Math 375
 Week 7

7.1 Equivalence Relations Redux

Definition 1 Let S be a set. \sim is an equivalence relation on S if R satisfies the following three condidtions:
i) for every $s \in S, s \sim s$ (s is related to itself; reflexive);
ii) for every $s, t \in S$, if $s \sim t$ then $t \sim s$ (symmetric);
iii) for every $s, t, u \in S$, if $s \sim t$ and $t \sim u$ then $s \sim u$ (transitive).

Definition 2 For any $s \in S$, let $[s]$ denote the subset of S consistingt of all $t \in S$ such that $t \sim s$. That is,

$$
[s]=\{t \in S \mid t \sim s\} .
$$

We call $[s]$ the equivalence class of s under the relation \sim.
Definition 3 A partition of a set S is a collection of nonempty disjoint subsets of S whose union is all of S.

Example 1 If \sim is the equivalence relation $\equiv(\bmod 5)$ on Z, then $[0],[1],[2],[3],[4]$ form a partition of \mathbf{Z}. This situation is the norm for any equivalence relation.
Example 2 We saw that isomorphisnm \cong was an equivalence relation on the set of all groups.
Theorem 4 Let \sim be an equivalence relation on S. Then the equivalence classes of \sim form a partition of S. That is, every element is in exactly one equivalence class. And conversely.

Proof Let \sim be the equivalence relation. Since $s \sim s$ for any $s \in S$, it follows that $s \in[s]$. That is, no class is empty. Second, the union of all equivalence classes is clearly all of S since every element s of S lies in some equivalence class.

Finally we must show that any two classes are either disjoint or exactly the same. So suppose that two classes $[s]$ and $[t]$ are not disjoint, that is, that there is at least one element a in both $[s]$ and $[t]$. We must show that $[s]=[t]$. (To do this we must show $[s] \subset[t]$ and $[t] \subset[s]$.) To
show $[s] \subset[t]$, let $b \in[s]$. Then: $b \sim s$. But $a \in[s]$, so $s \sim a$ and thus $b \sim a$. But $a \in[t]$ so $a \sim t$ and therefore $b \sim t$. That is, $b \in[t]$. So $[s] \subset[t]$ and similarly $[t] \subset[s]$.

The proof of the converse is an exercise. We'll never use it.
Another way to say the same thing is :

$$
[s]=[t] \Longleftrightarrow[s] \cap[t] \neq \emptyset
$$

Notice that it is actually the equivalence classes $\bmod n$ that we made into a group.

7.2 Cosets and the Equivalence Relation \sim_{H}

The most important use of an equivalence relation in elementary group theory has to do with the idea of cosets. Cosets are just the equivalence classes of a fancy equivalence relation on a group. Let's examine that relation.

Theorem 5 Let H be a subgroup of a group G. Define $a \sim b \Longleftrightarrow a^{-1} b \in H$. Then \sim is an equivalence relation on G.

PROOF We have seen this argument before. Reflexive: show $a \sim a$. Well

$$
a \sim a \Longleftrightarrow a^{-1} a \in H \Longleftrightarrow e \in H
$$

Symmetric: If $a \sim b$, show $b \sim a$. But

$$
a \sim b \Rightarrow a^{-1} b \in H \Rightarrow\left(a^{-1} b\right)^{-1} \in H \Rightarrow b^{-1} a \in H \Rightarrow b \sim a
$$

Transitive: Given $a \sim b, b \sim c$, show $a \sim c$.

$$
\begin{aligned}
a \sim b, b \sim c & \Rightarrow a^{-1} b, b^{-1} c \in H \\
& \Rightarrow\left(a^{-1} b\right)\left(b^{-1} c\right) \in H \\
& \Rightarrow a^{-1} c \in H \Rightarrow a \sim c
\end{aligned}
$$

Remember that any equivalence relation partitions the original set (here G) into mutually disjoint subsets called equivalence classes. Recall that we used the notation $[a]$ to denote the set of all elements related to a. That is, $[a]=\{b \in G \mid a \sim b\}$. Here these equivalence classes are easy to describe.

