
Math 375

Week 5

5.1 Symmetric Groups

The Group SX

Now let X be any non-empty set. Let

SX = f�j � : X ! X and f is both surjective and injectiveg:

Notice that if �; � 2 SX , then �� : X ! X and is surjective and injec-
tive by previous arguments. That is, the composition �� 2 SX . Thus
composition is a binary operation on SX .

THEOREM 1 SX is a group under composition. (SX is called the Symmteric Group

on X).

PROOF (i) We just checked closure. (ii) Associativity: mentioned last time
(see text Chapter 0). (iii) The identity in SX is iX because � X(x) =
�(iX(x)) = �(x), that is, �iX = �. Similarly iX� = �. (iv) Evidently
the inverse of � is ��1 which we know exists because � is injective and
surjective and ���1(x) = x = iX(x) and ��1�(x) = x = iXx.

This last example shows just how general the group concept is. Sym-
metric groups are extraordinarily important. Arthur Cayley (as in Cay-
ley table) showed that every group is the subgroup of some symmetric
group. So if you understand symmetric groups completely, then you un-
derstand all groups! We can examine SX for any set X . For example
if X = R, then examples of of elements in SR are iR, f : R ! R by
a ! a + 1, g : R ! R by a ! a=2, and so on. It is clear that SR is
in�nite.

The individual elements of SX are often called permutations of
the elements of X . This will be the next big topic we cover.

1



2 Math 375

The Symmetric Group on n Elements: Sn

To make matters simpler, we will study symmetric groups of �nite sets.
For example, if X is a set of n elements, then we may as well label
the elements of X as f1; 2; : : : ; ng. We usually denote the symmetric

group on n elements by Sn.

Now any element or permutation � in Sn is an injective and sur-
jective function from the set of the �rst n integers to itself. It merely
shu�es these elements around. Consequently it can be represented as
a two row matrix in which the �rst row represents the input and the
second represents the corresponding output.

EXAMPLE 1 List all the elements of S3.

� =

�
1 2 3
1 2 3

�
; � =

�
1 2 3
2 3 1

�
; �2 =

�
1 2 3
3 1 2

�

� =

�
1 2 3
1 3 2

�
; �� =

�
1 2 3
3 2 1

�
; ��2 =

�
1 2 3
2 1 3

�

It should be clear what the identity element is. How do we get the
inverse of any element? (Merely exchange rows, and re-order.) How
do we take the product or composition of two such elements in Sn?
In composing functions always remember to work from the right to the

left which is backwards from what we read. This is a hold over from
composition of functions, which is what we implicitly are doing here.

�
1 2 3
3 2 1

��
1 2 3
2 1 3

�
=

�
1 2 3
2 3 1

�

Notice that order matters:

�
1 2 3
2 1 3

��
1 2 3
3 2 1

�
=

�
1 2 3
3 1 2

�

Clearly S1 is abelian, since it consits of only the identity element.
We'll see that S2 is abelian (in fact it's cyclic) since it has only two
elements. However, we have seen that S3 is not abelian and in general:

THEOREM 2 If n � 3 then Sn is non-abelian.
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PROOF Let � and � be the following two elements in Sn:

� =

�
1 2 3 4 : : : n
3 2 1 4 : : : n

�
� =

�
1 2 3 4 : : : n
2 1 3 4 : : : n

�
:

Then

�� =

�
1 2 3 4 : : : n
3 1 2 4 : : : n

�
�� =

�
1 2 3 4 : : : n
2 3 1 4 : : : n

�
:

EXAMPLE 2 Find the following inverse:

�
1 2 3
2 3 1

�
�1

=

�
1 2 3
3 1 2

�

THEOREM 3 jSnj = n!:

PROOF jSnj is just the number of ways the integers 1 through n can arranged.
In other words in how many di�erent ways can we �ll in the blanks:

�
1 2 : : : n
� � : : : �

�

Well we have n choices for the �rst entry, and then n� 1 choices for the
next entry, and so on yielding a total of

n � (n� 1) � � �1 = n!

total choices.

For example jS3j = 3! = 6 as we have already seen. jS2j = 2! = 2.
If we write out the Cayley table for S2 we see that it is abelian. (Note
that the square of every element is the identity.)

