Math 375
 Week 6

6.1 Homomorphisms and Isomorphisms

Definition 1 Let G_{1} and G_{2} groups and let $\phi: G_{1} \rightarrow G_{2}$ be a function. Then ϕ is a group homomorphism if for every $a, b \in G$ we have

$$
\phi(a b)=\phi(a) \phi(b) .
$$

REmARK 1 Notice that the operation on the left is occurring in G_{1} while the operation on the right is occurring in G_{2}.

REMARK 2 Notice the similarity to the definition of a linear transformation from Math 204. I encourage you to look this up in your 204 text. This means that you can multiply before or after you apply the mapping ϕ and you will still get the same answer. This is great, you can't make a mistake here because the order of operations (mapping versus multiplication) does not matter.

Example 1 Consider the following maps
a) Is the mapping $\phi: G L(n, \mathbf{R}) \rightarrow \mathbf{R}^{*}$ by $\phi(A)=\operatorname{det} A$ a homomorphism? Yes.
b) Let a be a fixed element of G. Is $\phi: G \rightarrow G$ by $g \phi=a g a^{-1}$ a homomorphism? [Homework]
c) Is the mapping $f: \mathbf{R} \rightarrow \mathbf{R}^{*}$ by $f(x)=\epsilon^{x}$ a group homomorphism? Be careful: What are the group operations in each case?
d) Let a be a fixed element of G. Is $\phi: G \rightarrow G$ by $\phi(g)=a g$ a homomorphism? No.
e) Here's a silly example: Let G_{1} and G_{2} groups and let $\phi: G_{1} \rightarrow G_{2}$ by $\phi(g)=e_{2}$ for all $g \in G$. Obviously, $\phi(a b)=e_{2}=e_{2} e_{2}=\phi(b) \phi(b)$, so this is a group homomorphism.
f) Recall that S_{3} is the set of all permutations of the set By labelling the vertices of an equilateral triangle 1,2 , and 3 as usual, we can interpret the elements of D_{3} as maps from S to S. Match up the elements of D_{3} with their corresponding elements in S_{3}.

Example 2 Extra Credit: Label the vertices of a tetrahedron with 1, 2, 3, 4. Let G be the set of rotations and reflections of the tetrahedron. Write out each such rotation as an element of S_{4}. Do you get all elements of S_{4} this way? See page 101 and 102 in your text. (It turns out that this pairing is a group homomorphism, indeed, an isomorphism.)

Theorem 2 (Basic Properties of Homomorphisms) If $\phi: G_{1} \rightarrow G_{2}$ is a group homomorphism, then
a) $\phi\left(e_{1}\right)=e_{2}$;
b) $\phi\left(a^{-1}\right)=[\phi(a)]^{-1}$;
c) $\phi\left(a^{n}\right)=[\phi(a \phi)]^{n}$ for all $n \in \mathbf{Z}$;
d) if $|a|=n$, then $|\phi(a)| \mid n$, i.e., $|\phi(a)|||a|$.

Proof A Note that $\phi\left(e_{1}\right)=\phi\left(e_{1} \epsilon_{1}\right)=\phi\left(f e_{1}\right) \phi\left(e_{1}\right)$ so that by cancellation $e_{2}=$ $\phi\left(e_{1}\right)$. [Remember, this is all taking place in G_{2}.]
proof b We prove that something is an inverse by showing that it acts like an inverse. So

$$
e_{2}=\phi\left(e_{1}\right)=\phi\left(a a^{-1}\right)=\phi(a) \phi\left(a^{-1}\right) .
$$

So $f\left(a^{-1}\right)$ acts as the inverse to $f(a)$, i.e., $\phi\left(a^{-1}\right)=[\phi(a)]^{-1}$.
proof c Homework.
Proof D Because $|a|=n$, then $a^{n}=e_{1}$. So

$$
e_{2}=\phi\left(e_{1}\right)=\phi\left(a^{n}\right)=[\phi(a)]^{n} .
$$

By the Corollary on page $73,|\phi(a)| \mid n$.
Example 3 Suppose that $\phi: \mathbf{Z}_{3} \rightarrow D_{4}$ is a homomorphism. Can $\phi(1)=r_{90}$?
solution No. Because the last part of the theorem we need $|\phi(1)|||1|$ or but $\left|r_{90}\right|=4 \times 3=|1|$.