Definition 6 Let H be subgroup of a group G. For any element $a \in G$, the set $a H$ is the left coset of H in G where $a H=\{a h \mid h \in H\}$.

Lemma 7 If $H \leq G$ and \sim is the equivalence relation above, then $a \sim b \Longleftrightarrow b \in$ $a H$. (That is, $[a]=a H$.)

Proof Let $x \in G$. Then

$$
\begin{aligned}
a \sim b \Longleftrightarrow a^{-1} b \in H & \Longleftrightarrow a^{-1} b=h, h \in H \\
& \Longleftrightarrow b=a h, h \in H \\
& \Longleftrightarrow b \in a H .
\end{aligned}
$$

Example 3 Let $G=U(8)=\{1,3,5,7\}$ and let $H=\{1,5\}$. Then:

$$
\begin{aligned}
& {[1]=1 H=\{1,5\}} \\
& {[3]=3 H=\{3,7\}} \\
& {[5]=5 H=\{5,1\}=1 H} \\
& {[7]=7 H=\{7,3\}=3 H}
\end{aligned}
$$

Example 4 Let $G=\mathbf{Z}_{12}$ and $H=<4>=\{0,4,8\}$. Find the left cosets of H in G. Note that each coset has the same number of elements and that cosets are either disjoint or are identical, i.e., they partition G.

Example 5 Let $G=S_{3}, H=A_{3}=\{(1),(123),(132)\}$. Notice that

$$
(1) \sim g \Longleftrightarrow(1)^{-1} g \in A_{3} \Longleftrightarrow g \in A_{3} .
$$

So $[(1)]=(1) A_{3}=A_{3}$. Notice that

$$
(12) \sim g \Longleftrightarrow(12)^{-1} g \in A_{3} \Longleftrightarrow(12) g \in A_{3} \Longleftrightarrow g \text { is odd. }
$$

Therefore $[(12)]=(12) A_{3}=\{(12),(13),(23)\}$. Since the left cosets (equivalence classes) of A_{3} partition S_{3}, we know we can stop looking for other left cosets. The two we found already yield all of S_{3}. They are A_{3} and $(12) A_{3}=\{(12),(23),(13)\}$ which are disjoint and partition S_{3}. Notice each class has the same number of elements.

Example 6 Let $G=\mathbf{Z}$ and let $H=5 \mathrm{Z}=\{\ldots,-10,5,0,5,10, \ldots\}=\{5 n \mid n \in \mathbf{Z}\}$. H is clearly a subgroup. We saw that the equivalence classes of \sim were $[a]=\{a+5 n \mid n \in \mathbf{Z}\}=a+H=a+5 \mathbf{Z}$. In particular:

$$
\begin{aligned}
5 \mathrm{Z}=0+5 \mathrm{Z} & =\{\ldots,-10,5,0,5,10, \ldots\}=\ldots=[-5]=[0]=[5]=\ldots \\
1+5 \mathrm{Z} & =\{\ldots,-9,-4,1,6,11, \ldots\}=\ldots=[-4]=[1]=[6]=\ldots
\end{aligned}
$$

and so on.

Example 7 Let $G=G L(n, \mathbf{R})$ and let $H=S L(n, \mathbf{R})=\{A \in G L(n, \mathbf{R}) \mid \operatorname{det} A=1\}$.
Notice that

$$
\begin{aligned}
A \sim B \Longleftrightarrow A^{-1} B \in S L(n) & \Longleftrightarrow \operatorname{det} A^{-1} B=1 \\
& \Longleftrightarrow \operatorname{det} B \operatorname{det} A^{-1}=1 \\
& \Longleftrightarrow \operatorname{det} B(\operatorname{det} A)^{-1}=1 \\
& \Longleftrightarrow \operatorname{det} A=\operatorname{det} B .
\end{aligned}
$$

Thus we get an equivalence class or left coset for $S L(n, \mathbf{R})$ for each different non-zero real number.