�

�
1 2
1 2

� �
1 2
2 1

�
�
1 2
1 2

� �
1 2
1 2

� �
1 2
2 1

�
�
1 2
2 1

� �
1 2
2 1

� �
1 2
1 2

�

EXAMPLE 3 Compare the symmetries of an equilateral triangle to S3. Write each
element in D3 as a permutation.

EXAMPLE 4 Compare D4 to S4. Are they the same group?
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Cycle Notation

It will prove much more convenient to use a di�ernt type of notation to
denote the individual permutations of Sn. This cycle notation is useful
because it reveals the structure of individual elements in the group, much
as powers of a generator indicate the nature of a cyclic group. Here's
how it works.

Consider the following elements of S5:

� =

�
1 2 3 4 5
2 3 1 5 4

�
� =

�
1 2 3 4 5
4 3 5 1 2

�

Notice that � breaks quite naturally into two parts:

1! 2! 3! 1 and 4! 5! 4

Each of these pieces is called a cycle. The �rst is a three-cycle because
it contains three di�erent elements, the second is a two-cycle. Each of
these cycles can be represented more compactly without the arrows:

(1; 2; 3) and (4; 5)

Let's look at �. This time the cycles are:

1! 4! 1 and 2! 3! 5! 2

or
(1; 4) and (2; 3; 5)

When using cycles we adopt the convention that if an element is
missing from the cycle, then it is mapped to itself.

EXAMPLE 5 What permutation does the cycle (2; 4; 3) represent in S6?

(2; 4; 3) =

�
1 2 3 4 5 6
1 4 2 3 5 6

�

EXAMPLE 6 Let � = (1; 3; 6)(2; 4; 5) and � = (1; 2; 3)(4; 5) in S6. Then �� =
(4; 2; 6; 1)(5)(3) = (4; 2; 6; 1). Do some more.

EXAMPLE 7 What is the inverse of a single cycle: � = (4; 2; 3; 5)? This is easy to
spot in matrix form. If

� = (4; 2; 3; 5) =

�
1 2 3 4 5
1 3 5 2 4

�
;

then

��1 =

�
1 2 3 4 5
1 4 2 5 3

�
= (5; 3; 2; 4):

More generally:
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THEOREM 4 The inverse of a cycle is the cycle in inverse (reverse) order. Further
the inverse of a product of cycles is the product of the inverse cycles in
reverse order.

REMARK The second part of the theorem is the usual statement about inverses of
products being the product of the inverses in reverse order.

DEFINITION 5 Two cycles are called disjoint if they contain no term in common.

For example (1; 2; 6) and (3; 4) are disjoint but (1; 2; 4) and (3; 4; 5)
are not. One of the basic facts about permutations is that

THEOREM 6 Any permutation can be written as a product of disjoint cycles.

The details of the proof are presented in the text, but note that
this is how we �rst got started on looking at cycles. Given an individual
example of a permutation it is easy to see how to split it into disjoint
cycles. Consider �

1 2 3 4 5 6 7 8 9
5 9 3 8 6 1 4 7 2

�
:

We simply start the �rst cycle with 1, continue back until we get 1.
Then start the second cycle with the smallest remaining unused num-
ber until we get back to it and so on. In this case the cycles are:
(1; 5; 6)(2; 9)(3)(4; 8; 7):

THEOREM 7 Disjoint cycles commute.

PROOF Let the disjoint cycles be � = (a1; a2; : : : ; am) and � = (b1; b2; : : : ; �n),
where � and � have no entries in common. Let the full set S be given
by

S = fa1; a2; : : : ; am; b1; b2; : : : ; �n; c1; : : : ; ckg:

We want to prove that �� = ��. To do this, we must show that a(��) =
x(��) for all x 2 S. There are three cases: x is either an a, b, or c.

Suppose that x = ai. Then

(��)(x) = (��)(ai) = �(�(ai)) = �(ai+1 modm) = ai+1 mod m:

while

(��)(x) = (��)(ai) = �(�(ai)) = �(ai) = ai+1 modm:

Hence the permutations agree on the a's. A similar argument works for
the b's. The c's are the easiest of all. If x = ci, then

(��)(x) = (��)(ci) = �(�(ci)) = �(ci) = ci

while
(��)x = (��)(ci) = �(�(ci) = �(ci) = ci:

Again the permutations are the same.
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5.2 More about Sn

The Order of a k-cycle

EXAMPLE 8 Consider the following elements of S5: � = (2; 3) and � = (1; 2; 4), and
� = (1; 3; 4; 2) Find the orders of each of these elements.

