Math 375

Week 3

3.1 The Center and Centralizer

There are two subgroups of any group G that are easily defined and easily confused

Definition 1 If G is a group then the center of G is the set

$$
C(G)=\{a \in G \mid a x=x a \forall x \in G\} .
$$

Note that the center consists of the elements of G which commute with all elements of G.

Theorem 2 Show that $C(G)$ is a subgroup of G.
Proof Let's use the two step method.
closure Let $a, b \in C(G)$. Show that $a b \in C(G)$. For all $x \in G$,

$$
(a b) x=a(b x)=a(x b)=(a x) b=x(a b)
$$

so $a b \in C(G)$.
inverses Let $a \in C(G)$. Show that $a^{-1} \in C(G)$. But

$$
a x=x a \Rightarrow(a x)^{-1}=(x a)^{-1} \Rightarrow x^{-1} a^{-1}=a^{-1} x^{-1} .
$$

So $a^{-1} \in C(G)$.
Example 1 If G is abelian what is $C(G)$?
Example 2 Show that $\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right) \in C(G L(2, \mathbf{R}))$ where $a \neq 0$. In fact, it can be shown that

$$
C(G L(2), \mathbf{R})=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) \right\rvert\, a \neq 0\right\} .
$$

Example $3 C\left(D_{3}\right)=\left\{e=r_{0}\right\}$ since non-zero rotations don't commute with flips.

Example 4 For an element to be in the center of G its row and column in the Cayley table for G must be identical. Clearly the identity must always be in the center.
Example 5 What is $C\left(V_{4}\right)$? What is $C\left(Q_{8}\right)$? Answers: V_{4} and $\{I,-I\}$, respectively.
Definition 3 Let G be a group and let $a \in G$. The centralizer of G is the set

$$
C(a)=\{g \in G \mid g a=a g\}=\left\{g \in G \mid g a g^{-1}=a\right\}
$$

Example 6 For an element g to be in the centralizer of a, the g entry of the a-row and a-column must be the same.

Theorem $4 \quad C(a)$ is a subgroup of G.
proof Use the one-step method. Note that $C(a)$ is never empty since it always contains e. So let $g, h \in C(a)$. Is $g h^{-1} \in C(a)$?

$$
\left(g h^{-1}\right) a\left(g h^{-1}\right)^{-1}=g\left(h^{-1} a h\right) g^{-1} .
$$

Now since $h \in C(a)$, then $h a h^{-1}=a \Rightarrow a=h^{-1} a h$ using left and right multiplication by h^{-1} and h, respectively. So $h^{-1} \in C(a)$ (so maybe we should have done two-step method). So then from above,

$$
\left(g h^{-1}\right) a\left(g h^{-1}\right)^{-1}=g\left(h^{-1} a h\right) g^{-1}=g a g^{-1}=a
$$

since $g \in C(a)$. So $g h^{-1} \in C(a)$, too.
(ii) Inverses: use the method as in center proof.

Example 7 In $D_{3}, C(a)=\left\{a, r_{0}\right\}, C\left(r_{120}\right)=\left\{r_{0}, r_{120}, r_{240}\right\}$.
Example 8 In $G L(2, \mathbf{R})$ find $C\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right)$. By direct computation:

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in \mathbf{R}\right\} .
$$

Example 9 In an abelian group $G, C(a)=G$.
Example 10 What is $C(J)$ in Q_{8} ?
Note that we can think of both the centralizer and the center as a measure of the abelianness of the element or the group in question.

Example 11 It is clear that

$$
C(G)=\bigcap_{a \in G} C(a)
$$

since $C(G) \subseteq C(a)$ for any a and if $g \in C(a)$ for all a then it commutes with every element in G so it is in (G).

3.2 Cyclic Subgroups

Last time we were able to derive a finite subgroup test because if H were a finite closed subset of a group G, powers of the elements of H cycled around on themselves.
Example 12 In (\mathbf{Z}_{6}, \oplus), let's examine the powers of 3,4 , and 5 explicitly.
a) $|3|=2 \quad\left\{\begin{array}{l}1(3)=3 \\ 2(3)=0\end{array}\right.$
b) $|4|=3 \quad\left\{\begin{array}{l}1(4)=4 \\ 2(4)=2 \\ 3(4)=0\end{array}\right.$
c) $|5|=6 \quad\left\{\begin{array}{l}1(5)=5 \\ 2(5)=4 \\ 3(5)=3 \\ 4(5)=2 \\ 5(5)=1 \\ 6(5)=0\end{array}\right.$

In this last case all of the elements of \mathbf{Z}_{6} are multiples (i.e., powers) of of 5 . This is not the case with 3 or 4 .

Our next goal is to make the notion of generation by powers precise.
Definition 5 Let $x \in G$, a group. The set of powers (multiples) of x in G is denoted by $\langle x\rangle$. In particular:

$$
\begin{array}{ll}
<x>=\left\{x^{n} \mid n \in \mathbf{Z}\right\} & \text { (for multiplicative groups) } \\
<x>=\{n x \mid n \in \mathbf{Z}\} & \text { (for additive groups) }
\end{array}
$$

Example a) in \mathbf{Z}_{6}

$$
\begin{aligned}
& <3>=\{3,0\} \\
& <5>=\{0,1,2,3,4,5\}
\end{aligned}
$$

b) $\operatorname{In} D_{3}$

$$
\begin{aligned}
<v> & =\left\{v, r_{0}\right\} \\
<r_{120}> & =\left\{r_{120}, r_{240}, r_{0}\right\}
\end{aligned}
$$

c) Find $\langle 5>$ in $U(12)$.
d) Find $\langle i\rangle$ in \mathbf{C}^{*}.

It is worth repeating, even though $\langle x\rangle=\left\{\ldots, x^{-2}, x^{-1}, x^{0}=\right.$ $\left.e, x^{1}, x^{2}, \ldots\right\}$ would seem to have an infinite number of elements, it may only be finite if powers of the elements cycle around on themselves.

Theorem 6 Let G be a group. Then $\langle x\rangle$ is a subgroup of G.

Let's use the one step method. Pick two elements in $g, h \in\langle x\rangle$. What do they look like? $g=x^{n}$ and $h=x^{m}$. Notice $g h^{-1}=x^{n}\left(x^{m}\right)^{-1}=$ $x^{n} x^{-m}=x^{n-m} \in\langle x\rangle$.

Note: It is obvious that $|x|=|\langle x\rangle|$ since both numbers simply count the distinct powers(multiples) of x.

Example a) In $U(12),\langle 5\rangle=\{5,1\}$.
b) In $\mathbf{Z}_{12},<3>=\{3,6,9,0\}$.
c) In $Q_{8},\langle K\rangle=\langle I, K,-I,-K\rangle$.
d) In \mathbf{Z}, what is $<1>$? What about $<2>$?

Definition 7 If there is some element $x \in G$ such that $\langle x\rangle=G$, then G is called a cyclic group. In other words, $G=\left\{x^{n} \mid n \in \mathbf{Z}\right\}$. We call x a generator of G.

Note: Obviously if $\langle x\rangle=G$, then $|x|=|G|$.
Example 15 Which of the following are cyclic: $D_{3}, V_{4}, Q_{8}, \mathbf{Z}, \mathbf{Z}_{n}, \mathbf{Q}^{*}, U(12), U(5)$, and \mathbf{R}.

Lemma 8 If x is a generator of G, then so is x^{-1}.

Proof Let $g \in G$. We must show that g can be written as some power of x^{-1}. Since G is generated by x, then for some $k \in \mathbf{Z}, g=x^{k}=\left(x^{-1}\right)^{-k}$.

Example 16 Find all the generators of Z_{8}.
solution Certainly 1 is hence so is 7 . 2 is not, so 6 is not. 3 is, so 5 is. 4 is not and 0 is not.

Theorem 9 Let a be an element of a group G.
a) If $|a|=\infty$, then $a^{j}=a^{k} \Longleftrightarrow k=j$.
b) If $|a|=n$, then $a^{j}=a^{k} \Longleftrightarrow n \mid k-j \Longleftrightarrow k=j \bmod n$.

Proof a Note that

$$
\begin{aligned}
a^{j}=a^{k} & \Longleftrightarrow e=a^{k-j} \\
& \Longleftrightarrow k-j=0 \quad(\text { since }|a|=\infty) \\
& \Longleftrightarrow k=j
\end{aligned}
$$

PROOF B By the division algorithm, $k-j=q n+r$ where $0 \leq r<n$.

$$
\begin{aligned}
a^{j}=a^{k} & \Longleftrightarrow e=a^{k-j} & & \\
& \Longleftrightarrow e=a^{q n+r}=a^{q n} a^{r}=\left(a^{n}\right)^{q} a^{r} & & \\
& \Longleftrightarrow e=a^{r} & & a^{n}=e \text { above } \\
& \Longleftrightarrow r=0 & & |a|=n \text { and } r<n \\
& \Longleftrightarrow k-j=q n & &
\end{aligned}
$$

Corollary 10 Let $|a|=n$. If $a^{k}=e$, then $n \mid k$.

PROOF Notice $a^{k}=e=a^{0}$, so by the theorem $n \mid k-0$.
Gallian's comments in the text about the theorem in the finite case are crucial. In the case where $|a|=n$, then the group operation in the cyclic group $<a>$ amounts to addition $\bmod n$. That is, if $k+$ $j=r \bmod n$, then $a^{k} a^{j}=a^{r}$, no matter what the particular element represents. (Example: $i \in C^{*}, K \in Q_{8}$, and $r_{90} \in D_{4}$ all have order four. And the little cyclic subgroups that each generates are essentially the same.) This leads to the notion of an isomorphism which we will discuss in great detail later. A similar remark is true when $|a|=\infty$. Then the group operation in $\langle a\rangle$ boils down to regular addition in Z since $a^{j} a^{k}=a^{j+k}$. The whole point is that both Z and Z_{n} are well understood, even by you. We want to find out when other groups are "just like them."

The first part of the next result is not in the text. But it is crucial.
Theorem 11 (Generators of Finite Cyclic Groups: Sam Park's Thm) Let $G=\langle a\rangle$ be a cyclic group of order n.
a) $\left|a^{k}\right|=\frac{1 \mathrm{~cm}(k, n)}{k}=\frac{n}{\operatorname{gcd}(k, n)}$.
b) a^{k} is also a generator of G if and only if $\operatorname{gcd}(k, n)=1$.

PROOF A By the corollary

$$
\left(a^{k}\right)^{j}=e \Longleftrightarrow a^{k j}=e \Longleftrightarrow n \mid k j .
$$

Therefore $\left|a^{k}\right|=j \Longleftrightarrow k j$ is the smallest multiple of k divisible n $\Longleftrightarrow k j$ is the smallest common multiple of n and $k \Longleftrightarrow k j=1 \mathrm{~cm}(k, n)$. Therefore,

$$
\begin{aligned}
\left|a^{k}\right|=j=\frac{k j}{j} & =\frac{\operatorname{lcm}(k, n)}{k} \\
& =\frac{\operatorname{lcm}(k, n) \cdot \operatorname{gcd}(k, n)}{k \cdot \operatorname{gcd}(k, n)}=\frac{k n}{k \cdot \operatorname{gcd}(k, n)}=\frac{n}{\operatorname{gcd}(k, n)}
\end{aligned}
$$

PROOF B Since $<a^{k}>\leq<a>=G$, to show that $<a^{k}>=<a>$, it suffices to show that $\left|<a^{k}>|=|<a\right\rangle \mid=n$. But

$$
\left|<a^{k}>\left|=\left|a^{k}\right|=\frac{n}{\operatorname{gcd}(k, n)}=n \Longleftrightarrow \operatorname{gcd}(k, n)=1\right.\right.
$$

Since Z_{n} is cyclic his theorem means that
Corollary 12 An integer k is a generator of \mathbf{Z}_{n} if and only if $\operatorname{gcd}(k, n)=1$.

Example 17 Find the order of each element of \mathbf{Z}_{12}. Which are generators? (Answer: $1,5,7$, and 1 which are exactly the elelments of $U(12)$. More generally, the generators of \mathbf{Z}_{n} are the elements of $U(n)$.