Now we could have started out using a similar equivalaence relation: Let $H \leq G$ and define the equivalence relation \approx defined by $a \approx b \Longleftrightarrow$ $b a^{-1} \in H$. (It is an easy check to see that this is an equivalence relation.) We would then find that $a \approx b \Longleftrightarrow b \in H a=\{h a \mid h \in H\}$. The set $H a$ is called the right coset of the subgroup H in G.

Example 8 It is not true that $a H=H a$ for all $H \leq G$. Clearly, we ust look at nonabelian groups to find an example. Let $G=D_{4}$ and $H=\left\{r_{0}, v\right\}$. Then: $r_{90} H=\left\{r_{90}, d^{\prime}\right\}$ while $H r_{90}=\left\{r_{90}, d\right\}$. This is a very important example. However, do notice that both cosets do have the same number of elements in them.

Example 9 Let $G=S_{3}$ and $H=S_{2}=\{(1),(12)\}$. Compare the right and left cosets of H in G.
The right cosets:

$$
\begin{aligned}
H(1) & =H=H(12) \\
H(13) & =\{(13),(132)\}=H(132) \\
H(23) & =\{(23),(123)\}=H(123)
\end{aligned}
$$

The left cosets are:

$$
\begin{aligned}
\text { (1) } H & =H=(12) H \\
(13) H & =\{(13),(123)\}=(123) H \\
(23) H & =\{(23),(132)\}=(132) H
\end{aligned}
$$

Notice that the number of left cosets is the same as the number of right cosets. However, in general $a H \neq H a$. Notice that all the cosets, left or right have the same number of elements. We will prove that this last observation is true in general.

Theorem 8 (Properties of Cosets) Let H be a subgroup of G.
а) $a \in a H$;
b) $a H=b H$ or $a H \cap b H=\emptyset$;
c) $a H=b H \Longleftrightarrow a^{-1} b \in H$;
d) $a H=H \Longleftrightarrow a \in H$;
e) $|a H|=|b H|=|H|$;
f) $a H=H a \Longleftrightarrow H=a H a^{-1}$;
g) $a H$ is a subgroup of $G \Longleftrightarrow a \in H(\Longleftrightarrow a H=H)$.
proof a Since $e \in H$, then $a=a e \in a H$. Alternately, $a \sim a \Rightarrow a \in[a]=a H$.
B Cosets are just the equivalence classes of the relation \sim_{H} and are, therefore, equal or disjoint.

с $a H=b H \Longleftrightarrow b \in a H \Longleftrightarrow a \sim b \Longleftrightarrow a^{-1} b \in H$. (The first \Longleftrightarrow uses the previous fact that cosets are either disjoint or equal.)

D $\quad H=a \Longleftrightarrow e H=H \Longleftrightarrow e^{-1} a \in H \Longleftrightarrow a \in H$.
E Define the mapping $\phi: H \rightarrow a H$ by $\phi h=a h$. We have seen that this map is injective, and by definition of $a H$ it is surjective. Therefore, $|H|=|a H|$. Similarly $|b H|=|H|$ so $|a H|=|b H|$.

F $a H=H a \Longleftrightarrow(a H) a^{-1}=(H a) a^{-1} \Longleftrightarrow a H a^{-1}=H . \quad$ Here $a H a^{-1}=\left\{a h a^{-1} \mid h \in H\right\}$.
G $\quad a H \leq G \Rightarrow e \in a H \Rightarrow e H=a H \Rightarrow H=a H$. Of couse this says that $a \in H$. Conversely, $a \in H \Rightarrow a H=H \Rightarrow a H$ is a subgroup.

