Math 375 Week 6

6.1 Homomorphisms and Isomorphisms

DEFINITION 1 Let G_1 and G_2 groups and let $\phi : G_1 \to G_2$ be a function. Then ϕ is a **group homomorphism** if for every $a, b \in G$ we have

$$\phi(ab) = \phi(a)\phi(b).$$

- REMARK 1 Notice that the operation on the left is occurring in G_1 while the operation on the right is occurring in G_2 .
- REMARK 2 Notice the similarity to the definition of a linear transformation from Math 204. I encourage you to look this up in your 204 text. This means that you can multiply before or after you apply the mapping ϕ and you will still get the same answer. This is great, you can't make a mistake here because the order of operations (mapping versus multiplication) does not matter.
- **EXAMPLE 1** Consider the following maps
 - **a)** Is the mapping $\phi : GL(n, \mathbf{R}) \to \mathbf{R}^*$ by $\phi(A) = \det A$ a homomorphism? Yes.
 - b) Let a be a fixed element of G. Is $\phi : G \to G$ by $g\phi = aga^{-1}$ a homomorphism? [Homework]
 - c) Is the mapping $f : \mathbf{R} \to \mathbf{R}^*$ by $f(x) = e^x$ a group homomorphism? Be careful: What are the group operations in each case?
 - **d**) Let a be a fixed element of G. Is $\phi : G \to G$ by $\phi(g) = ag$ a homomorphism? No.
 - e) Here's a silly example: Let G_1 and G_2 groups and let $\phi : G_1 \to G_2$ by $\phi(g) = e_2$ for all $g \in G$. Obviously, $\phi(ab) = e_2 = e_2 e_2 = \phi(b)\phi(b)$, so this is a group homomorphism.
 - **f)** Recall that S_3 is the set of all permutations of the set By labelling the vertices of an equilateral triangle 1, 2, and 3 as usual, we can interpret the elements of D_3 as maps from S to S. Match up the elements of D_3 with their corresponding elements in S_3 .

- **EXAMPLE 2** Extra Credit: Label the vertices of a tetrahedron with 1, 2, 3, 4. Let G be the set of rotations and reflections of the tetrahedron. Write out each such rotation as an element of S_4 . Do you get all elements of S_4 this way? See page 101 and 102 in your text. (It turns out that this pairing is a group homomorphism, indeed, an isomorphism.)
- **THEOREM 2** (Basic Properties of Homomorphisms) If $\phi : G_1 \to G_2$ is a group homomorphism, then
 - **a)** $\phi(e_1) = e_2;$
 - **b**) $\phi(a^{-1}) = [\phi(a)]^{-1};$
 - c) $\phi(a^n) = [\phi(a\phi)]^n$ for all $n \in \mathbb{Z}$;
 - **d)** if |a| = n, then $|\phi(a)| |n$, i.e., $|\phi(a)| ||a|$.
 - PROOF A Note that $\phi(e_1) = \phi(e_1e_1) = \phi(fe_1)\phi(e_1)$ so that by cancellation $e_2 = \phi(e_1)$. [Remember, this is all taking place in G_2 .]
 - PROOF B We prove that something is an inverse by showing that it acts like an inverse. So

$$e_2 = \phi(e_1) = \phi(aa^{-1}) = \phi(a)\phi(a^{-1}).$$

So $f(a^{-1})$ acts as the inverse to f(a), i.e., $\phi(a^{-1}) = [\phi(a)]^{-1}$.

- PROOF C Homework.
- PROOF D Because |a| = n, then $a^n = e_1$. So

$$e_2 = \phi(e_1) = \phi(a^n) = [\phi(a)]^n.$$

By the Corollary on page 73, $|\phi(a)| |n$.

- **EXAMPLE 3** Suppose that $\phi : \mathbb{Z}_3 \to D_4$ is a homomorphism. Can $\phi(1) = r_{90}$?
 - SOLUTION No. Because the last part of the theorem we need $|\phi(1)|||1|$ or but $|r_{90}| = 4 /3 = |1|$.
- **EXAMPLE 4** Let's continue with $\phi : \mathbb{Z}_3 \to D_4$. What can you say about this homomorphism?
 - SOLUTION Since the orders of elements in D_4 are either 1, 2, or 4, the only such order which divides |1| = 3 is 1. So, $\phi(1) = r_0$. But then part (b) of the theroem above, $\phi(2) = \phi(-1) = [\phi(1)]^{-1} = r_0^{-1} = r_0$. Of course, by part (a) of the theorem, $\phi(0) = r_0$. So every element in \mathbb{Z}_3 must be mapped to r_0 . This is the silly example discussed above.

