
Math 375

Week 6

6.1 Homomorphisms and Isomorphisms

DEFINITION 1 Let G1 and G2 groups and let � : G1 ! G2 be a function. Then � is a
group homomorphism if for every a; b 2 G we have

�(ab) = �(a)�(b):

REMARK 1 Notice that the operation on the left is occurring in G1 while the oper-
ation on the right is occurring in G2.

REMARK 2 Notice the similarity to the de�nition of a linear transformation from
Math 204. I encourage you to look this up in your 204 text. This means
that you can multiply before or after you apply the mapping � and you
will still get the same answer. This is great, you can't make a mistake
here because the order of operations (mapping versus multiplication)
does not matter.

EXAMPLE 1 Consider the following maps

a) Is the mapping � : GL(n;R) ! R� by �(A) = detA a homomor-
phism? Yes.

b) Let a be a �xed element of G. Is � : G ! G by g� = aga�1 a
homomorphism? [Homework]

c) Is the mapping f : R ! R� by f(x) = ex a group homomorphism?
Be careful: What are the group operations in each case?

d) Let a be a �xed element of G. Is � : G ! G by �(g) = ag a
homomorphism? No.

e) Here's a silly example: Let G1 and G2 groups and let � : G1 ! G2

by �(g) = e2 for all g 2 G. Obviously, �(ab) = e2 = e2e2 = �(b)�(b),
so this is a group homomorphism.

f) Recall that S3 is the set of all permutations of the set By labelling
the vertices of an equilateral triangle 1, 2, and 3 as usual, we can
interpret the elements of D3 as maps from S to S. Match up the
elements of D3 with their corresponding elements in S3.
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EXAMPLE 2 Extra Credit: Label the vertices of a tetrahedron with 1, 2, 3, 4. Let
G be the set of rotations and re
ections of the tetrahedron. Write out
each such rotation as an element of S4. Do you get all elements of S4
this way? See page 101 and 102 in your text. (It turns out that this
pairing is a group homomorphism, indeed, an isomorphism.)

THEOREM 2 (Basic Properties of Homomorphisms) If � : G1 ! G2 is a group
homomorphism, then

a) �(e1) = e2;

b) �(a�1) = [�(a)]�1;

c) �(an) = [�(a�)]n for all n 2 Z;

d) if jaj = n, then j�(a)j
�
�
�n, i.e., j�(a)j

�
�
�jaj.

PROOF A Note that �(e1) = �(e1e1) = �(fe1)�(e1) so that by cancellation e2 =
�(e1). [Remember, this is all taking place in G2.]

PROOF B We prove that something is an inverse by showing that it acts like an
inverse. So

e2 = �(e1) = �(aa�1) = �(a)�(a�1):

So f(a�1) acts as the inverse to f(a), i.e., �(a�1) = [�(a)]�1.

PROOF C Homework.

PROOF D Because jaj = n, then an = e1. So

e2 = �(e1) = �(an) = [�(a)]n:

By the Corollary on page 73, j�(a)j
�
�
�n.

EXAMPLE 3 Suppose that � : Z3 ! D4 is a homomorphism. Can �(1) = r90?

SOLUTION No. Because the last part of the theorem we need j�(1)j
�
�
�j1j or but

jr90j = 4 6 j3 = j1j.

EXAMPLE 4 Let's continue with � : Z3 ! D4. What can you say about this homo-
morphism?

SOLUTION Since the orders of elements in D4 are either 1, 2, or 4, the only such
order which divides j1j = 3 is 1. So, �(1) = r0. But then part (b) of the
theroem above, �(2) = �(�1) = [�(1)]�1 = r�10 = r0. Of course, by part
(a) of the theorem, �(0) = r0. So every element in Z3 must be mapped
to r0. This is the silly example discussed above.

Let's prove something a bit more interesting about homomorphisms
of (�nite) cyclic groups. Suppose that G =< a > is cyclic and � : G! H
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is a group homomorphism. Notice that � is completely determined by
where � maps a. Because any element g 2 G is of the form g = ak, so
�(g) = �(ak) = [�(a)]k. Once we know what �(a) is, we know what �
is. What are the choices for �(a)?

