1. Let β be the product of the following elements of S_{6} :

$$
\beta=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 5 & 6 & 4 & 3 & 2
\end{array}\right)\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 1 & 5 & 4 & 6
\end{array}\right) .
$$

a) What is $|\beta|$?
b) What is β^{-1} ?
c) Is $\beta \in A_{6}$? Explain, please.
2. a) Give an example of non-abelian cyclic group and its generator, or explain why no such example exists.
b) Assume $G=\langle a\rangle$, where $|a|=18$. What are all the other generators of G ?
c) Find $|200|$ in \mathbf{Z}_{216}.
3. a) Let $\phi: G_{1} \rightarrow G_{2}$ be a group homomorphism. The kernel of ϕ is the set

$$
K_{1}=\left\{a_{1} \in G_{1} \mid \phi\left(a_{1}\right)=e_{2}\right\} .
$$

(In words, K_{1} is the stuff in G_{1} that gets mapped to the identity in G_{2}.) Carefully prove that K_{1} a subgroup of G_{1}.
b) Let $\phi: G_{1} \rightarrow G_{2}$ be a group homomorphism. Let H_{2} be a subgroup of G_{2}. Define

$$
H_{1}=\left\{a_{1} \in G_{1} \mid \phi\left(a_{1}\right)=a_{2} \in H_{2}\right\}
$$

(In words, H_{1} is the stuff in G_{1} that gets mapped to the subgroup H_{2} in G_{2}.) Carefully prove that H_{1} a subgroup of G_{1}.
c) Can you use (b) to give a one sentence proof of (a)?
4. Briefly justify your answers to any $\mathbf{3}$ of the following.
a) Let $\alpha \in S_{n}$. Is $\alpha^{2} \in A_{n}$?
b) Are \mathbf{Z} and \mathbf{R}^{*} isomorphic groups? Make sure to explain your answer.
c) Give an example of finite groups G and H such that $|G|=|H|$ but G is not isomorphic to H or explain why no example exists.
d) Find an element $\beta \in S_{5}$ such that $\beta(23)(45)=(34) \beta$, or explain why no such element exists.
5. a) Suppose that $\phi: D_{4} \rightarrow \mathbf{Z}_{8}$ is a group homomorphism. What is $\phi\left(r_{0}\right)$? Explain how you know this.
b) Suppose, again, that $\phi: D_{4} \rightarrow \mathbf{Z}_{8}$ is a group homomorphism. Let v be the vertical flip. If $\phi(v)=k$, what are the possible choices for k in \mathbf{Z}_{8} ? Again, explain your answer.
c) Can a homomorphism $\phi: D_{4} \rightarrow \mathbf{Z}_{8}$ be an isomorphism? Explain.
d) Can a homomorphism $\phi: D_{4} \rightarrow \mathbf{Z}_{8}$ be onto? Explain.
6. Is the mapping $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$by $\phi(a)=\sqrt{a}$ injective? Surjective? A group homomorphism? An isomorphism? Show all details. (Caution: The operation is multiplication.)
7. Let $\phi: \mathbf{Z}_{6} \rightarrow \mathbf{Z}_{3}$ be the homomorphism determined by $\phi\left(5_{6}\right)=2_{3}$. Make a list of the elements of \mathbf{Z}_{6} and determine what each is mapped to under ϕ. Is ϕ injective? Surjective? An isomorphism?
8. (Extra Credit) Prove Colin's Theorem: If $H<S_{n}$ and $|H|$ is odd, then H contains only even elements. Hint: Think about the homework problem with odd and even elements in subgroups of S_{n}.

1. Let β be the product of the following elements of S_{6} :

$$
\beta=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 5 & 6 & 4 & 3 & 2
\end{array}\right)\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 1 & 5 & 4 & 6
\end{array}\right) .
$$

a) What is $|\beta|$?

$$
\beta=(1543)(26), \text { so }|\beta|=\operatorname{lcm}(4,2)=4 .
$$

b) What is β^{-1} ?

$$
\beta^{-1}=(62)(3451)
$$

c) Is $\beta \in A_{6}$? Explain, please.

$$
\beta=(13)(14)(15)(26) \text { is the product of an even number of transpositions, so } \beta \in A_{n} \text {. }
$$

2. a) Give an example of non-abelian cyclic group and its generator, or explain why no such example exists.