Let's prove something a bit more interesting about homomorphisms of (finite) cyclic groups. Suppose that $G = \langle a \rangle$ is cyclic and $\phi : G \to H$

is a group homomorphism. Notice that ϕ is completely determined by where ϕ maps a. Because any element $g \in G$ is of the form $g = a^k$, so $\phi(g) = \phi(a^k) = [\phi(a)]^k$. Once we know what $\phi(a)$ is, we know what ϕ is. What are the choices for $\phi(a)$?

EXAMPLE 5 Her's the sort of thing I mean. Let's assume $\phi : \mathbb{Z}_8 \to \mathbb{Z}_4$ is a homomorphism. Suppose that $\phi(1_8) = 3_4$. Then the rest of ϕ is now completely determined because $\mathbb{Z}_8 = <1_8 >$. We (because ϕ is a homomorphism)

$$\begin{split} \phi(1_8) &\to 3_4 \\ \phi(2_8) &= \phi(1_8 + 1_8) \to 3_4 + 3_4 = 2_4 \\ \phi(3_8) &= \phi(1_8 + 2_8) \to 3_4 + 2_4 = 1_4 \\ \phi(4_8) &= \phi(1_8 + 3_8) \to 3_4 + 1_4 = 0_4 \\ \phi(5_8) &= \phi(1_8 + 4_8) \to 3_4 + 0_3 = 3_4 \\ \phi(6_8) &= \phi(1_8 + 5_8) \to 3_4 + 3_4 = 2_4 \\ \phi(7_8) &= \phi(1_8 + 6_8) \to 3_4 + 2_4 = 1_4 \\ \phi(0_8) &= \phi(1_8 + 7_8) \to 3_4 + 1_4 = 0_4 \end{split}$$

Or one could use $\phi(j_8) = \phi(j \cdot 1_8) \rightarrow j \cdot 3_4$ to get the same answers.

Ok, let's generalize finite case first.

- **LEMMA 3** Let $G = \langle a \rangle$ be a cyclic group of order n. Let $\phi : G \to H$ be a function such that $\phi(a^i) = \phi(a)^i$ for all i. If $|\phi(a)| | n$, then ϕ is a group homomorphism.
 - PROOF Note from parts (c) and (d) of the previous theorem, if ϕ is a homomorphism, then these two properties must be true. This says that these two properties suffice to make ϕ a homomorphism when G is cyclic.

Let $|\phi(a)| = m$. Then we are given that $m \mid n$, so n = md for some $d \in \mathbb{Z}$. Let $x, y \in G$. We must show that $\phi(xy) = \phi(x)\phi(y)$. But G is cyclic so $x = a^j$ and $y = a^k$ with $0 \leq k, j < n$. Then $xy = a^j a^k = a^{j+k \mod n}$. So

$$\phi(xy) = \phi(a^{j+k \bmod n}) = [\phi(a)]^{(j+k \bmod n) \bmod m}.$$

The mod m is necessary since $|\phi(a)| = m$. On the other hand,

$$\phi(x)\phi(y) = \phi(a^{j})\phi(a^{k}) = [\phi(a)]^{j \mod m} [\phi(a)]^{k \mod m} = [\phi(a)]^{(j+k) \mod m}$$

So it all boils down to whether $(j + k \mod n) \mod m = (j + k) \mod m$. By the division algorithm, we may write

$$j + k = qn + s \qquad 0 \le s < n.$$

So $(j + k \mod n) \mod m = s \mod m$ Since n = dm, we have j + k = qn + s = q(dm) + s = (qd)m + s. But then $(j + k) \mod m = s \mod m$, too. So

$$\phi(xy) = [\phi(a)]^{(j+k \mod n) \mod m} = [\phi(a)]^{s \mod m}$$
$$= [\phi(a)]^{(j+k) \mod m}$$
$$= [\phi(a)]^{j \mod m} [\phi(a)]^{k \mod m}$$
$$= \phi(x)\phi(y).$$

When G is an infinite cyclic group the proof is even easier.

