
Math 375

Week 1

1.1 Introduction to Groups

Introduction

Abstract algebra is the study of structures that certain collections of
`objects' or `sets' possess. You have already had a taste of this in Math
204, linear algebra, or in CS 221, discrete structures. In Math 204 you
studied a single structure in some depth, the vector space structure. At
�rst you proceeded quite informally|you treated vectors as something
quite geometric. Vectors were `objects' that had both a direction and
a magnitude, in other words, `arrows.' However, you soon realized that
you could perform certain operations on these arrows|you could add
two of them, you could multiply one by a scalar|and still have a vector.
We described this by saying the set was closed under these operations.

Very quickly you began to focus on the operational aspects of deal-
ing with vectors. Does the addition commute? Is there an additive
identity? Are there additive inverses for each vector? And so on. This
activity was formalized in the de�nition of a vector space with its eight
or so axioms. The preciseness of the de�nition turned out to be quite a
liberating thing: you soon begin to spot vector spaces everywhere! The
set of n-tuples form the vector space Rn when component addition and
scalar multiplication are used. The set of n �m matrices form a vector
space if the usual addition and scalar multiplication are used. The set of
continuous functions form a vector space using the ordinary de�nitions
of addition and scalar multiplication of functions. So does the set of all
polynomials or the set of all polynomials of degree less than or equal to
n. Notice that in each case two things are required: a set of objects and
two operations on this set.

The vector space structure is just one of many possible algebraic
structures that a set may have. It is not the simplest structure, nor is it
the most complicated. We probably won't study vector spaces very much
this term. In Math 331 (if you have taken it) the idea of closure occurs
in several places. For example, functions that were di�erentiable, inte-
grable, continuous, or had limits were closed under addition and scalar
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multiplication. Moreover, we de�ned �elds like R, and Q which had
additional structure to them, including a multiplication with identities
and inverses and a distributive law which showed how multiplication
interacts with addition.

In Math 375, we'll start with a much simpler structure, the sort
of structure exhibitted by the most familiar mathematical objects such
as the integers and the rational numbers. What `operations' can you
perform on N, Z, Q, and R? Are all of these sets closed under all of
these operations? We see that the more `structure' we impose on the
set and operations, the fewer the number of sets that will satisfy the
conditions. So if we want to study lots of sets, we should not impose too
much structure|just enough to be useful! This is what groups are all
about.

1.2 Preliminary Discussion on Groups

A crucial part of the vector space axiom system concerned the notion of
the two operations on the set involved. In particular: given v; w 2 V (V
a vector space) v + w 2 V , where `addition' was an operation that took
two elements of V and produced a third element of V .

Stripped down to its basic elements, this operation takes two ele-
ments of the set and produces a third. In general, the order in which the
elements appear can be important.

When ordering is important, we often speak of ordered pairs or
even ordered n-tuples. Usually these are denoted (a; b). Generally:

(a; b) 6= (b; a):

When would this equality be valid?

DEFINITION 1 A binary operation � on a set S is a function that associates to each
ordered pair (a; b) of elements of S an element of S which we denote by
a � b or simply ab.

EXAMPLE 1 Ordinary addition, multiplication, subtraction on Z, Q, R. What about
division? What about division on Z+; Q+; R+?

The basic algebraic structure that we'll study this term is that of
a group. Groups appear not only in the context of mathematics, but
in physics, chemistry, coding theory, kinship systems, design and archi-
tecture. For example, it turns out there are only seventeen di�erent
patterns of wallpaper that are possible (up to change of design element)
and each of these patterns is described by a group. So what is a group?
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DEFINITION 2 Suppose that:

i) G is a set and that � is a binary operation on G (i.e., G is closed
under �);

ii) � is associative: (a � b) � c = a � (b � c);
iii) there exists e 2 G such that a � e = e � a = a for all a 2 G (i.e., the

existence of an identity; the same identity for all a 2 G);

iv) for each X 2 G there exists y 2 G so that a � b = b � a = e, where e
is the identity element from (iii) (i.e., inverses exist).

Then G with its binary operation � is a group and is denoted by (G; �).
Notice that emptyset cannot be a group because (iii) fails. Notice

that the group operation need not be commutative.

EXAMPLE 2 Provide me with two examples of groups and two non-examples.

You are probably familiar with modular arithmetic; in fact you use
something like it to tell time. Ordinarily the hours of the day are given
`modulo 12' more or less, while military time is given `modulo 24.'

DEFINITION 3 (Arithmetic Modulo n) Let n be a �xed positive integer. For any
integers a and b, (a+ b) mod n is the remainder upon dividing a+ b by
n; similarly, (a � b) mod n is the remainder upon dividing a � b by n.

EXAMPLE 3 (6 + 3) mod 4 = 1; (6 � 3) mod 4 = 2.

DEFINITION 4 (Modular Equations) Let n be a �xed positive integer. For any inte-
gers a and b, we write a = b mod n if n divides b� a.

EXAMPLE 4 19 = 4 mod 5, 22 = �8 mod 10, and 67 = 34 mod 11.

Notice that after dividing by n, the only poosible remainders are:
f0; 1; 2; : : : ; n� 1g. (This is, in fact, a consequence of the division algo-
rithm that we will prove next time.) We can make this set of remainders
into a group in the following way.

DEFINITION 5 If n is a positive integer, then the set Zn = f0; 1; 2; : : : ; n� 1g is called
the integers modulo n or the integers mod n.

This set can be made into a group using addition mod n start by
looking at Z4. This is summarized in the Cayley table that follows.

� mod 4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
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Notice that the set is closed. What is the identity element? Locate
the inverses of each element. Verify associativity on your own! Is this
operation commutative? How can you easily tell from the Cayley table?

More generally, �, addition mod n is certainly a binary operation
on Zn. Further, if j 2 Zn, its inverse is n � j. 0 is the identity. Only
associativity needs ot be checked. For now we'll assume it.

EXAMPLE 5 Assume that we are given an equlateral triangle, ABC. Find all of the
rigid motions which `map' the triangle to itself.

SOLUTION Observe that the �nal position of the triangle is completely determined
by two things:

i. the location of a single vertex (say A);

ii. the orientation of the triangle (face up or face down).

There are three possible locations for vertex A and each with two
possible orientations, so there is a total of 3�2 = 6 rigid motions mapping
this triangle to itself.
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These motions have simple geometric descriptions. We have three
di�erent counterclockwise rotations of 0, 120, and 240 degrees: r0, r120,
and r240 (which preserve orientation). We also have three reections
through the lines which bisect the angles (these change orientation). We
denote these reections by a, bh, and c, where the line of reection
passes through the corresponding vertex of the triangle. We can de�ne
an operation `�' (followed by) this set of motions:

We say a motion r followed by s (denoted r � s or rs) is equal to a
motion t if �rst doing r and then s to the �gure is the same as performing
the motion t alone.

We can �ll in the Cayley table for our set of motions with this
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operation.

� r0 r120 r240 a b c
r0 r0 r120 r240 a b c

r120 r120 r240 r0 b c a
r240 r240 r0 r120 c a b
a a c b r0 r240 r120
b b a c r120 r0 r240
c c b a r240 r120 r0

This set of motions is usually called D3, the dihedral group of order
6. Observe that we have
i. a binary operation (closure) where
ii. r0 acts like the identity;
iii. every element has an inverse: r120 and r240 are inverses of each

other, while all other elements are their own inverses.
iv. � is associative. This can be veri�ed directly by using the table,

though this is quite tedious.
Therefore (D3; �) is a group. Notice that it is not commutative (abelian).
For example:

r120 � a = b but a � r120 = c:

EXAMPLE 6 (Dn; �) is the group of motions of a regular n-gon. It is the Dihedral
Group of order 2n. It contains 2n elements: n rotations and n reections
for a total of 2n elements.

More on Binary Operations

Recall that:

DEFINITION 6 A binary operation � on a set S is a function that associates to each
ordered pair (a; b) of elements of S an element of S which we denote by
a � b or simply ab.