Example 4 Let's continue with $\phi: \mathrm{Z}_{3} \rightarrow D_{4}$. What can you say about this homomorphism?
Solution Since the orders of elements in D_{4} are either 1,2 , or 4 , the only such order which divides $|1|=3$ is 1 . So, $\phi(1)=r_{0}$. But then part (b) of the theroem above, $\phi(2)=\phi(-1)=[\phi(1)]^{-1}=r_{0}^{-1}=r_{0}$. Of course, by part (a) of the theorem, $\phi(0)=r_{0}$. So every element in Z_{3} must be mapped to r_{0}. This is the silly example discussed above.

Let's prove something a bit more interesting about homomorphisms of (finite) cyclic groups. Suppose that $G=\langle a\rangle$ is cyclic and $\phi: G \rightarrow H$
is a group homomorphism. Notice that ϕ is completely determined by where ϕ maps a. Because any element $g \in G$ is of the form $g=a^{k}$, so $\phi(g)=\phi\left(a^{k}\right)=[\phi(a)]^{k}$. Once we know what $\phi(a)$ is, we know what ϕ is. What are the choices for $\phi(a)$?

Example 5 Her's the sort of thing I mean. Let's assume $\phi: Z_{8} \rightarrow Z_{4}$ is a homomorphism. Suppose that $\phi\left(1_{8}\right)=3_{4}$. Then the rest of ϕ is now completely determined because $Z_{8}=<1_{8}>$. We (because ϕ is a homomorphism)

$$
\begin{gathered}
\phi\left(1_{8}\right) \rightarrow 3_{4} \\
\phi\left(2_{8}\right)=\phi\left(1_{8}+1_{8}\right) \rightarrow 3_{4}+3_{4}=2_{4} \\
\phi\left(3_{8}\right)=\phi\left(1_{8}+2_{8}\right) \rightarrow 3_{4}+2_{4}=1_{4} \\
\phi\left(4_{8}\right)=\phi\left(1_{8}+3_{8}\right) \rightarrow 3_{4}+1_{4}=0_{4} \\
\phi\left(5_{8}\right)=\phi\left(1_{8}+4_{8}\right) \rightarrow 3_{4}+0_{3}=3_{4} \\
\phi\left(6_{8}\right)=\phi\left(1_{8}+5_{8}\right) \rightarrow 3_{4}+3_{4}=2_{4} \\
\phi\left(7_{8}\right)=\phi\left(1_{8}+6_{8}\right) \rightarrow 3_{4}+2_{4}=1_{4} \\
\phi\left(0_{8}\right)=\phi\left(1_{8}+7_{8}\right) \rightarrow 3_{4}+1_{4}=0_{4}
\end{gathered}
$$

Or one could use $\phi\left(j_{8}\right)=\phi\left(j \cdot 1_{8}\right) \rightarrow j \cdot 3_{4}$ to get the same answers.
Ok, let's generalize finite case first.
Lemma 3 Let $G=<a>$ be a cyclic group of order n. Let $\phi: G \rightarrow H$ be a function such that $\phi\left(a^{i}\right)=\phi(a)^{i}$ for all i. If $|\phi(a)| \mid n$, then ϕ is a group homomorphism.

PROOF Note from parts (c) and (d) of the previous theorem, if ϕ is a homomorphism, then these two properties must be true. This says that these two properties suffice to make ϕ a homomorphism when G is cyclic.