LEMMA 4 Let $G = \langle a \rangle$ be an infinite cyclic group. Let $\phi : G \to H$ be a function such that $\phi(a^i) = \phi(a)^i$ for all *i*. Then ϕ is a group homomorphism.

Again, let $x, y \in G$. We must show that $\phi(xy) = \phi(x)\phi(y)$. But G is cyclic so $x = a^j$ and $y = a^k$ There are two cases. If $|\phi(a)| = \infty$, then by assumption

$$\phi(xy) = \phi(a^{j+k}) = [\phi(a)]^{j+k} = [\phi(a)]^j [\phi(a)]^k = \phi(x)\phi(y).$$

If $|\phi(a)| = n$, then by assumption

$$\phi(xy) = \phi(a^{j+k}) = [\phi(a)]^{(j+k) \mod n}$$

= $[\phi(a)]^{j \mod n} [\phi(a)]^{k \mod n} = \phi(x)\phi(y)$

Another crucial fact is that composites of homomorphisms are homomorphisms.

LEMMA 5 Let $\phi : G \to H$, and $\gamma : H \to K$ be group homomorphisms. Then so is the composite, $\gamma \phi : G \to K$.

PROOF Let $a, b \in G$. Then since both maps are homomorphisms,

$$\begin{aligned} (\gamma\phi)(ab) &= \gamma(\phi(ab)) = \gamma(\phi(a)\phi(b)) \\ &= \gamma((\phi(a))\gamma(f(b)) = [(\gamma\phi)(a)][(\gamma\phi)(b)]. \end{aligned}$$

- **DEFINITION 6** If in addition a homomorphism $\phi : G_1 \to G_2$ is both injective and surjective then ϕ is called a **group isomorphism**. The two groups are said to be **isomorphic** and this is denoted by $G_1 \cong G_2$.
 - REMARK Note that to prove two groups are isomorphic, we must (1) find a mapping $\phi : G_1 \to G_2$; (2) show that ϕ is injective; (3) show that ϕ is surjective; and (4) show that ϕ is a homomorphism.

- 6.1 Homomorphisms and Isomorphisms
- **EXAMPLE** a) For homework, if G is a group and a is a fixed element of G, then the mapping $\phi : G \to G$ by $g\phi = aga^{-1}$ is an injective, surjective homomorphism. Thus ϕ is an isomorphism.
 - **b)** We saw that if G were a group and a was a fixed element of G, then the mapping $\phi : G \to G$ by $g\phi = ag$ was an injective and surjective. Let's check to see if it is an isomorphism. $(gh)\phi = agh$, while $(g\phi)(h\phi) = (ag)(ah)$. The two are not equal, and thus ϕ is not an isomorphism.
 - c) The simplest example is the identity mapping. Let G be a group and let $i_G: G \to G$ by $i_G(g) = g$. We know that i_G is injective and surjective and clearly

$$i_G(ab) = ab = i_G(a)i_G(b).$$

So i_G is an isomorphism and $G \cong G$. (In other words, \cong is a reflexive relation. Is it an equivalence relation?)

d) Another important mapping for *abelian* groups is $\phi : G \to G$ by $g\phi = g^{-1}$. This map is injective: Let $a, b \in G$. Then

$$\phi(a) = \phi(b) \iff a^{-1} = b^{-1} \iff a = b.$$

 ϕ is surjective: Let $c\in G$ (codomain). Find $a\in G$ so that $\phi(a)=c.$ But

$$\phi(a) = c \iff a^{-1} = c \iff a = c^{-1}.$$

So why is abelian necessary here? When we chek the homomorphism property,

$$\phi(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = \phi(a)\phi(b).$$

But the is only possible because the group is abelian.

- **LEMMA 7** If $G_1 \cong G_2$ then $|G_1| = |G_2|$.
 - PROOF There's a one-to-one onto map between the two sets. So counting the elements of one set simultaneously conts the elements of the other.
- **EXAMPLE 7** Can Q_8 be isomorphic to Z_{10} ? There is another reason that there is no isomorphism between these two groups.
- **THEOREM 8** Let $G = \langle a \rangle$ be a cyclic group.
 - **a)** If |G| = n, then $\mathbf{Z}_n \cong G$.
 - **b)** If $|G| = \infty$, then $\mathbf{Z} \cong G$.