EXAMPLE 7 From set theory both union and intersection are binary operations: let
X be a set and let S = fAj A � Xg. De�ne A � B = A [ B. Is there
an identity element for [? What if A �B = A \ B. Is there an identity
element?

The operations of addition and multiplication of real numbers are
associative and commutative. Recall that

DEFINITION 7 If � is a binary operation on S, then

a) � is associatative if (a � b) � c = a � (b � c) for all a; b; c 2 S.

b) � is commutative if a � b = b � a for all a; b 2 S.
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EXAMPLE 8 Division is not commutative on Q+ or R+. (When does a=b = b=a?)
Subtraction is not associative on Z, Q, or R. Is it commutative? Matrix
addition is both associative and commutative.

EXAMPLE 9 Let M22 be the set of all 2 � 2 matrices. Matrix multiplication is not
commutative �

1=2 0
0 1

�
�
�
2 2
1 1

�
=

�
1 1
1 1

�

and �
2 2
1 1

�
�
�
1=2 0
0 1

�
=

�
1 2
1=2 1

�
:

but it is associative.

EXAMPLE 10 Are the operations \ and [ commutative on our previous set example?

EXAMPLE 11 Which of the following are binary operations on Z? Commutative? As-
sociative?

a) m � n = 2mn:

b) m � n =
p
mn:

c) m � n = mn: Is there an identity? Inverses?

EXAMPLE 12 On R is a � b = ab a binary operation? Associative? Commutative?

1.3 The Well-Ordering Principle

One of the goals of this course is to become better at writing proofs,
continuing the process begun in Math 204, 331, and CS 221. One of the
basic tools that we will require in this course is call the Well-Ordering
Principle. You are familiar with one of its consequences, the method of
proof by mathematical induction.

The Well-Ordering Principle: Every non-empty subset of Z+ has a
smallest element.

This seems quite reasonable. We will accept this statement as an
axiom; it's not something that we will try to prove. It is an assumption
that we make about Z+. (Must there be a greatest element?)

EXAMPLE 13 What are the smallest elements of these sets?

d) E = feven positive integersg.
e) fn!j n 2 Z+g.
f) fnj n > �g.
g) fnj n is primeg.
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The Division Algorithm and Its Consequences

DEFINITION 8 Given d 6= 0. We say that d divides a (is a divisor of a) if there's an
integer q so that dq = a. (This is denoted by dja. If d does not divide a
this is indicated by d 6 ja.)

EXAMPLE 14 6j18 because 6 � 3 = 18; however 7 6 j15; notice 5j0.
THEOREM 9 (The Division Algorithm) If a and b are integers with b > 0, then

there exist unique integers q (quotient) and r (remainder) such that

a = bq + r; where 0 � r < b:

Why is this geometrically obvious? Just divide the number line into
multiples of b units.

EXAMPLE a) If a = 39; b = 5 then q = 7; r = 4.

b) If a = �16; b = 5 then a = �3 � 5� 1; but r is supposed to be non-
negative! Intstead, use a = �16 = �4 � 5 + 4, then q = �4; r = 4.

PROOF To prove that there are unique integers r and q with the required prop-
erties means that we have to show that:
i. There exists at least one integer q and at least one integer r with
the desired properties (Existence);

ii. No other integers have these properties (Uniqueness).

EXISTENCE We will assume that a > 0. A similar proof works for a < 0. Consider
the set

S = fa� bk j k is an integer and a � bk � 0g:
If 0 2 S, then b divides a. The result follows by letting q = a=b and
r = 0.

If 0 =2 S, then notice that a 2 S (since a = a� b � 0 2 S), so S 6= ;.
By Well-Ordering, there is a smallest element, say r = a� bq 2 S. Then
a = bq + r and r � 0. Next we show that r < b; we use a proof by
contradiction for that.