EXAMPLE 5 Her's the sort of thing I mean. Let's assume � : Z8 ! Z4 is a homomor-
phism. Suppose that �(18) = 34. Then the rest of � is now completely
determined because Z8 =< 18 >. We (because � is a homomorphism)

�(18)! 34

�(28) = �(18 + 18)! 34 + 34 = 24

�(38) = �(18 + 28)! 34 + 24 = 14

�(48) = �(18 + 38)! 34 + 14 = 04

�(58) = �(18 + 48)! 34 + 03 = 34

�(68) = �(18 + 58)! 34 + 34 = 24

�(78) = �(18 + 68)! 34 + 24 = 14

�(08) = �(18 + 78)! 34 + 14 = 04

Or one could use �(j8) = �(j � 18)! j � 34 to get the same answers.

Ok, let's generalize �nite case �rst.

LEMMA 3 Let G =< a > be a cyclic group of order n. Let � : G ! H be a

function such that �(ai) = �(a)i for all i. If j�(a)j
�
�
�n, then � is a group

homomorphism.

PROOF Note from parts (c) and (d) of the previous theorem, if � is a homomor-
phism, then these two properties must be true. This says that these two
properties su�ce to make � a homomorphism when G is cyclic.

Let j�(a)j = m. Then we are given that m j n, so n = md for some
d 2 Z. Let x; y 2 G. We must show that �(xy) = �(x)�(y). But G
is cyclic so x = aj and y = ak with 0 � k; j < n. Then xy = ajak =
aj+k mod n. So

�(xy) = �(aj+k mod n) = [�(a)](j+k mod n) mod m:

The mod m is necessary since j�(a)j = m. On the other hand,

�(x)�(y) = �(aj)�(ak) = [�(a)]j mod m[�(a)]k modm = [�(a)](j+k) mod m:

So it all boils down to whether (j + k mod n) mod m = (j + k) mod m.
By the division algorithm, we may write

j + k = qn + s 0 � s < n:
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So (j + k mod n) mod m = s mod m Since n = dm, we have j + k =
qn + s = q(dm) + s = (qd)m+ s: But then (j + k) modm = s mod m,
too. So

�(xy) = [�(a)](j+k mod n) modm = [�(a)]smod m

= [�(a)](j+k) mod m

= [�(a)]j modm[�(a)]k modm

= �(x)�(y):

When G is an in�nite cyclic group the proof is even easier.

LEMMA 4 Let G =< a > be an in�nite cyclic group. Let � : G! H be a function
such that �(ai) = �(a)i for all i. Then � is a group homomorphism.

Again, let x; y 2 G. We must show that �(xy) = �(x)�(y). But G is
cyclic so x = aj and y = ak There are two cases. If j�(a)j =1, then by
assumption

�(xy) = �(aj+k) = [�(a)]j+k = [�(a)]j[�(a)]k = �(x)�(y):

If j�(a)j = n, then by assumption

�(xy) = �(aj+k) = [�(a)](j+k) mod n

= [�(a)]j mod n[�(a)]k mod n = �(x)�(y):

Another crucial fact is that composites of homomorphisms are ho-
momorphisms.

LEMMA 5 Let � : G ! H , and 
 : H ! K be group homomorphisms. Then so is
the composite, 
� : G! K.

PROOF Let a; b 2 G. Then since both maps are homomorphisms,

(
�)(ab) = 
(�(ab)) = 
(�(a)�(b))

= 
((�(a))
(f(b)) = [(
�)(a)][(
�)(b)]:

DEFINITION 6 If in addition a homomorphism � : G1 ! G2 is both injective and
surjective then � is called a group isomorphism. The two groups are
said to be isomorphic and this is denoted by G1

�= G2.