Part (e) of this theorem is very important. Let G be a finite group. Because the cosets of H partition G we can write

$$
G=a_{1} H \cup a_{2} H \cup \cdots \cup a_{k} H, \quad a_{i} H \cap H a_{j}=\emptyset .
$$

Notice that finiteness of G is important because it means that the number of cosets is finite and the number of elements in each coset is finite. Therefore

$$
|G|=\left|a_{1} H\right|+\left|a_{2} H\right|+\cdots+\left|a_{k} H\right|=|H|+|H|+\cdots|H|=k|H|
$$

Thus, $|H|||G|$. So we have shown:

7.3 Lagrange's Theorem

Theorem 9 (Lagrange's Theorem) Let H be a subgroup of a finite group G. Then $|H|||G|$.

Definition 10 The number of distinct right cosets of H in G is called the index of H in G and is denoted by $[G: H]$ or by $|G: H|$. (Note: if G is infinite, then the index of H in G may or may not be infinite.)

Corollary 11 For finite groups G, Lagrange's theorem says $|G|=[G: H] \cdot|H|$.

Example a) $\left[S_{n}: A_{n}\right]=2$
b) $\left[S_{n}: S_{n-1}\right]=n$
c) $\left[S_{n}: D_{n}\right]=n!/ 2 n=(n-1)!/ 2$
d) $[G L(n): S L(n)]=\infty$
e) $[\mathbf{Z}: 2 \mathbf{Z}]=2$
f) If $G L(\mathbf{R}, n)^{+}=\left\{A \in G L(\mathbf{R}, n)^{\mid} \operatorname{det} A>0\right\}$, then $[G L(\mathbf{R}, n)$: $\left.G L(\mathbf{R}, n)^{+}\right]=2$.
g) $[\mathbf{Z}: n \mathbf{Z}]=n$ (n a positive integer).
h) $\left[\mathbf{R}^{*}: \mathbf{R}^{+}\right]=2$.

Note: The converse of Lagrange's theorem is false. That is, if $d||G|$, then G need not have a subgroup of order d. The simplest example is with $A_{4} .\left|A_{4}\right|=12$ and $6 \mid 12$. Now A_{4} has $\frac{4 \cdot 3 \cdot 2}{3}=8$ elements (3-cycles) of order 3 . Suppose that $H<G$ and $|H|=6$. Then let $a \in A_{4}$ be a 3 -cycle such that $a \notin H$. Since $\left[A_{4}: H\right]=2$, the only two cosets of H are H and $a H$. So $a^{2} H=H$ or $a^{2} H=a H$. In the first case, $a^{3} H=a H \Rightarrow H=a H$, a contradiction. In the second case, $a^{3} H=a^{2} H \Rightarrow H=a^{2} H=a H$, again a contradiction.

There are some important yet easy to prove consequences of Lagrange's theorem. First recall that if $x \in G$, then $\langle x\rangle$ is the cyclic subgroup of G consisting of all the powers of $x,\left\{x^{n} \mid n \in \mathbf{Z}\right\}$. Of course $|\langle x\rangle|=|x|$.

So if G is finite and $H=\langle x\rangle$, then Lagrange says: $|H|||G|$, so $|x||G|$. That is,

Corollary 12 If G is finite and $x \in G$, then $|x|||G|$.
Thus, if $|G|=n$ and $x \in G$, then $|x| \mid n$ so $n=k|x|$ for some integer k. Thus

$$
x^{|G|}=x^{n}=x^{k|x|}=\left(x^{|x|}\right)^{k}=e^{k}=e .
$$

We have proven
Corollary 13 If G is a finite group of order $n=|G|$, then $x^{n}=e$ for all $x \in G$.

Corollary 14 Fermat's Little Theorem For all integers a and all primes $p, a^{p}=$ $a \bmod p$.