PROOF In the first case, note that $G = \langle a \rangle$. Define define $\phi : \mathbf{Z}_n \to G$ by $\phi(k) = a^k$ for any $k \in \mathbf{Z}_n$. The map is injective since

 $k\phi = \phi(j) \iff a^k = a^j \iff n \mid (j-k)$

which by Theorem 4.1. But this means that $j = k \mod n$. The map is surjective, obviously. Finally, it is a homomorphism by the lemma we proved earlier, since $n \mid n$.

In the second case, define $\phi : \mathbf{Z} \to G$ by $\phi(k) = a^k$. The map is injective since

$$\phi(j) = \phi(k) \iff a^k = a^j \iff k = j$$

by Theorem 4.1 since $|a| = \infty$. The map is surjective, obviously. Finally, it is a homomorphism si if $j, k \in \mathbb{Z}$, then

$$(j+k)\phi = a^{j+k} = a^j a^k = (j\phi)(k\phi).$$

- **EXAMPLE 8** $\{i, -1, -i, 1\} \cong \mathbb{Z}_4$ since both are cyclic of order four. What would the isomorphism apping ϕ be here?
- **EXAMPLE 9** $\mathbb{Z}_6 \cong U(7)$ since both are cyclic of order 6. Use $\phi(1) \to 3$.
- **THEOREM 9** (Properties of Group Isomorphisms) Let $\phi : G_1 \to G_2$ be a group isomorphism. Then in addition to the properties of the previous theorem:
 - **a)** $\phi^{-1}: G_2 \to G_1$ is an isomorphism;
 - **b)** $|a| = |\phi(a)|;$
 - c) G_1 is cyclic if and only if G_2 is cyclic;
 - **d)** $a, b \in G_1$ commute if and only if $\phi(a), \phi(b) \in G_2$ commute;
 - e) G_1 is abelian if and only if G_2 is abelian.
 - **f)** If $H \leq G_1$, then $\phi(H) = \{\phi(h) \mid h \in H\}$ is a subgroup of G_2 .
 - (A) Since ϕ is an isomorphism, it is surjective and injective, so $\phi^{-1}: G_2 \to G_1$ exists and is injective and surjective. We only need to show that it is a group homomorphism. So take $g_2, h_2 \in G_2$. We must show that $\phi^{-1}(g_2h_2) = \phi^{-1}(g_2)\phi^{-1}(h_2)$. Let $\phi^{-1}g_2 = g_1$ and $\phi^{-1}(h_2) = h_1$. Then $\phi(g_1) = g_2$ and $\phi(h_1) = h_2$. Since ϕ is a homomorphism, $\phi(g_1h_1) = \phi(g_1)\phi(h_1) = g_2h_2$. Therefore,

$$\phi^{-1}(g_2h_2) = g_1h_1 = \phi^{-1}(g_2)\phi^{-1}(h_2).$$

(B) Both ϕ and ϕ^{-1} are homomorphisms. So we know that $|\phi(a)| ||a|$ and $|\phi^{-1}(\phi(a)) = |a| ||\phi(a)|$. Therefore, the orders are equal. (What happens if $|a| = \infty$?)

- 6.1 Homomorphisms and Isomorphisms
- (C) Suppose $G_1 = \langle a \rangle$ is cyclic. Then let $\phi(a) = b \in G_2$. We will show that $G_2 = \langle b \rangle$. Let $g_2 \in G_2$. Because ϕ surjective, there is an element $g_1 \in G_1$ so that $\phi(g_1) = g_2$. But $G_1 = \langle a \rangle$, so $g_1 = a^k$ for some $k \in \mathbb{Z}$. Therefore,

$$g_2 = \phi(g_1) = \phi(a^k) = [\phi(a)]^k = b^k.$$

Therefore G_2 is cyclic. If G_2 is cyclic, then so is G_1 . Simply use the fact that ϕ^{-1} is an isomorphism.

- (D) This is a homework problem.
- (E) Follows from (g) and the fact that ϕ is onto.
- (F) Use the one-step test. Let $x, y \in \phi(H)$. We must show that $xy^{-1} \in \phi(H)$. But there are elements in $a, b \in H$ so that $\phi(a) = x$ and $\phi(b) = y$. Moreover, since H is a subgroup, then $ab^{-1} \in H$. So

$$xy^{-1} = \phi(a)[\phi(b)]^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1}) \in \phi(H),$$

since $ab^{-1} \in H$.

