
1.1 Equivalence Relations

De�nition and Examples

One of the themes of this course is to generalize the basic notions you
have used in earlier mathematics courses. In this regard, things that
are di�erent in one context are often seen as the same in another set-
ting. Today we will generalize the notion of `equality' that is obviously
so important in elementary mathematics. We will come to understand
equality in a much broader sense than we have previously. Fortunately
you are already familiar with a few such instances of this generaliza-
tion. Congruence of geometric �gures is the classic example. To say
that �ABC �= �DEF does not mean that the two triangles are the
same, but rather that the angles and sides of the two di�erent triangles
are of equal measures. The most important aspects of such relationships
is that they are re
exive, symmetric, and transitive. This allows for indi-
rect comparisons which makes the relationship easier to understand and
manipulate.

DEFINITION 0 Let S be a set. R (or �) is an equivalence relation on S if R satis�es
the following three condidtions:

i) for every s 2 S; sRs (s is related to itself; re
exive);

ii) for every s; t 2 S, if sRt then tRs (symmetric);

iii) for every s; t; u 2 S, if sRt and tRu then sRu (transitive).

A note on notation: often one writes (s; t) instead of sRt. In this
way one sees that an equivalence relation is really a subset of the ordered
pairs of elements of S.

Another form of notation is used for the more common equivalence
relations: usually it involves some type of suggestive symbol such as:
=; �=; �; or �.

EXAMPLE 0 Let R be the relationship of equality on the real numbers.

EXAMPLE 1 Let S be the set of all triangles in the plane. If s; t 2 S de�ne sRt to
mean that s is similar to t, that is, corresponding anlges have the same
measure. Usually this is denoted by s � t. From high school geomentry
you know that � satis�es the three conditions of an equivalence relation.

EXAMPLE 2 Let D be the set of all di�erentiable functions of a single real variable.
If f; g 2 D de�ne f � g if f 0 = g0. Then � is an equivalence relation on
D. In fact, we know that f � g () f = g + c for some constant c.
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EXAMPLE 3 Let n be a positive integer. On the set Z, de�ne j � k (mod n) to mean
nj(j � k). Then we can easily check that � is an equivalence relation.
Only transitivity is hard. If j � k and k � m then nj(j�k) and nj(k�m)
so nj((j � k) + (k �m)). That is nj(j �m) so j � m.

EXAMPLE 4 Let Q be the following set of ordered pairs of integers

Q = f(m;n)j m;n 2 Z; n 6= 0g:

If (m;n) and (j; k) are in Q de�ne (m;n) � (j; k) if mk = jn. One easily
checks that � is an equivalence relation on Q. In fact the pairs (m;n)
and (j; k) are equivalent if and only if the fractions m=n and j=k are
equal.

EXAMPLE 5 Practice: On Z, let aRb () ab � 0. Determine whether R is an
equivalence relation.

Perhaps the most important property of an equivalence relation is
that it breaks the set S up into disjoint subsets. This is seen quite easily
in the examples above.

DEFINITION 1 For any s 2 S, let [s] denote the subset of S consistingt of all t 2 S such
that tRs. That is,

[s] = ft 2 Sj tRsg:

We call [s] the equivalence class of s under the relation R.

EXAMPLE 6 If R is the equivalence relation � (mod 5) on Z, then

[1] = f: : : ;�9;�4; 1; 6; 11; 16; : : :g = f1 + 5nj n 2 Zg:

That is, [1] is the set of elements divisible by 5 with a remainder of 1.
Notice that two equivalence classes here are either disjoint or exactly the
same set. For exapmle [1] = [21], but [2] \ [3] = ;.

EXAMPLE 7 If R is the equivalence relation � on Q de�ned earlier, then

[(1; 2)] = f(k � 1; k � 2)j k 2 Z; k 6= 0g:

Because of the connection we made earlier to fractions, [(1; 2)] corre-
sponds to all the ways of writing the fraction 1

2
. It is clear that two

equivalence classes are either equal as sets or else disjoint (i.e., are with-
out any intersection). That's why you `reduce fractions' and put them
into proper form so that you can select a single representative of an
equivalence class in some standard way.



1.1 Equivalence Relations 3

EXAMPLE 8 If R is the equivalence relation � on D, then

[f ] = fg 2 Dj g = f + cg:

Again notice that equivalence classes are either disjoint or equal, there
is no `partial' overlap.

DEFINITION 2 A partition of a set S is a collection of nonempty disjoint subsets of S
whose union is all of S.

EXAMPLE 9 If R is the equivalence relation � (mod 5) on Z, then [0]; [1]; [2]; [3]; [4]
form a partition of Z. This situation is the norm for any equivalence
relation.

THEOREM 3 Let R be an equivalence relation on S. Then the equivalence classes of R
form a partition of S. That is, every element is in exactly one equivalence
class. And conversely.

PROOF Let R be the equivalence relation. Since sRs for any s 2 S, it follows that
s 2 [s]. That is, no class is empty. Second, the union of all equivalence
classes is clearly all of S since every element s of S lies in some equivalence
class.

Finally we must show that any two classes are either disjoint or
exactly the same. So suppose that two classes [s] and [t] are not disjoint,
that is, that there is at least one element a in both [s] and [t]. We must
show that [s] = [t]. (To do this we must show [s] � [t] and [t] � [s].) To
show [s] � [t], let b 2 [s]. Then: bRs. But a 2 [s], so sRa and thus bRa.
But a 2 [t] so aRt and therefore bRt. That is, b 2 [t]. So [s] � [t] and
similarly [t] � [s].

The proof of the converse is an exercise. We'll never use it.

Another way to say the same thing is :

[s] = [t] () [s] \ [t] 6= ;:

Notice that it is actually the equivalence classes mod n that we made
into a group.

Hand In Homework for Monday

0. Verify that the relation in Example 4 is, in fact, an equivalence relation.

1. Determine whether that the relation in Example 5 is, in fact, an equiv-
alence relation.