Example $114^{3}=4 \bmod 3$, i.e., $64=1 \bmod 3$.
PROOF Use the division algorithm to write $a=q p+r$ with $0 \leq r \leq p-1$. That is, $r \in U(p)=\{o, 1, \ldots, p-1\}=G$. From previous work, because "modding" is a group homomorphism, we can mod before or after multiplying. So $a=r \bmod p$, so $a^{p}=r^{p} \bmod p$. So ETS that $r^{p}=r \bmod p$. But $r \in G=U(p)$ and $|G|=p-1$, so by the previous corollary, $r^{|G|}=r^{p-1}=1$, i.e. $r^{p-1}=1 \bmod p$. Therefore, $r^{p}=r \bmod p$.

At this point we can now classify certain types of groups.
Corollary 15 If a group G is of prime order p, then G is cyclic.
PROOF Let $|G|=p$, where p is prime. Let x be any element of G that is not the identity element. Then $|x|||G|$ implies that either $| x \mid=1$ and so $x=e$ (impossible) or $|x|=p$ which implies that $\langle x\rangle=G$. Notice that we have shown that any non-identity element will be a generator in this case. (This is not true of all cyclic groups, \mathbf{Z}_{4} is not generated by 2.)

Thus there is only one group of order n where n is $2,3,5$, and 7 and it is isomorphic to \mathbf{Z}_{n} (i.e., its Cayley table looks like that of \mathbf{Z}_{n}) Compare with S_{2} with Z_{2}. There is only one group of order 3 . We know there are at least two different groups of order $4, Z_{4}$ and V_{4}. One of them is not cyclic. In fact V_{4} is the smallest non-cyclic group. You might try to show that these are the only two possible groups of order 4. Which of these is $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$? We know of at least two groups of order $6, \mathbf{Z}_{6}$ and D_{3}. We have seen that D_{3} is tha same as S_{3}. D_{3} is the smallest non-abelian group we have seen. Is there a smaller one? Are there other groups of order 6 ?

7.4 Consequences for Small Groups

Example 12 Suppose that G is a group of order p^{2} where p is prime. Show that either G is cyclic or $g^{p}=e$ for all $g \in G$.
solution Suppose that G is not cyclic. Then we must show that $g^{p}=e$ for all $g \in G$. But $|g|\left||G|=p^{2}\right.$, so $| g \mid$ is either $1, p$, or p^{2}. The last case is impossible for we have assumed that G is not cylic. But then we are done, for now $|g|$ is either 1 or p and in either case $g^{p}=e$.

Example 13 Suppose that G is a group of order p^{2} where p is prime. Show that G must have a proper subgroup of order p.
solution Break it into cases: G is either cyclic or not. What does our work above tell you about the latter case? In the former, if you have an element g of order p^{2}, can you find an element of order p ?

Example 14 Let G be a non-abelian group of order $2 p$ where $p \neq 2$ is prime. Show G has a cyclic subgroup of order p and it also has p elements of order 2 .

Solution We know that if $a \in G$ with $a \neq e$, then $|a| \mid 2 p$, so $|a|=2$ or p or $2 p$. If $|a|=2 p$, then G would be cyclic and hence abelian. If $a^{2}=e$ for all elements in G, then we showed (about week 2 or 3) that G would be abelian. This is also a current homework problem. So G has some element a of order p and $H=\langle a\rangle$ is a cyclic subgroup of order p. Le g be any one of the remaining p elements not in H. Note that $G=H \cup g H$. By cancellation $g^{2} \notin a H$ (else $g^{2} H=g H \Rightarrow g H=H$), so $g^{2} \in H$. Further, $|g|$ is either 2 or p. (Why?)

If $|g|=p$, then

$$
\left|g^{2}\right|=\frac{p}{\operatorname{gcd}(p, 2)}=p
$$

But $\left\langle g^{2}\right\rangle$ is a subgroup of $\langle g\rangle$ and since both subgroups have order p, they must be equal. But $g^{2} \in H$ implies that $\left\langle g^{2}\right\rangle$ is a subgroup of H and since $\left\langle g^{2}\right\rangle=\langle a\rangle$ then $a \in H$. But this is a contradiction. So the order of g must have been 2 .

Let's apply this last result to a non-abelian group G of order $2 \times 3=$ 6. The example shows that we have an element x of order 3 and an element a of order 2. Then $\langle x\rangle=\left\{e, x, x^{2}\right\}=H$. And G is composed of the two disjoint cosets: $G=H \cup a H$, where $a H=\left\{a, a x, a x^{2}\right\}$. Of course this means that $G=\left\{e, x, x^{2}, a, a x, a x^{2}\right\}$. We know that $a^{2}=e$
since it has order 2. Let's see if we can fill in the Cayley Table for $G=\left\{e, x, x^{2}, a, a x, a x^{2}\right\}$. Here's what we know so far:

\cdot	e	x	x^{2}	a	$a x$	$a x^{2}$
e	e	x	x^{2}	a	$a x$	$a x^{2}$
x	x	x^{2}	e			
x^{2}	x^{2}	e	x			
a	a	$a x$	$a x^{2}$	e	x	x^{2}
$a x$	$a x$	$a x^{2}$	a		e	
$a x^{2}$	$a x^{2}$	a	$a x$			e

The rest is a homework problem. Can we fill in the spot in the x row and a-column? Show that the only possibilities (since the table is a Latin Square) are that $x a$ equals either $a x$ or $a x^{2}$. Suppose that $x a=a x$; then show from the group table that the group ends up being abelian. (Can you give a better reason: if $x a=a x$, show that all the a 's would commute with all the x 's and since every element in G is written using a 's and x 's, G would be abelian.) Therefore, we must have $x a=a x^{2}$. And now the rest of the table can be filled in.

Example 15 Find all possible groups (up to isomorphism) of order 8 or less.
solution If $|G|=1$, then the group consists of the identity element alone. If $|G|$ is $p=2,3,5,7$, these values of p are prime, so G is cyclic of order p and so $G \cong \mathrm{Z}_{p}$.

Now suppose that $|G|=4$. Either G is cyclic (and isomorphic to Z_{4}), or it is not. Suppose that $G=\{e, a, b, c\}$ is not cyclic. Then since the order of each element must divide the order of the group and since only e has order 1 , then $|a|=|b|=|c|=2$. So G is abelian, and from the Fundamental Theorem of Finite Abelian Groups, we must have $G \cong \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \cong V_{4}$.

What about $|G|=6$? If G is abelian, then the Fundamental Theorem again says that $G \cong \mathbf{Z}_{2} \oplus \mathbf{Z}_{3} \cong \mathbf{Z}_{6}$, so in fact G is cyclic. If G is not abelian, then it must be the non-abelian group of order 6 whose table we filled in above. This table should be familiar: it is D_{3} (which we have also seen is isomorphic to S_{3} by interpretting the motions of the triangle as permutations of the vertices $1,2,3$ of the the triangle).

What about groups of order 8 ? Which do we know? Suppose G is abelian. Then the maximum order of its elements could be 8,4 , or 2 . If G is abelian, then by the Fundamental Theorem for Finite Abelian Groups, G is isomorphic to either $\mathbf{Z}_{8}, \mathbf{Z}_{2} \oplus \mathbf{Z}_{4}$, or $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$. If G is not abelian, it has no element of order 8 (else it would be cyclic). If it has no elements of order 4, then all its non-identity elements would be order 2 . But then G would be abelian. So G has an element of order 4,
call it x and let $\langle x\rangle=H$. As in the order $2 p$-example, choose $a \notin H$. Then $G=H \cup a H$ again. so $G=\left\{e, x, x^{2}, x^{3}, a, a x, a x^{2}, a x^{3}\right\}$. Now it gets trickier. See if you can figure out what the possibilities are for $x a$ this time!!! I will give you a boat load of extra credit if you can figure out all the possibilities.

