
Math 375

Week 2

2.1 Groups

Recall our basic de�nition:

DEFINITION 1 Suppose that:

i) G is a set and that � is a binary operation on G (i.e., G is closed
under �);

ii) � is associative;

iii) there exists e 2 G such that a � e = e � a = a for all a 2 G (i.e., the
existence of an identity; the same identity for all a 2 G);

iv) for each X 2 G there exists y 2 G so that a � b = b � a = e, where e
is the identity element from (iii) (i.e., inverses exist).

Then G with its binary operation � is a group and is denoted by (G; �).

Notice that ; cannot be a group because (iii) fails. Notice that the
group operation need not be commutative.

EXAMPLE 1 Five examples of groups: (R;+), (Q;+), (Z;+), (R�;�), (Q�;�), (V;+)
where V is any vector space, e.g. (Mm;n;+), (Rn;+). Also (Gl(n);�).
We will assume that (Zn;�) is a group. What about examples of oper-
ations on sets that are not groups? (Z;�), (Mn;n;�), or (Z;�).

EXAMPLE 2 Let's verify that if

� =

�
A 2M22j A =

�
a 0
0 a

�
a 2 R�

�
;

then (�; �) is a group.

DEFINITION 2 For any postive integer n, the let U(n) denote the set of all postive
integers less than n that are relatively prime to n. It is called the group
of units mod n.

1



2 Math 375

EXAMPLE 3 U(12) = f1; 5; 7; 11g. The Cayley table is

� mod 12 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

SOLUTION Let's verify that U(n), the group of units mod n is a group under mul-
tiplication. We must check the four group properties. First, note the
following. Suppose 1 = gcd(x; n). By the division algorithm x = qn+ r

where 0 � r < n. By the linear combination theorem,

1 = sx+ tn = s(qn+ r) + tn = sr + (sq + t)n:

By the converse of the linear combination theorem since 1 is a linear
combination of r and n, then gcd(r; n) = 1 so r 2 U(n). (Why didn't we
say x 2 U(n)?

Second: note by a homework problem that you are currently doing,

(ab) mod n = [(a mod n)(b mod n)] mod n:

This says you can mod before or after the operation and you get the
same result. By the way, the same is true for addition.

CLOSURE Suppose that j; k 2 U(n). Then by the linear combination theorem,

1 = qj + rn 1 = sk + tn:

By multiplying:

1 = qs � jk+ (qjt+ rsk + rtn)n;

so by the converse to the linear combination theorem (from homework),
1 = gcd(jk; n). So jk mod n is in U(n) by our �rst comment.

ASOCIATIVITY From our second comment

[(ab mod n)(c mod n)] mod n = [(ab)c] mod n comment 2

= [a(bc)] mod n assoc

= [(a mod n)[(bcmod n)] mod n:

IDENTITY Clearly e = 1 is the multiplicative identity in U(n).
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INVERSES Notice k 2 U(n) implies gcd(k; n) = 1. We must �nd r 2 U(n) so that
rk = 1 mod n. By the linear combination theorem, there are integers
b and s so that 1 = ks + bn. By the division algorithm we may write
s = qn + r where 0 � r < n. So

1 = ks+ bn = k(qn+ r) + bn = kr + (kq + b)n = kr mod n:

By the converse of the linear combination theorem, gcd(r; n) = 1 so
r 2 U(n).

Basic Properties of Groups

Many basic results are easy to prove if we are careful to use the de�nition
of the concept involved.

THEOREM 3 If (G; �) is a group then:

a) there is only one identity element in G;

b) if x 2 G then x has only one inverse.

PROOF From the de�nition of a group it appears that there could be more than
one identity element or that an element might have more than one in-
verse. But we can show that this is not possible.

(i) Suppose that e and e0 are both identities in G (what properties
do e and e0 then have?). Then:

e = e � e0 = e0

so e = e0. That is, all identity elements are equal to each other | that
is, there is only one identtiy element in G.