REMARK Note that to prove two groups are isomorphic, we must (1) �nd a map-
ping � : G1 ! G2; (2) show that � is injective; (3) show that � is
surjective; and (4) show that � is a homomorphism.
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EXAMPLE a) For homework, if G is a group and a is a �xed elelment of G, then
the mapping � : G ! G by g� = aga�1 is an injective, surjective
homomorphism. Thus � is an isomorphism.

b) We saw that if G were a group and a was a �xed elelment of G,
then the mapping � : G ! G by g� = ag was an injective and
surjective. Let's check to see if it is an isomorhism. (gh)� = agh,
while (g�)(h�) = (ag)(ah). The two are not equal, and thus � is
not an isomorphism.

c) The simplest example is the identity mapping. Let G be a group
and let iG : G! G by iG(g) = g. We know that iG is injective and
surjective and clearly

iG(ab) = ab = iG(a)iG(b):

So iG is an isomorphism and G �= G. (In other words,�= is a re
exive
relation. Is it an equivalence relation?)

d) Another important mapping for abelian groups is � : G ! G by
g� = g�1. This map is injective: Let a; b 2 G. Then

�(a) = �(b) () a�1 = b�1 () a = b:

� is surjective: Let c 2 G (codomain). Find a 2 G so that �(a) = c.
But

�(a) = c () a�1 = c () a = c�1:

So why is abelian necessary here? When we chek the homomorphism
property,

�(ab) = (ab)�1 = b�1a�1 = a�1b�1 = �(a)�(b):

But ths is only possible becuase the group is abelian.

LEMMA 7 If G1
�= G2 then jG1j = jG2j.

PROOF There's a one-to-one onto map between the two sets. So counting the
elements of one set simultaneously conts the elements of the other.

EXAMPLE 7 Can Q8 be isomorphic to Z10? There is another reason that there is no
isomorphism between these two groups.

THEOREM 8 Let G =< a > be a cyclic group.

a) If jGj = n, then Zn �= G.

b) If jGj =1, then Z �= G.



6 Math 375

PROOF In the �rst case, note that G =< a >. De�ne de�ne � : Zn ! G by
�(k) = ak for any k 2 Zn. The map is injective since

k� = �(j) () ak = aj () n j (j � k)

which by Theorem 4.1. But this means that j = k mod n. The map is
surjective, obviously. Finally, it is a homomorphism by the lemma we
proved earlier, since n j n.

In the second case, de�ne � : Z ! G by �(k) = ak. The map is
injective since

�(j) = �(k) () ak = aj () k = j

by Theorem 4.1 since jaj =1. The map is surjective, obviously. Finally,
it is a homomorphism si if j; k 2 Z, then

(j + k)� = aj+k = ajak = (j�)(k�):

EXAMPLE 8 fi;�1;�i; 1g �= Z4 since both are cyclic of order four. What would the
isomorphism apping � be here?

EXAMPLE 9 Z6
�= U(7) since both are cyclic of order 6. Use �(1)! 3.

THEOREM 9 (Properties of Group Isomorphisms) Let � : G1 ! G2 be a group
isomorphism. Then in addition to the properties of the previous theorem:

a) ��1 : G2 ! G1 is an isomorphism;

b) jaj = j�(a)j;

c) G1 is cyclic if and only if G2 is cyclic;

d) a; b 2 G1 commute if and only if �(a); �(b) 2 G2 commute;

e) G1 is abelian if and only if G2 is abelian.

f) If H � G1, then �(H) = f�(h) j h 2 Hg is a subgroup of G2.

(A) Since � is an isomorphism, it is surjective and injective, so ��1 : G2 ! G1

exists and is injective and surjective. We only need to show that it is
a group homomorphism. So take g2; h2 2 G2. We must show that
��1(g2h2) = ��1(g2)�

�1(h2). Let �
�1g2 = g1 and ��1(h2) = h1. Then

�(g1) = g2 and �(h1) = h2. Since � is a homomorphism, �(g1h1) =
�(g1)�(h1) = g2h2. Therefore,

��1(g2h2) = g1h1 = ��1(g2)�
�1(h2):

(B) Both � and ��1 are homomorphisms. So we know that j�(a)j
�
�
�jaj and

j��1(�(a)) = jaj
�
�
�j�(a)j. Therefore, the orders are equal. (What happens

if jaj =1?)
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(C) Suppose G1 =< a > is cyclic. Then let �(a) = b 2 G2. We will show
that G2 =< b >. Let g2 2 G2. Because � surjective, there is an element
g1 2 G1 so that �(g1) = g2. But G1 =< a >, so g1 = ak for some k 2 Z.
Therefore,

g2 = �(g1) = �(ak) = [�(a)]k = bk:

Therefore G2 is cyclic. If G2 is cyclic, then so is G1. Simply use the fact
that ��1 is an isomorphism.