Assume instead that r � b, then:

0 � r� b = (a� bq)� b = a� (bq + b) = a� b(q + 1) 2 S:

So r � b 2 S and smaller than r. But r is the smallest element of S.
Contradiction. So we must have r < b.
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UNIQUENESS Suppose that we had some other pair of integers q0 and r0 which satis�ed
the required conditions. Then

a = bq + r = bq0 + r0;

where 0 � r < b and 0 � r0 < b. WMA (we may assume) r0 � r: Then

0 � r0 � r < b: (�)

But
r0 � r = a� bq0 � (a� bq) = b(q � q0):

So r0� r is a multiple of b. By equation (�), that multiple must be 0. So

q � q0 = 0) q = q0

and
r � r0 = 0) r = r0 :

EXAMPLE 16 Several states encode information into drivers' licenses. In Florida for
males: last 3 digits are 40(m� 1) + b where m is month of birth and b
is the date. If the last 3 digits were 146, then

146 = 40(3) + 26 = 40(4� 1) + 26

so the person's birth date is April 26. They do this to help prevent
forgery.

DEFINITION 10 If a and b are integers, at least one of which is nonzero, the greatest
common divisor of a and b is largest positive integer d that divides
both a and b and is denoted by gcd(a; b). When gcd(a; b) = 1, we say
that a and b are relativley prime.

EXAMPLE a) gcd(8; 12) = 4

b) gcd(3; 6) = 3

c) gcd(�3;�6) = 3

d) gcd(5; 18) = 1

e) gcd(6; 0) = 6

f) gcd(6120; 4862) =?
How do we �nd the gcd for a pair of large numbers? Well Euclid

managed to prove the following the following.

THEOREM 11 The so-called the Euclidean Algorithm will produce gcd(a; b) in a
�nite number of steps.
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PROOF Clearly gcd(a; b) = gcd(jaj; jbj). WMA the integers involved are non-
negative. In particular, WMA 0 � b � a. Then the division algorithm
implies:

a = bq1 + r1 where 0 � r1 < b:

Then dja and djb i� djb and djr1. So
gcd(a; b) = gcd(b; r1):

The good thing about this is that we have replaced the pair (a; b) by
a smaller pair (b; r1) which should be easier to solve! (Remember that
r1 < b � a.) Repeat this process using the division algorithm until the
answer becomes obvious:

gcd(a; b) = gcd(b; r1) = gcd(r1; r2) = � � � = gcd(rk�1; rk) = gcd(rk; 0):

From the last equality we have gcd(a; b) = rk.
Why must the last remainder in this proces equal 0? The sequence

of remainders ri is strictly decreasing and always nonnegative, so it can't
go on forever. It must terminate at 0.

EXAMPLE 18 Find (1155; 756).

SOLUTION

1155 = 756 � 1 + 399

756 = 399 � 1 + 357

399 = 357 � 1 + 42

357 = 42 � 8 + 21

42 = 21 � 2 + 0

So, gcd(1155; 756) = 21.

EXAMPLE 19 Find gcd(6120; 4862).

SOLUTION

6120 = 4862 � 1 + 1258

4862 = 1258 � 3 + 1088

1258 = 1088 � 1 + 170

1088 = 170 � 6 + 68

170 = 68 � 2 + 34

68 = 34 � 2 + 0

So gcd(6120; 4862) = 34.
Notice that this process can be reversed. That is, we can write the

greatest common divisor of two numbers as an integral linear combina-
tion of the two numbers.
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THEOREM 12 For any non-zero integers a and b, there are integers s and t such that
gcd(a; b) = as + bt. That is, the gcd is a linear combination of a and b.
Moreover, it is the smallest positive integer of the form as+ bt.

PROOF One way to actually do it is to work through Euclidean Algorithm back-
wards. But I want to give a general proof that uses the Well-Ordering
Principle.

Consider the set S = fam + bnjm;n 2 Z; am + bn > 0g. S is not
empty (use am+b0 < 0, with m being the same sign as a. Well-ordering
implies S has a smallest element, say, d = as + bt.

We �rst show d = gcd(a; b). From the division algoritm:

a = dq + r; 0 � r < d:

If r > 0, then

r = a� dq = a� (as+ bt)q = a(1� sq)� b(tq) < d;

that is, r is a smaller linear combination of a and b than d contradicting
our choice of d from the well-ordering principle. So we must have r = 0,
so d = aq, i.e., djq. Similarly, djb. So d is a common divisor of a and b.

To show d is the gcd, let e be any other common divisor of a and b.
Then a = em and b = en. So

d = as+ bt = ems + ent = e(ms+ nt);

that is, ejd. So d � e, i.e., d is at least as large as any other common
divisor of of a and b. So d = gcd(a; b).

COROLLARY 13 Suppose that d = gcd(a; b). If eja and ejb, then ejd. That is, any divisor
of both a and b is a divisor of gcd(a; b).

EXAMPLE 20 6 j 24 and 6 j 36. Also 6 j gcd(24; 36) = 12.

EXTRA CREDIT Write a program to express gcd(a; b) as a linear combination of a and b.
You can't use the proof above, you must work backwards through the
Euclidean algorithm.

EXAMPLE 21 2 = gcd(14; 10) = �2 � 14 + 3 � 10: Or 1 = gcd(9; 16) = �7 � 9 + 4 � 16.
EXAMPLE 22 We saw that 21 = gcd(1155; 756). Find integers s and t so that 14 =

1155s+ 756t.

SOLUTION Simply work backwards through the chain of equalities in the Euclidean
algorithm.

21 = 357� 8 � 42 now eliminate 42

= 357� 8(399� 357) = �8 � 399 + 9 � 357 now eliminate 357

= �8 � 399 + 9(756� 399) = 9 � 756� 17 � 399 now eliminate 399

= 9 � 756� 17(1155� 756)

= �17 � 1155 + 26 � 756:
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DEFINITION 14 If gcd(a; b) = 1, then a and b are relatively prime.

When integers are relatively prime, we obtain a nice factorization
result.

THEOREM 15 (Euclid's Lemma) If r, a, and b are integers such that r divides ab and
gcd(r; a) = 1, then r divides b.

PROOF Since gcd(r; a) = 1, there are integers s and t so that

rs + at = 1:

Multiply both sides by b:

rsb+ atb = b:

Now r j rsb and r j atb since r j ab, so r j rsb+ atb = b.

EXAMPLE 23 Let r = 7, a = 9 and b = 35. Then 7 j 315 = 9 � 35 and gcd(7; 9) = 1.
Notice that 7 j 35.

Euclid's Lemma is most often used in the following form.

COROLLARY 16 If p is a prime and pjab, then pja or pjb.

If p 6 ja, then gcd(p; a) = 1 since p is prime. By Euclid's Lemma, pjb.
EXAMPLE 24 Let p = 11 and ab = 220 = 5 � 44. Then 11 6 j5, but 11 j 44.
EXAMPLE 25 The prime hypothesis cannot be dropped: 8j24 = 2 � 12, but 8 6 j2 and

8 6 j12.
An allied notion to gcd(a; b) is lcm(a; b). Recall that:

DEFINITION 17 A non-zero integer r is a common multiple of two non-zero integers a and
b if both r j a and r j b. The least common multiple of two non-zero
integers a and b is the smallest positive integer that is a mulitple of both
a and b.

EXAMPLE 26 lcm(8; 12) = 124. Note that it is easy to compute lcm(m;n). Let
d = gcd(m;n). Then m = pd and n = qd so lcm(m;n) = pqd. Here
gcd(8; 12) = 4 and 8 = 4 � 2 and 12 = 4 � 3 so lcm(8; 12) = 4 � 2 � 3 = 24.

EXTRA CREDIT Show that ab = gcd(a; b)�lcm(a; b). Hint: Use the Fundamental Theorem
of Arithmetic: the unique factorization of integers into primes.
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1.4 Induction

One the most important consequences of the Well-Ordering Principle is
the Principle of Mathematical Induction. You should be familiar with
the following form.

THEOREM 18 Induction (First Form). Let S be a set of positive integers containing
1. Suppose that S has the property that whenever n � 1 belongs to S,
then so does n + 1. Then S also contains all positive integers greater
than 1.

Note: 1 may be replaced wih any integer a.

PROOF By contradiction. Assume that S does not contain all positive integers.
Let S0 be the set of all positivie integers not in S. Then S0 6= ; so the
Well-Ordering Principle implies that S0 has a smallest element k. Now
k 6= 1 because 1 2 S. So k > 1 which means that k � 1 is a positive
integer. But (k�1) 2 S because because k is the smallest positive integer
no in S is false. But then by hypothesis (k� 1) + 1 2 S. Contradiction.

EXAMPLE 27 Assume you know the product rule for derivatives but not the power
rule. Show that for all n 2 Z+:

d

dx
(xn) = nxn�1 :

PROOF Let S be the set of all positive integers for which the statement is true.
Induct: (i) 1 2 S because: d

dx
(x) = 1 = 1x0.

(ii) Assume n 2 S Show n+1 2 S. That is, assume d

dx
(xn) = nxn�1

Show that d

dx
(xn+1) = (n+ 1)xn. But

d

dx
(xn+1) =

d

dx
(x � xn) = d

dx
(x) � xn + x � d

dx
(xn) product rule

1 � xn + x � nxn�1 since 1; n 2 S

= xn + nxn

= (n+ 1)xn: So (n + 1) 2 S.

EXAMPLE 28 Use induction to prove that 2n < n! for every positive integer n � 4.

PROOF Basis Step: First show that the inequality is true when n = 4. But

24 = 16 < 24 = 4!;
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so the basis step holds.
Inductive Step: Assume that the statement is true for n and show

that it is true for n+1. That is, given 2n < n!, show that 2n+1 < (n+1)!
(where n � 4). But

2n+1 = 2 � 2n < (n+ 1)2n since n � 4

< (n+ 1)n! inductive step hypothesis

= (n+ 1)!

EXAMPLE 29 Suppose that Tn is a set with n elements. Show that Tn has 2n subsets
(including the empty set).

Induct on n. Notice this time that we can start with n = 0, where
T0 = ;. Basis Step: Show n = 0 satis�es the formula, i.e., show that the
empty set has 20 = 1 subset. But the only subset of T0 is ;.

Inductive Step: Show that n 2 S ) n+1 2 S. That is, if Tn has 2n

subsets, show that Tn+1 has 2n+1 subsets. Let Tn = fa1; a2; : : : ; ang and
Tn+1 = fa1; a2; : : : ; an; an+1g. What do the subsets of Tn+1 look like
and how do they compare to the subset of Tn? Well, there are two types
of subsets of Tn+1: those that contain an+1 and those that do not. The
�rst group is just the collection of subsets of Tn and so it numbers 2n by
indcution. Notice that if we take a subset from the second group|one
that contains an+1|and simply remove an+1 from this set, then we have
another subset of Tn. So there must be 2n of the second type of subsets
as well. Therefore, the number of subsets of Tn+1 is: 2

n +2n = 2n+1.

THEOREM 19 Induction (Second Form). Let S be a set of (positive) integers con-
taining a. Suppose that S has the property that n + 1 belongs to S,
whenever all the integers from a to n belong to S. Then S contains all
positive integers greater than or equal to a.

EXTRA CREDIT Provide a proof (similar to the �rst version of induction).
This version of induction is useful as the following example from

Math 331 illustrates.

THEOREM 20 Fundamental Theorem of Arithmetic (First Part) Let a > 1. Then
there are primes p1; : : : ; pr such that

a = p1p2 � � �pr:

`Every positive integer can be factored (uniquely) into primes.'

EXAMPLE 30 84 = 2 � 2 � 3 � 7.
PROOF Basis Step. Start with a = 2. 2 is prime so 2 = 2 gives the prime

factorization.
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Inductive Step: Assume the integers 2 to n are in S. Show n+1 2 S.
There are two cases: Case 1) n+ 1 is prime, then a = n + 1 = p1 is the
factorization.

Case 2) If n + 1 is not prime, then n + 1 = ab where a and b are
positive integers and a and b are greater than 1 and less than n + 1.
That is 2 � a; b and a; b � m. Then by the induction hypothesis there
are prime factorizations:

a = p1p2 � � �pr

and similarly
b = q1q2 � � �qs

So
n + 1 = ab = p1p2 � � �prq1q2 � � �qs

which gives the factorization.

We need this version of induction: we can't say that a = n or b = n,
only that a � n and b � n.