(ii) Suppose y and z were both inverses of x (what properties would
y and z have?). Then:

y = y � e = y � (x � z) = (y � x) � z = e � z = z:

Part (ii) means that we can use x�1 to indicate the inverse of x in
any group. That is, there can be no ambiguity about which element we
are referring to with the notation x�1 because x has a single inverse.

From linear algebra you know that if A; B 2 GL(n), then (AB)�1 =
B�1A�1. The same result is true in any group.

LEMMA 4 If (G; �) is a group and x; y 2 G, then:

(x � y)�1 = y�1 � x�1:
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PROOF We need to show that y�1 � x�1 acts like the inverse of x � y.

(y�1 � x�1) � (y � x) = y�1(x�1 � (x � y)) = y�1 � ((x�1 � x) � y)

= y�1 � (e � y) = y�1 � y = e:

Similarly, (x � y) � (y�1 � x�1) = e. Since (x � y)�1 is unique, it must be
y�1 � x�1.

We can solve `algeraic equations' in the usual ways by cancellation
of factors.

LEMMA 5 Let (G; �) be a group with x; y; z 2 G. Then:

a) if x � y = x � z then y = z (left cancellation) (note order: not
y � x = x � z);

b) if y � x = z � x then y = z (right cancellation).

PROOF For (ii):

y = y � e = y � (x � x�1) = (y � x) � x�1

= (z � x) � x�1 = z � (x � x�1) = z � e = z:

The proof of (i) is quite similar.

LEMMA 6 If (G; �) is a group and x 2 G, then (x�1)�1 = x.

PROOF Use cancellation on the equation: xx�1 = e = (x�1)�1x�1.

EXAMPLE 4 For (R�; �), the Lemma says that 1
1

x

= x.

DEFINITION 7 If (G; �) is a group and � is commutative, then the group is called
abelian. (After Abel, the great Scandanvian mathematician of the late
19th century.)

EXAMPLE 5 What are some other examples of abelian groups with which your are
familiar? Do you know any non-abelian groups? ((GL(n); �)), D4
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EXAMPLE 6 The Unit Quaternions, Q8, are the eight 2� 2 matrices

fI;�I; J;�J;K;�K;L;�Lg

with entries in the complex numbers, where

I =

�
1 0
0 1

�
J =

�
i 0
0 �i

�

K =

�
0 1
�1 0

�
L = JK =

�
0 i

i 0

�

Determine whether these matrices form a group under multiplication by
�lling in a Cayley Table. (Remember, matrix multiplication is associative
and does not need to be checked.) Is it commutative?

SOLUTION It is a group, but not commutative (since the table is not symmetric).

� I �I J �J K �K L �L
I I �I J �J K �K L �L

�I �I I �J J �K K �L L

J J �J �I I L �L �K K

�J �J J I �I �L L K �K
K K �K �L L �I I J �J

�K �K K L �L I �I �J �J
L L �L K �K �J J �I I

�L �L L �K K J �J I �I

Exponents and Order

We now �x the following conventions for powers of elements in G.

DEFINITION 8 Let x 2 G, a group. Then

a) x0 = e;

b) for n 2 Z+, xn = xx � � �x (n factors);

c) for n 2 Z+, x�n = (x�1)n.

As you would expect, the familiar laws for exponents are satis�ed:

THEOREM 9 Let G be a group with x 2 G. Let m;n 2 Z. Then

a) xmxn = xm+n;

b) (xn)�1 = x�n;

c) (xm)n = xmn = (xn)m.



6 Math 375

PROOF All the results are familiar.