Taking � �rst, �2 = (1; 4; 2), every entry is moved two places down
the cycle. So if we have a k-cycle, moving each entry k places down the
cycle takes the entry back to its starting point, i.e., the kth power of
a k-cycle yields the identity and no smaller power will. It is clear that
�2 = e, �3 = e, and �4 = e. In fact, this proves the general theorem:

THEOREM 8 If � is a k-cycle in Sn, then j�j = k.

THEOREM 9 The order of the product of disjoint cycles is the least common mutliple
of their lengths (orders).

PROOF Asume that j�j = m and j�j = n. Let k = lcm(m;n). Then it follows
that �k = e = �k since j�j j k and j�j j k. Since the cycles are disjoint,
they commute, so (��)k = �k�k = ee = e. Consequently j��j j k.

But is k the smallest positive power with this property? Suppose
instead that it were t. Then (��)t = �t�t = e implies that �t = ��t.
But �t and ��t are disjoint. The only way two disjoint cycles can be
the same is if both are empty. That is, �t = ��t = e (remember �xed
symbols are not included in the cycles.) But now it follows that both
m and n divide t. That is, t is a common multiple of m and n so
k = lcm(m;n) � t. Therefore, k = t.

EXAMPLE 9 Give some. If the cycles are not disjoint, simply rewrite them as disjoint,
and then apply the theorem.

Disjoint cycles are especially helpful for order calculations as we have
seen. But permutations can be written as a di�erent sort of product as
the follwing discussion shows.

Two Cycles or Transpositions

The simplest sort of permutation is the one that shu�es two elements,
that is, a two-cycle. In fact two-cycles are the building blocks of the
entire permutation group. Two-cycles are also called transpositions.
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EXAMPLE 10 Consider the permutation (1; 2; 3). It can be written as a product of
two-cycles:

(1; 2; 3) = (1; 3)(1; 2):

Notice that it can be written as a di�erent product of two-cycles:

(1; 2; 3) = (2; 3)(1; 3):

In fact, this is a particular example of

THEOREM 10 Any k-cycle in Sn can be written as a product of transpositions (two-
cycles). (Here n > 1 or else we have S1 = feg.)

PROOF If we have a 1-cycle, then it is the identity element which can be written
as (1; 2)2 = (; 2)(1; 2) = e. Now if we have a k-cycle were k � 2 then we
can work out the product just as we did in the example above:

(a1; a2; : : : ; ak) = (a1; a2)(a1; a3) : : :(a1; ak):

EXAMPLE 11 (5; 3; 1; 2) = (5; 2)(5; 1)(5; 3)

COROLLARY 11 Any element of Sn can be written as a product of transpositions.

PROOF Any element in Sn can be written as a product of disjoint cycles, each of
which can be written as a product of two-cycles. So every element can
be broken down eventually into a product of transpositions.

EXAMPLE 12 �
1 2 3 4 5 6
2 5 1 6 3 4

�
= (1; 2; 5; 3)(4; 6) = (1; 3)(1; 5)(1; 2)(4; 6):

It is also the case that

�
1 2 3 4 5 6
2 5 1 6 3 4

�
= (4; 6)(2; 5; 3; 1) = (4; 6)(2; 1)(2; 3)(2; 5):

But notice that even though the number of transpositions in each
decomposition is di�erent, in both cases the number of transpositions is
even.

DEFINITION 12 A permutation is even if it can be written as the product of an even
number of permuatations. It is odd if it can be written as a product of
an odd number of transpositions.

For this distinction to be useful, it is necessary that no odd permu-
tation be even. That is, either a permutation should always decompose
into an odd number of transpositions or always into an even number
(even though the actual number of transpositions in the decomposition
can vary). In fact, this is the case:
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THEOREM 13 No permuatation is both odd and even.

PROOF The proof is in the text; read through it. The main idea is that the
identity permutation can only be written as an even product of transpo-
sitions. The general result easily follows from this. For if a permutation
was both even and odd, then its inverse would be both even and odd.
Take the permutation in its even representation and multiply by its in-
verse in its odd representation. The reuslt is product with an odd number
of transpositions, but the result is also the identity which is supposed to
be even.

COROLLARY 14 A k-cycle is even if k is odd; a k-cycle is odd if k is even.

PROOF This follows immediately from the the method we use to break a k-cycle
into transpositions. A k-cycle can always be written as the product of
k � 1 transpositions (see the factors in Examples 17.3 and 4).

EXAMPLE 13 Let An = the set of even permutations in Sn. Show thatAn is a subgroup
of Sn. An is called the alternating group of degree n.

CLOSURE The product of two even permutations will again have an even number
of factors, so An is closed.

INVERSES Notice that (a b)�1 = (a b). Thus the inverse of a product of even
permutation (using the general formula for the inverse of a product) is
the product of the same transpositions in reverse order, hence is even
again.

EXAMPLE 14 Do the odd permutations form a subgroup of Sn?



5.2 More about Sn 9

EXAMPLE 15 We can easily write out the elements of A3 and A4 because we know that
the length of a cycle determines whether it is odd or even.

Here are the 6 elements of S3, let's pick out the elements of A3:

�
1 2 3
1 2 3

�
= e 2 A3

�
1 2 3
1 3 2

�
= ( 2 3 ) =2 A3�

1 2 3
2 1 3

�
= (1 2 ) =2 A3

�
1 2 3
2 3 1

�
= ( 1 2 3 ) 2 A3�

1 2 3
3 1 2

�
= (1 3 2 ) 2 A3

�
1 2 3
3 2 1

�
= ( 1 3 ) =2 A3

For S4 and A4 the situation is similar. S4 has 24 elements:

�
1 2 3 4
1 2 3 4

�
= e 2 A4

�
1 2 3 4
1 3 2 4

�
= (2 3 ) =2 A4�

1 2 3 4
2 1 3 4

�
= ( 1 2 ) =2 A4

�
1 2 3 4
2 3 1 4

�
= (1 2 3 ) 2 A4�

1 2 3 4
3 1 2 4

�
= ( 1 3 2 ) 2 A4

�
1 2 3 4
3 2 1 4

�
= (1 3 ) =2 A4�

1 2 3 4
1 2 4 3

�
= ( 3 4 ) =2 A4

�
1 2 3 4
1 3 4 2

�
= (2 3 4 ) 2 A4�

1 2 3 4
2 1 4 3

�
= ( 1 2 ) ( 3 4 ) 2 A4

�
1 2 3 4
2 3 4 1

�
= (1 2 3 4 ) =2 A4�

1 2 3 4
3 1 4 2

�
= ( 1 3 4 2 ) 62 A4

�
1 2 3 4
3 2 4 1

�
= (1 3 4 ) 2 A4�

1 2 3 4
1 4 2 3

�
= ( 2 4 3 ) 2 A4

�
1 2 3 4
1 4 3 2

�
= (2 4 ) =2 A4�

1 2 3 4
2 4 1 3

�
= ( 1 2 4 3 ) =2 A4

�
1 2 3 4
2 4 3 1

�
= (1 2 4 ) 2 A4�

1 2 3 4
3 4 1 2

�
= ( 1 3 ) ( 2 4 ) 2 A4

�
1 2 3 4
3 4 2 1

�
= (1 3 2 4 ) =2 A4�

1 2 3 4
4 1 2 3

�
= ( 1 4 3 2 ) =2 A4

�
1 2 3 4
4 1 3 2

�
= (1 4 2 ) 2 A4�

1 2 3 4
4 2 1 3

�
= ( 1 4 3 ) 2 A4

�
1 2 3 4
4 2 3 1

�
= (1 4 ) =2 A4�

1 2 3 4
4 3 1 2

�
= ( 1 4 2 3 ) =2 A4

�
1 2 3 4
4 3 2 1

�
= (1 4 ) ( 2 3 ) 2 A4

There are two important observations. First, we see that S3 is a
subset and hence a subgroup of S4 (just take a look at the �rst elements
of S4). In general we can always view Sm as a subgroup of Sn if m < n.
Second, half the elements in S3 are even; the same is true for S4. In fact,

THEOREM 15 jAnj = jSnj=2 = n!=2.
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PROOF We need to show that half the elements of Sn are even. Let � be any
two-cycle of Sn (say � = (1 2)). Consider the mapping f : Sn ! Sn by
f(�) = ��. Notice that f is both surjective and injective.