Impossible. Cyclic groups are always abelian.
b) Assume $G=\langle a\rangle$, where $|a|=18$. What are all the other generators of G ?

By Sam's Theorem, we need elements whose powers are relatively prime to 18 ; so the generators are: $a^{5}, a^{7}, a^{11}, a^{13}, a^{17}$.
c) Find $|200|$ in \mathbf{Z}_{216}.

Find the gcd: $216=1 \cdot 200+16 \Rightarrow 200=12 \cdot 16+8 \Rightarrow 16=2 \cdot 8+0$. So $\operatorname{gcd}(216,200)=8$.
Therefore $|200|=\frac{216}{\operatorname{gcd}(216,200)}=\frac{216}{8}=27$.
3. a) Let $\phi: G_{1} \rightarrow G_{2}$ be a group homomorphism. The kernel of ϕ is the set $K_{1}=\left\{a_{1} \in G_{1} \mid \phi\left(a_{1}\right)=\right.$ $\left.e_{2}\right\}$. Carefully prove that K_{1} a subgroup of G_{1}.

Use the two-step method. Closure. Let $a, b \in K_{1}$. Show that $a b \in K$. But $a, b \in K_{1}$ means that $\phi(a)=\phi(b)=e_{2}$. But then $\phi(a b)=\phi(a) \phi(b)=e_{2} e_{2}=e_{2}$. Therefore, $a b \in K_{1}$. Inverses: Let $a \in K$. Show $a^{-1} \in K_{1}$. But $a \in K_{1}$ so $\phi(a)=e_{1}$. Therefore, $\phi\left(a^{-1}\right)=[\phi(a)]^{-1}=e_{2}^{-1}=e_{2}$. Yes, it is a subgroup.
b) Let $\phi: G_{1} \rightarrow G_{2}$ be a group homomorphism. Let H_{2} be a subgroup of G_{2}. Define $H_{1}=\left\{a_{1} \in G_{1} \mid\right.$ $\left.\phi\left(a_{1}\right)=a_{2} \in H_{2}\right\}$. Carefully prove that H_{1} a subgroup of G_{1}.

Use the two-step method. Closure. Let $a_{1}, b_{1} \in H_{1}$. Show that $a_{1} b_{1} \in H$. But $a_{1}, b_{1} \in$ H_{1} means that $\phi(a)=a_{2} \in H_{2}$ and $\phi\left(b_{1}\right)=b_{2} \in H_{2}$. But then $\phi\left(a_{1} b_{1}\right)=\phi\left(a_{1}\right) \phi\left(b_{1}\right)=$ $a_{2} b_{2} \in H_{2}$, since H_{2} is closed. Therefore, $a_{1} b_{1} \in H_{1}$. Inverses: Let $a_{1} \in H_{1}$. Show $a_{1}^{-1} \in H_{1}$. But $a_{1} \in H_{1}$ so $\phi\left(a_{1}\right)=a_{2} \in H_{2}$. Therefore, $\phi\left(a_{1}^{-1}\right)=\left[\phi\left(a_{1}\right)\right]^{-1}=a_{2}^{-1} \in H_{2}$ because H_{2} is a subgroup. So $a_{1}^{-1} \in H_{1}$. Yes, it is a subgroup.
c) Can you use (b) to give a one sentence proof of (a)?

Yes, $\left\{e_{2}\right\}<G_{2}$, so $K_{1}=\left\{a_{1} \in G_{1} \mid \phi\left(a_{1}\right)=e_{2}\right\}$ is a subgroup of G_{1} by (b).
4. Briefly justify your answers to any $\mathbf{3}$ of the following.
a) Let $\alpha \in S_{n}$. Is $\alpha^{2} \in A_{n}$?

Yes. If α is the product of k two-cycles, then $\alpha^{2}=\alpha \alpha$ is the product of $2 k$ two-cycles.
b) Are \mathbf{Z} and \mathbf{R}^{*} isomorphic groups? Make sure to explain your answer.

No. \mathbf{R}^{*} has an element of order $2($ viz., -1$)$ but the only element of finite order in \mathbf{Z} is the identity which has order 1.
c) Give an example of finite groups G and H such that $|G|=|H|$ but G is not isomorphic to H or explain why no example exists.

There are many such. See the next problem to which shows that Z_{8} and D_{4} are not isomorphic. One is abelian and cyclic. The other is neither.
d) Find an element $\beta \in S_{5}$ such that $\beta(23)(45)=(34) \beta$, or explain why no such element exists.

Impossible. If β is even, then the left side is even and the right is odd. Similarly, if β is odd, then the left side is odd and the right is even.
5. a) Suppose that $\phi: D_{4} \rightarrow \mathbf{Z}_{8}$ is a group homomorphism. What is $\phi\left(r_{0}\right)$? Explain how you know this. $\phi\left(r_{0}\right)=0$ since the identity is mapped to the identity under any homomorphism.
b) Suppose, again, that $\phi: D_{4} \rightarrow \mathbf{Z}_{8}$ is a group homomorphism. Let v be the vertical flip. If $\phi(v)=k$, what are the possible choices for k in \mathbf{Z}_{8} ? Again, explain your answer.

From the basic properties of a homomorphism, we must have $|\phi(v)|||v|$. But $| v \mid=2$, So the only elements of \mathbf{Z}_{8} that have orders which divide 2 are 0 and 4 which have orders 1 and 2 , respectively.
c) Can a homomorphism $\phi: D_{4} \rightarrow \mathbf{Z}_{8}$ be an isomorphism? Explain.

No. D_{4} is not abelian or cyclic, but Z_{8} is.
d) Can a homomorphism $\phi: D_{4} \rightarrow \mathbf{Z}_{8}$ be onto? Explain.

No. Since both groups have 8 elements, if ϕ were onto, it would also be injective. Since we are told that ϕ is a homomorphism, this would make an isomorphism. But that's impossible.
6. Is the mapping $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$by $\phi(a)=\sqrt{a}$ injective? Surjective? A group homomorphism? Show all details. (Caution: The operation is multiplication.)

Injective. Notice that $\phi(a)=\phi(b) \Longleftrightarrow \sqrt{a}=\sqrt{b} \Longleftrightarrow a=b$. Surjective: Let $c \in \mathbf{R}^{+}$ (codomain). Find $a \in \mathbf{R}^{+}$(domain) so that $\phi(a)=c$. But $\phi(a)=c \Longleftrightarrow \sqrt{(a)}=c \Longleftrightarrow$ $a=c^{2}$. Notice that $c^{2} \in \mathbf{R}^{+}$, so ϕ is surjective. Homomorphism: Let $a, b \in R^{+}$. Show $\phi(a b)=\phi(a) \phi(b)$. But $\phi(a b)=\sqrt{a b}=\sqrt{a} \sqrt{b}=\phi(a) \phi(b)$. Isomorphism: Yes, because we have shown that ϕ is injective, surjective, and a homomorphism.
7. Let $\phi: \mathbf{Z}_{6} \rightarrow \mathbf{Z}_{3}$ be the homomorphism determined by $\phi\left(5_{6}\right)=2_{3}$. Make a list of the elements of \mathbf{Z}_{6} and determine what each is mapped to under ϕ. Is ϕ injective? Surjective? An isomorphism?

Use the fact that ϕ is a homomorphism and that 1_{6} is the inverse of 5_{6} so $\phi\left(1_{6}\right)=$ $\phi\left(-5_{6}\right)=-\phi\left(5_{6}\right)=-2_{3}=1_{3}$. Then $\phi\left(2_{6}\right)=\phi\left(2 \cdot 1_{6}\right) \rightarrow 2 \cdot 1_{3}=2_{3}, \phi\left(3_{6}\right)=\phi\left(3 \cdot 1_{6}\right) \rightarrow$ $3 \cdot 1_{3}=0_{3}, \phi\left(4_{6}\right)=\phi\left(4 \cdot 1_{6}\right) \rightarrow 4 \cdot 1_{3}=1_{3}$, and of course $\phi\left(0_{6}\right) \rightarrow 0_{3}$.
8. (Extra Credit) Prove Colin's Theorem: If $H<S_{n}$ and $|H|$ is odd, then H contains only even elements. Hint: Think about the homework problem with odd and even elements in subgroups of S_{n}.

You proved for homework that: If H is any subgroup of S_{n}, then either every element of H is even or that exactly half the members of H are even. But in this case the second option is not possible since H has an odd number of elements (half can't be odd and half even). So H must contain only even permutations.