CONVENTIONS

Multiplicatve like R� or U(n) Additive like Z or Zn

a � b or ab multiplication a+ b sum
e or 1 identity 0 zero, additive identity
a�1 inverse of a �a negative, add inverse
an power of a na multiple of a
ab�1 (not (ab)�1) quotient a� b di�erence

For example in additive notation:

(xn)�1 = x�n becomes � (nx) = (�n)x:

EXAMPLE a) Show that in an abelian group we have (ab)n = anbn. (How would
this be written in additive notation?)

b) Show that in general: (ab)n 6= anbn. In D4, we have (r270v)2 =
d2 = e, but r2702v2 = r180. In the unit Quaternions Q8, we have
(JK)2 = L2 = �I , but J2K2 = (�I)(�I) = I:

DEFINITION 10 The number of elements in a group (whether �nite or in�nite) is called
the order of the group. It is denoted jGj.

EXAMPLE 8 Give 5 examples of groups of in�nite order and groups of �nite order.

DEFINITION 11 Let x 2 G, a group. The order of x is the smallest positive integer n
such that xn = e. (In additive notation, nx = 0.) If no such n exists,
then x is said to have in�nite order. The order will be denoted by jxj
or by o(x).

EXAMPLE a) For any group G, we have jej = 1.

b) Find the order of each element of Q8, e.g., o(J) = 4.

c) In (D3; �) the ip reection a has order 2 because: a1 = a 6= r0
and a2 = r0. Similarly for any otther reection in any Dn. Notice
jr120j = 3 since r120 6= r0 and r2120 = r240, but r

3
120 = r0. Similarly

jr240j = 3.

d) In (Z;+), o(2) =1 since for all n 2 Z+, n2 6= 0.

e) In GL(2) we have, ��
0 1
1 0

��
= 2:

f) 2I 2 GL(3) since det 2I3 = 23 � det I = 8 � 1 = 8 6= 0. However
j2I j =1 since (2I3)n = 2nI 6= I 8n 2 Z+.
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LEMMA 12 Let G be a group. Assume x2 = e 8x 2 G (what does this say about
order?). Show that G is an abelian group.

SOLUTION We must show that 8a; b 2 G ab = ba. We use our standard `trick.'

ab = (ab)e = (ab)(ba)2 = ab((ba)ba)

= a(bb)a(ba)

= aea(ba) = (aa)(ba) = e(ba) = ba:

2.2 Introduction to Subgroups

The De�nition and Basic Tests

We know that (R;+) is a group and that (Q;+) is also a group and that
Q � R. Similarly (Z;+) is a group and Z � Q and Z � R. Yet not all
subsets of R are groups. For example, the odd integers are not a group
nor is R+; neither set is closed under the operation of addtion.

In general how do you determine which subsets are groups? This
problem is akin to the question of determining which subsets of a vector
space are subspaces under the original vector space operation.

DEFINITION 13 A subset H of a group (G; �) is a subgroup of G if the elements of H
form a group under the operation �. (This means you have to check
all four group conditions on H with operation �.) We use the notation
H � G to indicate a subgroup and H < G to indicate a proper subgroup.

Notice that H = feg is always a subgroup of G. It is called the
trivial subgroup of G.

Notice that Zn is not a subgroup of Z since the operations of addi-
tion are di�erent.

EXAMPLE a) fr0; r120; r240)g is a subgroup of D3. (Use the Cayley table.)

b) fr0; vg is a subgroup of D3 (where v is a ip over an axis).

c) M = fA 2 GL(n)j detA = 2g.

d) Is fa; b; cg a subgroup of (D3; �)?

e) Is f0; 2; 4; 6g a subgroup of (Z8;�)?
We mentioned that Z is a subgroup of (R;+). Nowwhen you worked

with subspaces, you did not go through checking all eight vector space
axioms for the subspace in question, in fact you only checked the two
closure properties for addition and scalar multiplication. We have a sim-
ilar situation with groups. Instead of checking all four group properties
all one needs to check is clossure and the existence of inverses.
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THEOREM 14 (Two Step Test) Let H be a nonempty subset of a group G. If

i) 8 a; b 2 H; ab 2 H (H is closed under the same operation as in G);

ii) 8 a 2 H; a�1 2 H (inverses exist in H);

then H is asubgroup of G.