Let $|\phi(a)|=m$. Then we are given that $m \mid n$, so $n=m d$ for some $d \in$ Z. Let $x, y \in G$. We must show that $\phi(x y)=\phi(x) \phi(y)$. But G is cyclic so $x=a^{j}$ and $y=a^{k}$ with $0 \leq k, j<n$. Then $x y=a^{j} a^{k}=$ $a^{j+k \bmod n}$. So

$$
\phi(x y)=\phi\left(a^{j+k \bmod n}\right)=[\phi(a)]^{(j+k \bmod n) \bmod m}
$$

The $\bmod m$ is necessary since $|\phi(a)|=m$. On the other hand,
$\phi(x) \phi(y)=\phi\left(a^{j}\right) \phi\left(a^{k}\right)=[\phi(a)]^{j \bmod m}[\phi(a)]^{k \bmod m}=[\phi(a)]^{(j+k) \bmod m}$.
So it all boils down to whether $(j+k \bmod n) \bmod m=(j+k) \bmod m$. By the division algorithm, we may write

$$
j+k=q n+s \quad 0 \leq s<n
$$

So $(j+k \bmod n) \bmod m=s \bmod m$ Since $n=d m$, we have $j+k=$ $q n+s=q(d m)+s=(q d) m+s$. But then $(j+k) \bmod m=s \bmod m$, too. So

$$
\begin{aligned}
\phi(x y)=[\phi(a)]^{(j+k \bmod n) \bmod m} & =[\phi(a)]^{s \bmod m} \\
& =[\phi(a)]^{(j+k) \bmod m} \\
& =[\phi(a)]^{j \bmod m}[\phi(a)]^{k \bmod m} \\
& =\phi(x) \phi(y)
\end{aligned}
$$

When G is an infinite cyclic group the proof is even easier.
Lemma 4 Let $G=<a>$ be an infinite cyclic group. Let $\phi: G \rightarrow H$ be a function such that $\phi\left(a^{i}\right)=\phi(a)^{i}$ for all i. Then ϕ is a group homomorphism.

Again, let $x, y \in G$. We must show that $\phi(x y)=\phi(x) \phi(y)$. But G is cyclic so $x=a^{j}$ and $y=a^{k}$ There are two cases. If $|\phi(a)|=\infty$, then by assumption

$$
\phi(x y)=\phi\left(a^{j+k}\right)=[\phi(a)]^{j+k}=[\phi(a)]^{j}[\phi(a)]^{k}=\phi(x) \phi(y)
$$

If $|\phi(a)|=n$, then by assumption

$$
\begin{aligned}
\phi(x y)=\phi\left(a^{j+k}\right) & =[\phi(a)]^{(j+k) \bmod n} \\
& =[\phi(a)]^{j \bmod n}[\phi(a)]^{k \bmod n}=\phi(x) \phi(y)
\end{aligned}
$$

Another crucial fact is that composites of homomorphisms are homomorphisms.

Lemma 5 Let $\phi: G \rightarrow H$, and $\gamma: H \rightarrow K$ be group homomorphisms. Then so is the composite, $\gamma \phi: G \rightarrow K$.

PROOF Let $a, b \in G$. Then since both maps are homomorphisms,

$$
\begin{aligned}
(\gamma \phi)(a b)=\gamma(\phi(a b)) & =\gamma(\phi(a) \phi(b)) \\
& =\gamma((\phi(a)) \gamma(f(b))=[(\gamma \phi)(a)][(\gamma \phi)(b)]
\end{aligned}
$$

Definition 6 If in addition a homomorphism $\phi: G_{1} \rightarrow G_{2}$ is both injective and surjective then ϕ is called a group isomorphism. The two groups are said to be isomorphic and this is denoted by $G_{1} \cong G_{2}$.

REMARK Note that to prove two groups are isomorphic, we must (1) find a mapping $\phi: G_{1} \rightarrow G_{2} ;(2)$ show that ϕ is injective; (3) show that ϕ is surjective; and (4) show that ϕ is a homomorphism.

