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1.1 Equivalence Relations

Definition and Examples

One of the themes of this course is to generalize the basic notions you
have used in earlier mathematics courses. In this regard, things that
are different in one context are often seen as the same in another set-
ting. Today we will generalize the notion of ‘equality’ that is obviously
so important in elementary mathematics. We will come to understand
equality in a much broader sense than we have previously. Fortunately
you are already familiar with a few such instances of this generaliza-
tion. Congruence of geometric figures is the classic example. To say
that AABC =2 ADEF does not mean that the two triangles are the
same, but rather that the angles and sides of the two different triangles
are of equal measures. The most important aspects of such relationships
is that they are reflexive, symmetric, and transitive. This allows for indi-
rect comparisons which makes the relationship easier to understand and
manipulate.

Let S be a set. R (or ~) is an equivalence relation on S if R satisfies
the following three condidtions:

i) for every s € S, sRs (s is related to itself; reflexive);
ii) for every s,t € S, if sRt then tRs (symmetric);
iii) for every s,t,u € S, if sRt and tRu then sRu (transitive).

A note on notation: often one writes (s,¢) instead of sRt. In this
way one sees that an equivalence relation is really a subset of the ordered
pairs of elements of S.

Another form of notation is used for the more common equivalence
relations: usually it involves some type of suggestive symbol such as:

=, &, =,0r ~.
Let R be the relationship of equality on the real numbers.

Let S be the set of all triangles in the plane. If s;t € S define skt to
mean that s is similar to ¢, that is, corresponding anlges have the same
measure. Usually this is denoted by s ~ ¢. From high school geomentry
you know that ~ satisfies the three conditions of an equivalence relation.

Let D be the set of all differentiable functions of a single real variable.
If f,g € D define f ~gif f' =g'. Then ~ is an equivalence relation on
D. In fact, we know that f ~ g < f = g+ ¢ for some constant c.
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Let n be a positive integer. On the set Z, define j =k (mod n) to mean
n|(j — k). Then we can easily check that = is an equivalence relation.
Only transitivity is hard. If j = k and k = m then n|(j—k) and n|(k—m)
so n|((j — k) + (k—m)). That is n|(j — m) so j = m.

Let @) be the following set of ordered pairs of integers

Q ={(m,n)| m,n €Z, n+#0}.

If (m,n) and (4, k) are in @ define (m,n) = (4, k) if mk = jn. One easily
checks that =~ is an equivalence relation on ). In fact the pairs (m,n)
and (j, k) are equivalent if and only if the fractions m/n and j/k are
equal.

Practice: On Z, let aRb <= ab < 0. Determine whether R is an
equivalence relation.

Perhaps the most important property of an equivalence relation is
that it breaks the set .S up into disjoint subsets. This is seen quite easily
in the examples above.

For any s € S, let [s] denote the subset of S consistingt of all t € S such
that tRs. That is,
[s] = {t € S| tRs}.

We call [s] the equivalence class of s under the relation R.

If R is the equivalence relation = (mod 5) on Z, then
1] ={...,~9,-4,1,6,11,16,...} = {1+ 5n| n € Z}.

That is, [1] is the set of elements divisible by 5 with a remainder of 1.
Notice that two equivalence classes here are either disjoint or exactly the
same set. For exapmle [1] = [21], but [2] N [3] = 0.

If R is the equivalence relation = on () defined earlier, then
[(1,2)) = {(k-1,k-2)| k € Z, k #0}.

Because of the connection we made earlier to fractions, [(1,2)] corre-
sponds to all the ways of writing the fraction % It is clear that two
equivalence classes are either equal as sets or else disjoint (i.e., are with-
out any intersection). That’s why you ‘reduce fractions’ and put them
into proper form so that you can select a single representative of an

equivalence class in some standard way.
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If R is the equivalence relation ~ on D, then

[fl={9€Dlg=f+c}.

Again notice that equivalence classes are either disjoint or equal, there
is no ‘partial’ overlap.

A partition of a set S is a collection of nonempty disjoint subsets of S
whose union is all of S.

If R is the equivalence relation =  (mod 5) on Z, then [0], [1],[2],[3], [4]
form a partition of Z. This situation is the norm for any equivalence
relation.

Let R be an equivalence relation on S. Then the equivalence classes of R
form a partition of S. That is, every element is in exactly one equivalence
class. And conversely.

Let R be the equivalence relation. Since sRs for any s € S it follows that
s € [s]. That is, no class is empty. Second, the union of all equivalence
classes is clearly all of S since every element s of S lies in some equivalence
class.

Finally we must show that any two classes are either disjoint or
exactly the same. So suppose that two classes [s] and [t] are not disjoint,
that is, that there is at least one element @ in both [s] and [¢t]. We must
show that [s] = [t]. (To do this we must show [s] C [¢t] and [t] C [s].) To
show [s] C [t], let b € [s]. Then: bRs. But a € [s], so sRa and thus bRa.
But a € [t] so aRt and therefore bRt. That is, b € [t]. So [s] C [¢] and
similarly [¢] C [s].

The proof of the converse is an exercise. We’ll never use it. i

Another way to say the same thing is :
[s] =[t] <= [s]N[t] #0.

Notice that it is actually the equivalence classes mod n that we made
into a group.

Hand In Homework for Monday

Verify that the relation in Example 4 is, in fact, an equivalence relation.

Determine whether that the relation in Example 5 is, in fact, an equiv-
alence relation.