PROOF We must show that if (i) and (ii) hold then the four group conditions are
satis�ed. These are

CLOSURE H is closed. This holds by (i).

ASSOCIATIVITY Holds because it holds in G, that is 8 a; b; c 2 H , a(bc) = (ab)c because
this is true in G and if a; b; c 2 H then a; b; c 2 G.

IDENTITY Let e be the identity in G. Then since H 6= ;, there is an element h 2 H .
But by condition (ii), h 2 H ) h�1 2 H . But then by condition (i),
hh�1 = e 2 H . So H has an identity.

INVERSES Exist for every element in H by condition (ii).

EXAMPLE 11 Verify that SL(R; n) = fA 2 GL(R; n) = GL(n) j detA = 1g is a
subgroup.

EXAMPLE 12 Is H =

�
A 2 GL(R; n) j A =

�
a 0
0 a�1

��
a subgroup of GL(R; n)?

THEOREM 15 (One Step Test) Let G be a group and H a nonempty subset of G.
Then H is a subgroup if ab�1 is in H whenever a and b are in H .

PROOF Let x 2 H . By hypothesis, xx�1 = e 2 H . Thus, for any element y in
H , ey�1 = y�1 2 H , so H is closed under inverses. Next, for any x and
y in H , since y�1 2 H , then x(y�1)�1 = xy 2 H . So H is closed. By
the two step test, H � G.

EXAMPLE 13 If H and K are both subgroups of G show that H \K is a subgroup of
G.

I like two step, but you may like one step method.

EXAMPLE 14 Show that H = GL+(R; n) = fA 2 Mnn j detA > 0g is a subgroup of
GL(R; n).

SOLUTION We need to know that H is nonempty. (It is usually simple to see if H
contains the identity.) Notice I 2 H since det I = 1 > 0. Now let A;B 2
H . Show AB�1 2 H . Well, check detAB�1 = detA(detB)�1 > 0 since
detA; detB > 0.
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Notice that when checking subgroups by either the one or two step
method, it is crucial to:

1. Identify the property that distinguishes the elements of the set.
What property puts an element in H?

For the one step method:

2. Prove that e has the property (to verify that H is not empty).
3. Assume that a and b have the property, and show that ab�1 has the

property.
In the two step method:

2'. Assume that a has the property, and show that a�1 has the property.
3'. Assume that a and b have the property, and show that ab has the

property.
Thus, either process is conceptually quite simple. But it hinges on

being able to determine the de�ning property of H .
When the group G is �nite, there is an even easier test.

THEOREM 16 (Finite Subgroup Test) Let H be a nonempty subset of a group G.
If H is closed (under the operation in G), then H � G.

PROOF Use the two step method. We are given closure. So all we have to
do is show that if a 2 H , then a�1 2 H . But since H is closed, then
a; a1; a2 : : : 2 H . But H is �nite, so not all of these elements are distinct.
Thus an = am for some i 6= j where we may asume that n > m. But then
e = an�m = aan�m�1 = e, where n�m� 1 � 0. So a�1 = an�m�1 2 H

since all nonnegative powers of a are in H .

EXAMPLE 15 f1;�1; i;�ig � C�.

EXAMPLE 16 Let k be a divisor of n. Let Uk(n) = fx 2 U(n) j x = 1 mod kg. Show
that Uk(n) is a subgroup of U(n).

EXAMPLE 17 Let's see what this means before we do the proof. Consider U4(24) (note
that 4 is a divisor of 24). U4(24) = f1; 5; 13; 17g. Why isn't 9 2 U4(24)?

� mod 24 1 5 17 23
1 1 5 17 23
5 5 1 17 13
13 13 17 1 5
17 17 13 5 1

Does this group (pattern) look familiar?

SOLUTION Use the �nite subgroup test. Let a; b 2 Uk(n). Is ab 2 Uk(n)? Well

ab mod k = [(a mod k)(b mod k)] mod k = 1 � 1 mod k = 1 mod k:


