
Math 375

Week 3

3.1 The Center and Centralizer

There are two subgroups of any group G that are easily de�ned and
easily confused

DEFINITION 1 If G is a group then the center of G is the set

C(G) = fa 2 Gj ax = xa 8x 2 Gg:

Note that the center consists of the elements of G which commute
with all elements of G.

THEOREM 2 Show that C(G) is a subgroup of G.

PROOF Let's use the two step method.

CLOSURE Let a; b 2 C(G). Show that ab 2 C(G). For all x 2 G,

(ab)x = a(bx) = a(xb) = (ax)b = x(ab)

so ab 2 C(G).

INVERSES Let a 2 C(G). Show that a�1 2 C(G). But

ax = xa) (ax)�1 = (xa)�1 ) x�1a�1 = a�1x�1:

So a�1 2 C(G).

EXAMPLE 1 If G is abelian what is C(G)?

EXAMPLE 2 Show that

�
a 0
0 a

�
2 C(GL(2;R)) where a 6= 0. In fact, it can be

shown that

C(GL(2);R) =

��
a 0
0 a

� ���� a 6= 0

�
:

EXAMPLE 3 C(D3) = fe = r0g since non-zero rotations don't commute with ips.
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EXAMPLE 4 For an element to be in the center of G its row and column in the Cayley
table for G must be identical. Clearly the identity must always be in the
center.

EXAMPLE 5 What is C(V4)? What is C(Q8)? Answers: V4 and fI;�Ig, respectively.

DEFINITION 3 Let G be a group and let a 2 G. The centralizer of G is the set

C(a) = fg 2 Gj ga = agg = fg 2 Gj gag�1 = ag

EXAMPLE 6 For an element g to be in the centralizer of a, the g entry of the a-row
and a-column must be the same.

THEOREM 4 C(a) is a subgroup of G.

PROOF Use the one-step method. Note that C(a) is never empty since it always
contains e. So let g; h 2 C(a). Is gh�1 2 C(a)?

(gh�1)a(gh�1)�1 = g(h�1ah)g�1:

Now since h 2 C(a), then hah�1 = a ) a = h�1ah using left and right
multiplication by h�1 and h, respectively. So h�1 2 C(a) (so maybe we
should have done two-step method). So then from above,

(gh�1)a(gh�1)�1 = g(h�1ah)g�1 = gag�1 = a

since g 2 C(a). So gh�1 2 C(a), too.

(ii) Inverses: use the method as in center proof.

EXAMPLE 7 In D3, C(a) = fa; r0g, C(r120) = fr0; r120; r240g.

EXAMPLE 8 In GL(2;R) �nd C

��
1 1
0 1

��
. By direct computation:

��
a b
0 a

�
j a; b 2 R

�
:

EXAMPLE 9 In an abelian group G, C(a) = G.

EXAMPLE 10 What is C(J) in Q8?

Note that we can think of both the centralizer and the center as a
measure of the abelianness of the element or the group in question.
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EXAMPLE 11 It is clear that
C(G) =

\
a2G

C(a)

since C(G) � C(a) for any a and if g 2 C(a) for all a then it commutes
with every element in G so it is in (G).

3.2 Cyclic Subgroups

Last time we were able to derive a �nite subgroup test because if H were
a �nite closed subset of a group G, powers of the elements of H cycled
around on themselves.

EXAMPLE 12 In (Z6;�), let's examine the powers of 3, 4, and 5 explicitly.

a) j3j = 2

�
1(3) = 3
2(3) = 0

b) j4j = 3

8<
:
1(4) = 4
2(4) = 2
3(4) = 0

c) j5j = 6

8>>>>><
>>>>>:

1(5) = 5
2(5) = 4
3(5) = 3
4(5) = 2
5(5) = 1
6(5) = 0

In this last case all of the elements of Z6 are multiples (i.e., powers) of
of 5. This is not the case with 3 or 4.

Our next goal is to make the notion of generation by powers precise.

DEFINITION 5 Let x 2 G, a group. The set of powers (multiples) of x in G is denoted
by < x >. In particular:

< x > = fxnj n 2 Zg (for multiplicative groups)

< x > = fnxj n 2 Zg (for additive groups)

EXAMPLE a) in Z6

< 3 > = f3; 0g

< 5 > = f0; 1; 2; 3; 4; 5g

b) In D3

< v > = fv; r0g

< r120 > = fr120; r240; r0g
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c) Find < 5 > in U(12).

d) Find < i > in C�.

It is worth repeating, even though < x >= f: : : ; x�2; x�1; x0 =
e; x1; x2; : : :g would seem to have an in�nite number of elements, it may
only be �nite if powers of the elements cycle around on themselves.

THEOREM 6 Let G be a group. Then < x > is a subgroup of G.

Let's use the one step method. Pick two elements in g; h 2< x >. What
do they look like? g = xn and h = xm. Notice gh�1 = xn(xm)�1 =
xnx�m = xn�m 2< x >.

Note: It is obvious that jxj = j < x > j since both numbers simply
count the distinct powers(multiples) of x.

EXAMPLE a) In U(12), < 5 >= f5; 1g.

b) In Z12, < 3 >= f3; 6; 9; 0g.

c) In Q8, < K >=< I;K;�I;�K >.

d) In Z, what is < 1 >? What about < 2 >?

DEFINITION 7 If there is some element x 2 G such that < x >= G, then G is called a
cyclic group. In other words, G = fxn j n 2 Zg. We call x a generator
of G.

Note: Obviously if < x >= G, then jxj = jGj.

EXAMPLE 15 Which of the following are cyclic: D3, V4, Q8, Z, Zn, Q
�, U(12), U(5),

and R.

LEMMA 8 If x is a generator of G, then so is x�1.

PROOF Let g 2 G. We must show that g can be written as some power of x�1.
Since G is generated by x, then for some k 2 Z, g = xk = (x�1)�k.

EXAMPLE 16 Find all the generators of Z8.

SOLUTION Certainly 1 is hence so is 7. 2 is not, so 6 is not. 3 is, so 5 is. 4 is not
and 0 is not.

THEOREM 9 Let a be an element of a group G.

a) If jaj =1, then aj = ak () k = j.

b) If jaj = n, then aj = ak () n j k � j () k = j mod n.
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PROOF A Note that
aj = ak () e = ak�j

() k � j = 0 (since jaj =1)

() k = j

PROOF B By the division algorithm, k � j = qn+ r where 0 � r < n.

aj = ak () e = ak�j

() e = aqn+r = aqnar = (an)qar

() e = ar a
n = e above

() r = 0 jaj = n and r < n

() k � j = qn

() n j k � j:

COROLLARY 10 Let jaj = n. If ak = e, then n j k.

PROOF Notice ak = e = a0, so by the theorem n j k � 0.

Gallian's comments in the text about the theorem in the �nite case
are crucial. In the case where jaj = n, then the group operation in
the cyclic group < a > amounts to addition mod n. That is, if k +
j = r mod n, then akaj = ar , no matter what the particular element
represents. (Example: i 2 C�, K 2 Q8, and r90 2 D4 all have order
four. And the little cyclic subgroups that each generates are essentially
the same.) This leads to the notion of an isomorphism which we will
discuss in great detail later. A similar remark is true when jaj = 1.
Then the group operation in < a > boils down to regular addition in
Z since ajak = aj+k. The whole point is that both Z and Zn are well
understood, even by you. We want to �nd out when other groups are
\just like them."

The �rst part of the next result is not in the text. But it is crucial.

THEOREM 11 (Generators of Finite Cyclic Groups: Sam Park's Thm) Let
G =< a > be a cyclic group of order n.

a) jakj =
lcm(k; n)

k
=

n

gcd(k; n)
.

b) ak is also a generator of G if and only if gcd(k; n) = 1.

PROOF A By the corollary

(ak)j = e () akj = e () n j kj:
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Therefore jakj = j () kj is the smallest multiple of k divisible n
() kj is the smallest common multiple of n and k () kj = lcm(k; n).
Therefore,

jakj = j =
kj

j
=

lcm(k; n)

k

=
lcm(k; n) � gcd(k; n)

k � gcd(k; n)
=

kn

k � gcd(k; n)
=

n

gcd(k; n)

PROOF B Since < ak >�< a >= G, to show that < ak >=< a >, it su�ces to
show that j < ak > j = j < a > j = n. But

j < ak > j = jakj =
n

gcd(k; n)
= n () gcd(k; n) = 1:

Since Zn is cyclic his theorem means that

COROLLARY 12 An integer k is a generator of Zn if and only if gcd(k; n) = 1.

EXAMPLE 17 Find the order of each element of Z12. Which are generators? (Answer:
1, 5, 7, and 1 which are exactly the elelments of U(12). More generally,
the generators of Zn are the elements of U(n).

EXAMPLE 18 Suppose that G =< a > is cyclic of order 24. What are its generators?

EXAMPLE a) What is the order of 756 in Z1155? Well, in the �rst week of class
we saw gcd(1155; 756) = 21. Therefore

j756j =
1155

gcd(756; 1155)
=

1155

21
= 55:

e) What is the order of a756 in G =< a > if jaj = 1155? Same as
above: 21.

THEOREM 13 (Fundamental Theorem of Cyclic Groups) Let G =< a > be a
cyclic group, then:

a) every subgroup of G is cyclic;

b) if j < a > j = n, then the order of any subgroup of < a > is a divisor
of n;

c) if k is a divisor of n = j < a > j, then the group < a > has exactly
one subgroup of order k, namely < an=k >.

Let's look at what this theorem means before we prove it.



3.2 Cyclic Subgroups 7

EXAMPLE 20 Z is cyclic, so every subgroup of Z has the form < n >. But this is just
the set of multiples of n. For example, < 2 > is the set of even integers,
< 3 > is the set of integers divisible by 3. Now we also know that the
intersection of two subgroups is again a subgroup.

b) What is < 12 > \ < 8 >? Well, it must be < n > since Z is
cyclic. It is a set of multiples common to both < 8 > and < 12 >.
Therefore < 12 > \ < 8 >=< lcm(8; 12) >.

c) More generally, < m > \ < n >=< lcm(m;n) mod n >.

EXAMPLE 21 Now consider G = Z24. It is cyclic and generated by 1. We can list all
of its subgroups because we know all of its divisors: 1, 2, 3, 4, 6, 8, 12,
and 24.

Order 24: < 1 >= f0; 1; : : : ; 23g =< 23 >=?

Order 12: < 2 >= f0; 2; 4; : : : ; 22g =< 22 >=? Nowwe need 2 = gcd(k; n)
for k to generate this subgroup of order 12.

Order 8: < 3 >= f0; 3; 6; : : : ; 21g =< 21 >=?

Order 6: < 6 >= f0; 6; 12; 18g=< 18 >=?
Order 3: < 8 >= f0; 8; 16g=< 16 >

Order 2: < 12 >= f0; 12g
Order 1: < 0 >= f0g

Notice that in each case, the subgroup of order k had 24=k as one
of its generators.

d) We can reinterpret this list for a multiplicative group G =< a > of
order 24.

Order 24: < a >= fe = a0; a1; : : : ; a23g =< a23 >

Order 12: < a2 >= fe; a2; a4; : : : ; a22g =< a22 >

Order 8: < a3 >= fe; a3; a6; : : : ; a21g =< a21 >

Order 6: < a6 >= fe; a6; a12; a18g =< a18 >

Order 3: < a8 >= fe; a8; a16g =< a16 >

Order 2: < a12 >= fe; a12g

Order 1: < e >= feg

EXAMPLE 22 Suppose that a �nite cyclic group G =< a > has exactly three distinct
subgroups: G itself, a subgroup of order 7, and feg. What is the order
of G?

SOLUTION What do we know? Let jGj = n. We know that 7 j n, and of course
1 j n and n j n? Can any other k divide n? Thus, n is a power of 7, i.e.,
n = 7m. What must m be? Can't be 0 or 1, could be 2. Why can't it
be higher than 2?

PROOF To prove the theorem we proceed in steps.
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(A) Let H be any subgroup of G. If H = feg, then H =< e > and so is
cyclic. If H is not feg, then H contains elements of the form ak where
k 6= 0. Of course if ak 2 H , then a�k 2 H and either k or �k is
positive. By Well-Ordering, there is a smallest positive integer d such
that ad 2 H . By closure, it is clear that < ad >� H We will now show
that < ad >= H .

Let h 2 H . Then h 2 G, h = ak for some k. By the division
algorithm:

k = qd+ r 0 � r < d:

Next since ad 2 H , then (ad)�q = a�qd 2 H . Therefore,

a�qdh = a�qdak = a�qdaqd+r = ar 2 H 0 � r < d:

If r 6= 0 this contradicts the choice of d as the minimal power of x in H .
So we must have r = 0 and therefore k = qd. Thus

h = ak = aqd = (ad)q 2< ad > :

(B) From (a) any subgroup H of G =< a > is cyclic, so H =< ad >. But
then

jH j = j < ad > j = jadj =
n

gcd(n; d)

so n = jH j � gcd(n; d). But then jH j j n.

(C) Let k be any divisor of n, so kd = n and d = n=k. We must show that
there is only one subgroup of order k. First we �nd one such subgroup.
Notice that j < ad > j = n

gcd(n;d)
= n

d
= k: So if H =< ad >, then

jH j = j < ad > j = k:
Next, let H 0 be some other subgroup of order k. (To show H = H 0.)

From (a), H 0 =< ad
0

> for some d0 and from (b)

n

gcd(n; d0)
= jH 0j = k =

n

d
:

Therefore,

gcd(n; d0) = d) d = kn+md0 ) ad = akn+md0

= amd0

But then

ad
0

= amd = ad
m
2< ad >)< ad

0

>�< ad >

by closure. But

j < ad
0

> j = jH 0j = jH j = j < ad > j

so we must have H =< ad
0

>=< ad >= H:
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EXAMPLE a) List the subgroups of Z24. Illustrate their relation to each other
with a schematic diagram called a lattice. Do the same for Z30 and
Z20.

b) Show that in Zn we have < k > \ < m >=< lcm(k;m) mod n >,
for example in Z24 we have: < 6 > \ < 8 >=< 0 >, etc. (Show
how this appears in the lattice. Also note that the smallest subgroup
containing < k > and < m > is < gcd(k;m) mod n >.)

EXAMPLE 24 If G =< x > and has order 225, �nd the order of the subgroup < x90 >.
Solution j < x90 > j = 225= gcd(225; 90) = 225=45 = 5: Notice that
< x45 >=< x90 > since there is only one subgroup of order 5 of G.

EXAMPLE 25 Show that every group of order 3 must be cyclic. (Write out the Cayley
table.)