Example a) For homework, if G is a group and a is a fixed elelment of G, then the mapping $\phi: G \rightarrow G$ by $g \phi=a g a^{-1}$ is an injective, surjective homomorphism. Thus ϕ is an isomorphism.
b) We saw that if G were a group and a was a fixed elelment of G, then the mapping $\phi: G \rightarrow G$ by $g \phi=a g$ was an injective and surjective. Let's check to see if it is an isomorhism. $(g h) \phi=a g h$, while $(g \phi)(h \phi)=(a g)(a h)$. The two are not equal, and thus ϕ is not an isomorphism.
c) The simplest example is the identity mapping. Let G be a group and let $i_{G}: G \rightarrow G$ by $i_{G}(g)=g$. We know that i_{G} is injective and surjective and clearly

$$
i_{G}(a b)=a b=i_{G}(a) i_{G}(b)
$$

So i_{G} is an isomorphism and $G \cong G$. (In other words, \cong is a reflexive relation. Is it an equivalence relation?)
d) Another important mapping for abelian groups is $\phi: G \rightarrow G$ by $g \phi=g^{-1}$. This map is injective: Let $a, b \in G$. Then

$$
\phi(a)=\phi(b) \Longleftrightarrow a^{-1}=b^{-1} \Longleftrightarrow a=b
$$

ϕ is surjective: Let $c \in G$ (codomain). Find $a \in G$ so that $\phi(a)=c$. But

$$
\phi(a)=c \Longleftrightarrow a^{-1}=c \Longleftrightarrow a=c^{-1}
$$

So why is abelian necessary here? When we chek the homomorphism property,

$$
\phi(a b)=(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}=\phi(a) \phi(b) .
$$

But ths is only possible becuase the group is abelian.
Lemma 7 If $G_{1} \cong G_{2}$ then $\left|G_{1}\right|=\left|G_{2}\right|$.
PRoof There's a one-to-one onto map between the two sets. So counting the elements of one set simultaneously conts the elements of the other.
Example 7 Can Q_{8} be isomorphic to Z_{10} ? There is another reason that there is no isomorphism between these two groups.
Theorem 8 Let $G=\langle a\rangle$ be a cyclic group.
a) If $|G|=n$, then $\mathrm{Z}_{n} \cong G$.
b) If $|G|=\infty$, then $\mathrm{Z} \cong G$.

PROOF In the first case, note that $G=<a>$. Define define $\phi: Z_{n} \rightarrow G$ by $\phi(k)=a^{k}$ for any $k \in \mathrm{Z}_{n}$. The map is injective since

$$
k \phi=\phi(j) \Longleftrightarrow a^{k}=a^{j} \Longleftrightarrow n \mid(j-k)
$$

which by Theorem 4.1. But this means that $j=k \bmod n$. The map is surjective, obviously. Finally, it is a homomorphism by the lemma we proved earlier, since $n \mid n$.

In the second case, define $\phi: \mathrm{Z} \rightarrow G$ by $\phi(k)=a^{k}$. The map is injective since

$$
\phi(j)=\phi(k) \Longleftrightarrow a^{k}=a^{j} \Longleftrightarrow k=j
$$

by Theorem 4.1 since $|a|=\infty$. The map is surjective, obviously. Finally, it is a homomorphism si if $j, k \in \mathbf{Z}$, then

$$
(j+k) \phi=a^{j+k}=a^{j} a^{k}=(j \phi)(k \phi)
$$

Example $8 \quad\{i,-1,-i, 1\} \cong Z_{4}$ since both are cyclic of order four. What would the isomorphism apping ϕ be here?
Example $9 \quad \mathbf{Z}_{6} \cong U(7)$ since both are cyclic of order 6 . Use $\phi(1) \rightarrow 3$.
Theorem 9 (Properties of Group Isomorphisms) Let $\phi: G_{1} \rightarrow G_{2}$ be a group isomorphism. Then in addition to the properties of the previous theorem:
a) $\phi^{-1}: G_{2} \rightarrow G_{1}$ is an isomorphism;
b) $|a|=|\phi(a)|$;
c) G_{1} is cyclic if and only if G_{2} is cyclic;
d) $a, b \in G_{1}$ commute if and only if $\phi(a), \phi(b) \in G_{2}$ commute;
e) G_{1} is abelian if and only if G_{2} is abelian.
f) If $H \leq G_{1}$, then $\phi(H)=\{\phi(h) \mid h \in H\}$ is a subgroup of G_{2}.
(A) Since ϕ is an isomorphism, it is surjective and injective, so $\phi^{-1}: G_{2} \rightarrow G_{1}$ exists and is injective and surjective. We only need to show that it is a group homomorphism. So take $g_{2}, h_{2} \in G_{2}$. We must show that $\phi^{-1}\left(g_{2} h_{2}\right)=\phi^{-1}\left(g_{2}\right) \phi^{-1}\left(h_{2}\right)$. Let $\phi^{-1} g_{2}=g_{1}$ and $\phi^{-1}\left(h_{2}\right)=h_{1}$. Then $\phi\left(g_{1}\right)=g_{2}$ and $\phi\left(h_{1}\right)=h_{2}$. Since ϕ is a homomorphism, $\phi\left(g_{1} h_{1}\right)=$ $\phi\left(g_{1}\right) \phi\left(h_{1}\right)=g_{2} h_{2}$. Therefore,

$$
\phi^{-1}\left(g_{2} h_{2}\right)=g_{1} h_{1}=\phi^{-1}\left(g_{2}\right) \phi^{-1}\left(h_{2}\right)
$$

(B) Both ϕ and ϕ^{-1} are homomorphisms. So we know that $|\phi(a)|||a|$ and $\left|\phi^{-1}(\phi(a))=|a|\right||\phi(a)|$. Therefore, the orders are equal. (What happens if $|a|=\infty$?)
(C) Suppose $G_{1}=\langle a\rangle$ is cyclic. Then let $\phi(a)=b \in G_{2}$. We will show that $G_{2}=\langle b\rangle$. Let $g_{2} \in G_{2}$. Because ϕ surjective, there is an element $g_{1} \in G_{1}$ so that $\phi\left(g_{1}\right)=g_{2}$. But $G_{1}=\langle a\rangle$, so $g_{1}=a^{k}$ for some $k \in \mathbf{Z}$. Therefore,

$$
g_{2}=\phi\left(g_{1}\right)=\phi\left(a^{k}\right)=[\phi(a)]^{k}=b^{k} .
$$

Therefore G_{2} is cyclic. If G_{2} is cyclic, then so is G_{1}. Simply use the fact that ϕ^{-1} is an isomorphism.
(D) This is a homework problem.
(E) Follows from (g) and the fact that ϕ is onto.
(F) Use the one-step test. Let $x, y \in \phi(H)$. We must show that $x y^{-1} \in \phi(H)$. But there are elements in $a, b \in H$ so that $\phi(a)=x$ and $\phi(b)=y$. Moreover, since H is a subgroup, then $a b^{-1} \in H$. So

$$
x y^{-1}=\phi(a)[\phi(b)]^{-1}=\phi(a) \phi\left(b^{-1}\right)=\phi\left(a b^{-1}\right) \in \phi(H)
$$

since $a b^{-1} \in H$.
Example a) Z_{6} is not isomorphic D_{3}, even though both have the smae number of elements. [Give three different reasons!]
b) Z is not isomorphic to \mathbf{R} since one is cyclic and the other is not. One has an element of order 2 , the other does not.
c) $U(12)$ is not isomorphic to Z_{4} even though both are abelian and have the same number of elements. $U(12)=\{1,5,7,11\}$ is not cyclic. However, $\left.\mathrm{Z}_{4} \cong<i\right\rangle=\{i,-i, 1,-1\}$ since both are cyclic. Z_{4} is not isomorphic to V_{4} since the latter is not cyclic. What about the group of motions of a rectangle? Of a rhombus? Is either isomorphic to \mathbf{Z}_{4}. Explain.
d) \mathbf{C}^{*} is not isomorphic to \mathbf{R}^{*}. If ϕ were such an isomorphism, and $\phi(i)=x$, then $|x|=|\phi(i)|=|i|=4$. But the only elements of finite order in \mathbf{R}^{*} are 1 and -1 which have order 1 and 2 , respectively.
e) \mathbf{R}^{*} is not isomorphic to \mathbf{R}, because -1 in \mathbf{R}^{*} has order 2 and no element in \mathbf{R} has order 2. (Recall, however, that we know that \mathbf{R}^{+} is isomorphic to \mathbf{R}; use $\phi=\ln x$.)
f) Show that D_{12} is not isomorphic to S_{4}. Both ahve order 24 and are not abelian. But the former has an element of order 12, while the later has no elements whose order is greater than 4.
g) Is D_{4} isomorphic to Q_{8} ? Find out by looking at their tables. (No. Check the number of elements of order 4 in each group.

Theorem 10 (Cayley) Every group is isomorphic to a group of permutations.

See text. The result is interesting but very hard to use in practice, so we will ignore it temporarily.

Definition 11 An isomorphism $\phi: G \rightarrow G$ from a group to itself is called an automorphism.

Example 11 We have seen that for abelian groups the mapping $\phi: G \rightarrow G$ by $g \phi=$ g^{-1} is an isomorphism, hence it is an automorphism. Similarly, for any group G and any element $a \in G$, the mapping $\phi_{a}: G \rightarrow G$ by $\phi_{a}(g)=a^{-1} g a$ is an isomorphism. Hence ϕ_{a} is an automorphism. ϕ_{a} is called the inner automorphism of G induced by a.

Let's look at a specfic example of an inner automorphism.
Example 12 Let $\alpha=(1,2,3) \in S_{3}$. What is the mapping $\phi_{\alpha}: S_{3} \rightarrow S_{3}$? Well, $\alpha^{-1}=(3,2,1)$, so

$$
\begin{aligned}
x & \rightarrow \alpha^{-1} x \alpha \\
e=(1) & \rightarrow(3,2,1)(1)(1,2,3)=(1) \\
(1,2) & \rightarrow(3,2,1)(1,2)(1,2,3)=(2,3) \\
(1,3) & \rightarrow(3,2,1)(1,3)(1,2,3)=(1,2) \\
(2,3) & \rightarrow(3,2,1)(2,3)(1,2,3)=(1,3) \\
(1,2,3) & \rightarrow(3,2,1)(1,2,3)(1,2,3)=(1,2,3) \\
(3,2,1) & \rightarrow(3,2,1)(3,2,1)(1,2,3)=(3,2,1)
\end{aligned}
$$

Definition 12 The set of all automorphisms of G is called $\operatorname{Aut}(G)$ and the set of all inner automorphisms is called $\operatorname{Inn}(G)$.

Theorem 13 Let G be a group. Then $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$ are also groups. They are both subgroups of S_{G} (the set of permutations of elements of G.
proof We'll show that $\operatorname{Aut}(G)$ is a subgroup of S_{G}. Inn (G) is less important at this point. $\operatorname{Aut}(G)$ is simply the set of injecitve, surjective maps from G to itself that are also group homomorphisms. Let $\alpha, \beta \in \operatorname{Aut}(G)$. Show that $\alpha \beta^{-1} \in \operatorname{Aut}(G)$. All we need to do is show that $\alpha \beta^{-1}$ is a homomorphism. But since β is an automorphism, it is an isomorphism so β^{-1} is an isomorphsim (why). So both α and β^{-1} are homomorphisms from G to G, hence so is there composite.