- **EXAMPLE** a) \mathbf{Z}_6 is not isomorphic D_3 , even though both have the smae number of elements. [Give three different reasons!]
 - b) Z is not isomorphic to R since one is cyclic and the other is not. One has an element of order 2, the other does not.
 - c) U(12) is not isomorphic to \mathbb{Z}_4 even though both are abelian and have the same number of elements. $U(12) = \{1, 5, 7, 11\}$ is not cyclic. However, $\mathbb{Z}_4 \cong \langle i \rangle = \{i, -i, 1, -1\}$ since both are cyclic. \mathbb{Z}_4 is not isomorphic to V_4 since the latter is not cyclic. What about the group of motions of a rectangle? Of a rhombus? Is either isomorphic to \mathbb{Z}_4 . Explain.
 - d) \mathbf{C}^* is not isomorphic to \mathbf{R}^* . If ϕ were such an isomorphism, and $\phi(i) = x$, then $|x| = |\phi(i)| = |i| = 4$. But the only elements of finite order in \mathbf{R}^* are 1 and -1 which have order 1 and 2, respectively.
 - e) \mathbf{R}^* is not isomorphic to \mathbf{R} , because -1 in \mathbf{R}^* has order 2 and no element in \mathbf{R} has order 2. (Recall, however, that we know that \mathbf{R}^+ is isomorphic to \mathbf{R} ; use $\phi = \ln x$.)
 - **f)** Show that D_{12} is not isomorphic to S_4 . Both ahve order 24 and are not abelian. But the former has an element of order 12, while the later has no elements whose order is greater than 4.
 - g) Is D_4 isomorphic to Q_8 ? Find out by looking at their tables. (No. Check the number of elements of order 4 in each group.
- **THEOREM 10** (Cayley) Every group is isomorphic to a group of permutations.

See text. The result is interesting but very hard to use in practice, so we will ignore it temporarily.

- **DEFINITION 11** An isomorphism $\phi : G \to G$ from a group to itself is called an **automorphism**.
 - **EXAMPLE 11** We have seen that for abelian groups the mapping $\phi : G \to G$ by $g\phi = g^{-1}$ is an isomorphism, hence it is an automorphism. Similarly, for any group G and any element $a \in G$, the mapping $\phi_a : G \to G$ by $\phi_a(g) = a^{-1}ga$ is an isomorphism. Hence ϕ_a is an automorphism. ϕ_a is called the **inner automorphism** of G induced by a.

Let's look at a specific example of an inner automorphism.

EXAMPLE 12 Let $\alpha = (1,2,3) \in S_3$. What is the mapping $\phi_{\alpha} : S_3 \to S_3$? Well, $\alpha^{-1} = (3,2,1)$, so

$$\begin{aligned} x \to \alpha^{-1} x \alpha \\ e &= (1) \to (3, 2, 1)(1)(1, 2, 3) = (1) \\ (1, 2) \to (3, 2, 1)(1, 2)(1, 2, 3) = (2, 3) \\ (1, 3) \to (3, 2, 1)(1, 3)(1, 2, 3) = (1, 2) \\ (2, 3) \to (3, 2, 1)(2, 3)(1, 2, 3) = (1, 3) \\ (1, 2, 3) \to (3, 2, 1)(1, 2, 3)(1, 2, 3) = (1, 2, 3) \\ (3, 2, 1) \to (3, 2, 1)(3, 2, 1)(1, 2, 3) = (3, 2, 1) \end{aligned}$$

- **DEFINITION 12** The set of all automorphisms of G is called Aut(G) and the set of all inner automorphisms is called Inn(G).
 - **THEOREM 13** Let G be a group. Then Aut(G) and Inn(G) are also groups. They are both subgroups of S_G (the set of permutations of elements of G.
 - PROOF We'll show that $\operatorname{Aut}(G)$ is a subgroup of S_G . $\operatorname{Inn}(G)$ is less important at this point. $\operatorname{Aut}(G)$ is simply the set of injective, surjective maps from G to itself that are also group homomorphisms. Let $\alpha, \beta \in \operatorname{Aut}(G)$. Show that $\alpha\beta^{-1} \in \operatorname{Aut}(G)$. All we need to do is show that $\alpha\beta^{-1}$ is a homomorphism. But since β is an automorphism, it is an isomorphism so β^{-1} is an isomorphism (why). So both α and β^{-1} are homomorphisms from G to G, hence so is there composite.