SURJECTIVE Let  2 Sn. We must �nd � 2 Sn so that f(� = . But

f(�) =  () �� =  () � = ��1:

INJECTIVE �(�1) = �(�2) () ��1 = ��2 () �1 = �2.
Notice that f maps the even permutations to the odd ones and vice

versa (since it adds one transposition to the permutation) in a one-to-
one, onto fashion. Hence there must be the same number of even and
odd permutations, that is half of Sn is even.

Some Examples

EXAMPLE 16 Do Gallian page 110 #50.

SOLUTION If we let � denote the shu�e in question, then we are given that

�2 =

�
1 2 3 4 5 6 7 8 9 10 J Q K
10 9 Q 8 K 3 4 A 5 j 6 2 7

�

= ( 1 10 J 6 3 Q 2 9 5 13 7 4 8 ) :

Notice that � must have been a 13-cycle since �2 is. (If we expressed the
original � as a product of disjoint cycles, powers of � simply permute
the elements of those cycles among themselves.) Thus, j�j = 13. So

(�2)7 = �14 = �13� = �:

But

(�2)7 = (1 9 10 5 J K 6 7 3 4 Q 8 2 ) :

EXAMPLE 17 Do Gallian page 109 #28.

SOLUTION � = (123)(145) = (14523), so �99 = ��1 = (32541):

EXAMPLE 18 Do Gallian page 109 #37.

SOLUTION Let � be a 10-cycle. Do you see that there are powers so that �k is not
a 10-cycle? Those powers share a divisor with 10. So �k is a 10-cycle i�
gcd(10; k) = 1 () < � >=< �k >.
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5.3 Dihedral Groups and Symmetric Groups

D3
�= S3

Let us now reconsider thte rigid motions of an equilateral triangle with
vertices labelled 1, 2, 3. Then every motion of the the triangle can
be thought of as a permutation in S3. Speci�cally, we can set up the
following correspondence:

r0 ! (1) r120 ! (1; 2; 3) r240 ! (1; 3; 2)

v ! (2; 3) d! (1; 3) d0 ! (1; 2):

If we denote this correspondence or mapping by �, then we see that
� : D3 ! S3 is one-to-one and onto. Further, one can check that �
respects the group operations involved. That is: if x; y 2 D3, then

(xy)� = (x�)(y�):

Notice the group operation on the left takes place inD3 and the operation
on the right takes place in S3. For example:

(vr240)� = d0� = (1; 2) and(a�)(r240�) = (2; 3)(1; 3; 2) = (1; 2):

This is an example of an group isomorphism, that is, a one-to-one,
onto map between groups that respects the group operations. We will
study such maps in great detail later.

Notice that the elements of D3 can be listed in another way. If we
let � = r120 then the following six elements are distinct:

fe; �; �2; h; h�; h�2g � D3:

But since jD3j = 6 these six elements must comprise all of D3. In other
words D3, while it is not cyclic, it is generated by two elements.

D4 and S4

We can construct a similar correspondence between D4 and some of the
elements of S4. Label the vertices of a square as 1, 2, 3, 4. As with the
motions of a triangle, the particualr righid motion in D4 is determined
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by whether the square is face up or face down and by where the vertex
1 ends up. Hence jD4j = 2 � 4 = 8. this time the rotations are

r0 = (1) r90 = (1; 2; 3; 4) r180 = (1; 3)(2; 4) r270 = (1; 4; 3; 2)

h = (1; 4)(2; 3) v = (1; 2)(3; 4) d = (1; 3) d0 = (2; 4):

Let � = r90. Now jD4j = 8 and the following 8 elements are distinct
and in D4:

fe; �; �2; �3; h; h�; h�2; h�3g � D4:

Therefore this must be the entire group.
We know now two di�erent subgroups of S4, namely A4 and D4.

Are there others? (All the cyclic groups, S3, and there are others (see
text).)

This same process that we have carried out with D4 and S4 can
be done with Dn and Sn, where Dn represents the motions of a regular
n-sided polygon. This lime let

� = (1; 2; : : : ; n) and h =

�
1 2 3 4 : : : n� 1 n
1 n n � 1 n � 2 : : : 3 2

�

Here � represents a rotation of 360

n
and h represents the reection across

the line through vertex 1.
You should be able to show that

Dn = fe; �; �2; : : : ; �n�1; h; h�; h�2; : : : ; h�n�1g:

That is Dn is generated by two elements: its smallest rotation and any
ip. See the optional exercise on Problem Set #11.