(D) This is a homework problem.

(E) Follows from (g) and the fact that � is onto.

(F) Use the one-step test. Let x; y 2 �(H). We must show that xy�1 2 �(H).
But there are elements in a; b 2 H so that �(a) = x and �(b) = y.
Moreover, since H is a subgroup, then ab�1 2 H . So

xy�1 = �(a)[�(b)]�1 = �(a)�(b�1) = �(ab�1) 2 �(H);

since ab�1 2 H .

EXAMPLE a) Z6 is not isomorphic D3, even though both have the smae number
of elements. [Give three di�erent reasons!]

b) Z is not isomorphic to R since one is cyclic and the other is not.
One has an element of order 2, the other does not.

c) U(12) is not isomorphic to Z4 even though both are abelian and
have the same number of elements. U(12) = f1; 5; 7; 11g is not
cyclic. However, Z4

�=< i >= fi;�i; 1;�1g since both are cyclic.
Z4 is not isomorphic to V4 since the latter is not cyclic. What
about the group of motions of a rectangle? Of a rhombus? Is either
isomorphic to Z4. Explain.

d) C� is not isomorphic to R�. If � were such an isomorphism, and
�(i) = x, then jxj = j�(i)j = jij = 4. But the only elements of �nite
order in R� are 1 and �1 which have order 1 and 2, respectively.

e) R� is not isomorphic to R, because �1 in R� has order 2 and no
element in R has order 2. (Recall, however, that we know that R+

is isomorphic to R; use � = ln x.)

f) Show that D12 is not isomorphic to S4. Both ahve order 24 and are
not abelian. But the former has an element of order 12, while the
later has no elements whose order is greater than 4.

g) Is D4 isomorphic to Q8? Find out by looking at their tables. (No.
Check the number of elements of order 4 in each group.

THEOREM 10 (Cayley) Every group is isomorphic to a group of permutations.
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See text. The result is interesting but very hard to use in practice, so
we will ignore it temporarily.

DEFINITION 11 An isomorphism � : G! G from a group to itself is called an automor-
phism.

EXAMPLE 11 We have seen that for abelian groups the mapping � : G ! G by g� =
g�1 is an isomorphism, hence it is an automorphism. Similarly, for
any group G and any element a 2 G, the mapping �a : G ! G by
�a(g) = a�1ga is an isomorphism. Hence �a is an automorphism. �a is
called the inner automorphism of G induced by a.

Let's look at a spec�c example of an inner automorphism.

EXAMPLE 12 Let � = (1; 2; 3) 2 S3. What is the mapping �� : S3 ! S3? Well,
��1 = (3; 2; 1), so

x!��1x�

e = (1)!(3; 2; 1)(1)(1; 2; 3) = (1)

(1; 2)!(3; 2; 1)(1; 2)(1; 2; 3) = (2; 3)

(1; 3)!(3; 2; 1)(1; 3)(1; 2; 3) = (1; 2)

(2; 3)!(3; 2; 1)(2; 3)(1; 2; 3) = (1; 3)

(1; 2; 3)!(3; 2; 1)(1; 2; 3)(1; 2; 3) = (1; 2; 3)

(3; 2; 1)!(3; 2; 1)(3; 2; 1)(1; 2; 3) = (3; 2; 1)

DEFINITION 12 The set of all automorphisms of G is called Aut(G) and the set of all
inner automorphisms is called Inn(G).

THEOREM 13 Let G be a group. Then Aut(G) and Inn(G) are also groups. They are
both subgroups of SG (the set of permutations of elements of G.

PROOF We'll show that Aut(G) is a subgroup of SG. Inn(G) is less important
at this point. Aut(G) is simply the set of injecitve, surjective maps from
G to itself that are also group homomorphisms. Let �; � 2 Aut(G):
Show that ���1 2 Aut(G). All we need to do is show that ���1 is a
homomorphism. But since � is an automorphism, it is an isomorphism
so ��1 is an isomorphsim (why). So both � and ��1 are homomorphisms
from G to G, hence so is there composite.