Example 18 Suppose that $G=<a>$ is cyclic of order 24. What are its generators?
Example a) What is the order of 756 in Z_{1155} ? Well, in the first week of class we saw $\operatorname{gcd}(1155,756)=21$. Therefore

$$
|756|=\frac{1155}{\operatorname{gcd}(756,1155)}=\frac{1155}{21}=55
$$

e) What is the order of a^{756} in $G=<a>$ if $|a|=1155$? Same as above: 21.
Theorem 13 (Fundamental Theorem of Cyclic Groups) Let $G=<a>$ be a cyclic group, then:
a) every subgroup of G is cyclic;
b) if $|<a\rangle \mid=n$, then the order of any subgroup of $\langle a\rangle$ is a divisor of n;
c) if k is a divisor of $n=|<a>|$, then the group $<a>$ has exactly one subgroup of order k, namely $\left\langle a^{n / k}\right\rangle$.

Let's look at what this theorem means before we prove it.

Example 20 Z is cyclic, so every subgroup of Z has the form $\langle n\rangle$. But this is just the set of multiples of n. For example, $\langle 2\rangle$ is the set of even integers, $<3\rangle$ is the set of integers divisible by 3 . Now we also know that the intersection of two subgroups is again a subgroup.
b) What is $\langle 12\rangle \cap\langle 8\rangle$? Well, it must be $\langle n\rangle$ since Z is cyclic. It is a set of multiples common to both $\langle 8\rangle$ and $\langle 12\rangle$. Therefore $\langle 12\rangle \cap<8\rangle=<\operatorname{lcm}(8,12)>$.
c) More generally, $\langle m\rangle \cap\langle n\rangle=\langle 1 \mathrm{~cm}(m, n) \bmod n\rangle$. $\mathbf{\square}$

Example 21 Now consider $G=\mathbf{Z}_{24}$. It is cyclic and generated by 1 . We can list all of its subgroups because we know all of its divisors: $1,2,3,4,6,8,12$, and 24.

Order 24: $<1>=\{0,1, \ldots, 23\}=<23>=$?
Order 12: $\langle 2\rangle=\{0,2,4, \ldots, 22\}=<22\rangle=$? Now we need $2=\operatorname{gcd}(k, n)$ for k to generate this subgroup of order 12 .
Order 8 : $\langle 3\rangle=\{0,3,6, \ldots, 21\}=<21\rangle=$?
Order 6 : $\langle 6\rangle=\{0,6,12,18\}=\langle 18\rangle=$?
Order 3: $\langle 8\rangle=\{0,8,16\}=\langle 16\rangle$
Order $2:<12\rangle=\{0,12\}$
Order 1: $\langle 0\rangle=\{0\}$
Notice that in each case, the subgroup of order k had $24 / k$ as one of its generators.
d) We can reinterpret this list for a multiplicative group $G=\langle a\rangle$ of order 24.
Order 24: $\langle a\rangle=\left\{e=a^{0}, a^{1}, \ldots, a^{23}\right\}=\left\langle a^{23}\right\rangle$
Order 12: $\left\langle a^{2}\right\rangle=\left\{e, a^{2}, a^{4}, \ldots, a^{22}\right\}=\left\langle a^{22}\right\rangle$
Order 8: $\left\langle a^{3}\right\rangle=\left\{e, a^{3}, a^{6}, \ldots, a^{21}\right\}=\left\langle a^{21}\right\rangle$
Order 6: $\left\langle a^{6}\right\rangle=\left\{e, a^{6}, a^{12}, a^{18}\right\}=\left\langle a^{18}\right\rangle$
Order 3: $\left\langle a^{8}\right\rangle=\left\{e, a^{8}, a^{16}\right\}=\left\langle a^{16}\right\rangle$
Order 2: $\left\langle a^{12}\right\rangle=\left\{e, a^{12}\right\}$
Order 1: $\langle e\rangle=\{e\}$
Example 22 Suppose that a finite cyclic group $G=\langle a\rangle$ has exactly three distinct subgroups: G itself, a subgroup of order 7 , and $\{e\}$. What is the order of G ?
solution What do we know? Let $|G|=n$. We know that $7 \mid n$, and of course $1 \mid n$ and $n \mid n$? Can any other k divide n ? Thus, n is a power of 7 , i.e., $n=7^{m}$. What must m be? Can't be 0 or 1 , could be 2 . Why can't it be higher than 2?
PROOF To prove the theorem we proceed in steps.
(A) Let H be any subgroup of G. If $H=\{e\}$, then $H=<e>$ and so is cyclic. If H is not $\{e\}$, then H contains elements of the form a^{k} where $k \neq 0$. Of course if $a^{k} \in H$, then $a^{-k} \in H$ and either k or $-k$ is positive. By Well-Ordering, there is a smallest positive integer d such that $a^{d} \in H$. By closure, it is clear that $<a^{d}>\leq H$ We will now show that $<a^{d}>=H$.

