the group ends up being abelian.
(Can you give a better reason: if xa = ax, show that all the a's would
commute with all the x's and since every element in G is written using
a's and x's, G would be abelian.) Therefore, we must have xa = ax2:
And now the rest of the table can be �lled in.

EXAMPLE 15 Find all possible groups (up to isomorphism) of order 8 or less.

SOLUTION If jGj = 1, then the group consists of the identity element alone. If jGj
is p = 2, 3, 5, 7, these values of p are prime, so G is cyclic of order p and
so G �= Zp.

Now suppose that jGj = 4. Either G is cyclic (and isomorphic to
Z4), or it is not. Suppose that G = fe; a; b; cg is not cyclic. Then since
the order of each element must divide the order of the group and since
only e has order 1, then jaj = jbj = jcj = 2. So G is abelian, and
from the Fundamental Theorem of Finite Abelian Groups, we must have
G �= Z2 � Z2

�= V4.
What about jGj = 6? If G is abelian, then the Fundamental Theo-

rem again says that G �= Z2�Z3
�= Z6, so in fact G is cyclic. If G is not

abelian, then it must be the non-abelian group of order 6 whose table we
�lled in above. This table should be familiar: it is D3 (which we have
also seen is isomorphic to S3 by interpretting the motions of the triangle
as permutations of the vertices 1, 2, 3 of the the triangle).

What about groups of order 8? Which do we know? Suppose G is
abelian. Then the maximum order of its elements could be 8, 4, or 2.
If G is abelian, then by the Fundamental Theorem for Finite Abelian
Groups, G is isomorphic to either Z8, Z2 �Z4, or Z2 �Z2 �Z2. If G is
not abelian, it has no element of order 8 (else it would be cyclic). If it
has no elements of order 4, then all its non-identity elements would be
order 2. But then G would be abelian. So G has an element of order 4,
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call it x and let < x >= H . As in the order 2p-example, choose a =2 H .
Then G = H [ aH again. so G = fe; x; x2; x3; a; ax; ax2; ax3g. Now it
gets trickier. See if you can �gure out what the possibilities are for xa
this time!!! I will give you a boat load of extra credit if you can
�gure out all the possibilities.