Let $h \in H$. Then $h \in G, h=a^{k}$ for some k. By the division algorith m :

$$
k=q d+r \quad 0 \leq r<d
$$

Next since $a^{d} \in H$, then $\left(a^{d}\right)^{-q}=a^{-q d} \in H$. Therefore,

$$
a^{-q d} h=a^{-q d} a^{k}=a^{-q d} a^{q d+r}=a^{r} \in H \quad 0 \leq r<d .
$$

If $r \neq 0$ this contradicts the choice of d as the minimal power of x in H. So we must have $r=0$ and therefore $k=q d$. Thus

$$
h=a^{k}=a^{q d}=\left(a^{d}\right)^{q} \in<a^{d}>.
$$

(B) From (a) any subgroup H of $G=<a>$ is cyclic, so $H=<a^{d}>$. But then

$$
|H|=\left|<a^{d}>\left|=\left|a^{d}\right|=\frac{n}{\operatorname{gcd}(n, d)}\right.\right.
$$

so $n=|H| \cdot \operatorname{gcd}(n, d)$. But then $|H| \mid n$.
(C) Let k be any divisor of n, so $k d=n$ and $d=n / k$. We must show that there is only one subgroup of order k. First we find one such subgroup. Notice that $\left|<a^{d}>\right|=\frac{n}{\operatorname{gcd}(n, d)}=\frac{n}{d}=k$. So if $H=<a^{d}>$, then $|H|=\left|<a^{d}>\right|=k$.

Next, let H^{\prime} be some other subgroup of order k. (To show $H=H^{\prime}$.) From (a), $H^{\prime}=<a^{d^{\prime}}>$ for some d^{\prime} and from (b)

$$
\frac{n}{\operatorname{gcd}\left(n, d^{\prime}\right)}=\left|H^{\prime}\right|=k=\frac{n}{d}
$$

Therefore,

$$
\operatorname{gcd}\left(n, d^{\prime}\right)=d \Rightarrow d=k n+m d^{\prime} \Rightarrow a^{d}=a^{k n+m d^{\prime}}=a^{m d^{\prime}}
$$

But then

$$
a^{d^{\prime}}=a^{m d}=a^{d^{m}} \in<a^{d}>\Rightarrow<a^{d^{\prime}}>\leq<a^{d}>
$$

by closure. But

$$
\left|<a^{d^{\prime}}>\left|=\left|H^{\prime}\right|=|H|=\left|<a^{d}>\right|\right.\right.
$$

so we must have $H=<a^{d^{\prime}}>=<a^{d}>=H$.

Example a) List the subgroups of \mathbf{Z}_{24}. Illustrate their relation to each other with a schematic diagram called a lattice. Do the same for \mathbf{Z}_{30} and Z_{20}.
b) Show that in Z_{n} we have $\langle k\rangle \cap<m>=<\operatorname{lcm}(k, m) \bmod n>$, for example in Z_{24} we have: $\langle 6\rangle \cap\langle 8\rangle=\langle 0\rangle$, etc. (Show how this appears in the lattice. Also note that the smallest subgroup containing $\langle k\rangle$ and $\langle m\rangle$ is $\langle\operatorname{gcd}(k, m) \bmod n\rangle$.)

Example 24 If $G=\langle x\rangle$ and has order 225, find the order of the subgroup $\left\langle x^{90}\right\rangle$. Solution $\left|<x^{90}>\right|=225 / \operatorname{gcd}(225,90)=225 / 45=5$. Notice that $\left\langle x^{45}\right\rangle=\left\langle x^{90}\right\rangle$ since there is only one subgroup of order 5 of G.

Example 25 Show that every group of order 3 must be cyclic. (Write out the Cayley table.)

