MATH 375.26 Class 26: Selected Answers

- **1. a)** $[Z_{120} \oplus S_5 :< 15, (1235) >] = \frac{120 \cdot 120}{8 \cdot 4} = 450.$
 - **b)** $[S_6 \oplus Q_8 :< ((134)(25), K) >] = \frac{6! \cdot 8}{6 \cdot 4} = 240.$
 - c) $[\mathbf{R}^* \oplus D_4 :< (-1, r_{90}) >] = \infty$ because the subgroup is finite while the group is infinite. Therefore it would take an infinite number of cosets to partition the group.
- **2.** a) Let $H = < (1,2) > \text{in } \mathbf{Z}_4 \oplus U(5)$.
 - b) Are (3, 2) and (4, 1) in the same left coset of H? Solution: $H = \langle (1, 2) \rangle = \{(0, 1), (1, 2), (2, 4), (3, 3)\}$. (3, 2) and (4, 1) in the same left coset of H if
 - and only if $(0,2)^{-1}(4,1) = (1,3)(4,1) = (0,3) \in H$. But this is not the case. No.
 - c) Is H normal in $\mathbb{Z}_4 \oplus U(5)$. Solution: Yes, $\mathbb{Z}_4 \oplus U(5)$ is abelian.
- **3.** a) Suppose that |G| = 49. Show that every proper subgroup of G is cyclic. Solution: By Lagrange, the only proper subgroups of G have order 1 and 7. Since 7 is prime, any subgroup of order 7 is cyclic. And, of course, if the subgroup has order 1, then it is $\{e\} = \langle e \rangle$.
- 4. Consider the following group table with 8 elements

*	e	a	b	c	d	x	f	g
e	e	a	b	c	d	x	f	g
a	a	b	c	e	x	f	g	d
b	b	с	e	a	f	g	d	x
с	с	e	a	b	g	d	x	f
d	d	g	f	x	e	с	b	a
x	x	d	g	f	a	e	c	b
f	f	x	d	g	b	a	e	c
g	g	f	x	d	с	b	a	e

- a) Use the table to find C(G) (the center). Solution: $C(G) = \{e, b\}$.
- **b**) Show that $H = \langle b \rangle$ is normal in G. Solution: $\langle b \rangle = \mathbf{C}(G)$.
- 5. Let $x \in G$. Prove: If for each $g \in G$ there is some integer n_g so that $gxg^{-1} = x^{n_g}$, then $\langle x \rangle \triangleleft G$. Solution: Let $x^k \in \langle x \rangle$. Then using the given condition

$$gx^{k}g^{-1} = gxg^{-1} \cdot gxg^{-1} \cdots gxg^{-1} = (gxg^{-1})^{k} = (x^{n_{g}})^{k} = x^{kn_{g}} \in \langle x \rangle.$$

This means that $gxg^{-1} \in \langle x \rangle$. By condition (iii) for normality, this means that $\langle x \rangle \triangleleft G$.

- 6. Use the FTFAG to determine which product of cylic groups is isomorphic to
 - a) $U(150) \cong \mathbf{Z}_{20} \oplus \mathbf{Z}_2 \cong \mathbf{Z}_5 \oplus \mathbf{Z}_4 \oplus \mathbf{Z}_2$.
 - **b**) $U(320) \cong \mathbf{Z}_{16} \oplus \mathbf{Z}_4 \oplus \mathbf{Z}_2$
 - c) a group G of order 48 with 1 element of order 1, 7 elements of order 2, 2 elements of order 3, 8 elements of order 4, 14 14 elements of order 6, and 16 elements of order 12. Solution: $\mathbf{Z}_{12} \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$
 - d) Here's a useful fact: Suppose that

$$G = \mathbf{Z}_{n_1} \oplus \mathbf{Z}_{n_2} \oplus \cdots \oplus \mathbf{Z}_{n_k} \oplus \mathbf{Z}_{m_1} \oplus \mathbf{Z}_{m_2} \oplus \cdots \oplus \mathbf{Z}_{m_j},$$

where all the *n*'s are even and all the *m*'s are odd. Prove that G has $2^k - 1$ elements of order 2.

Solution: None of the Z_m have elements of order 2, so in manufacturing an element of order 2 for G we will have to use the identity element from each of these. Next, each Z_{n_i} has 1 element of order 2. Then, we have two choices in the first k slots (either the identity or the element of order 2) and 1 choice in the last j slots for a total of 2^k choices. But this counts the identity element which has order 1. Tossing that out, we get $2^k - 1$ elements of order 2.

- 7. a) Find an element of order 4 in $\mathbf{Z}_{10} \oplus \mathbf{Z}_{14}$ or explain why none exists. Solution: None exists. \mathbf{Z}_{10} has elements of order 1, 2, 5, and 10 while \mathbf{Z}_{14} has elements of 1, 2, 7, and 14. There is no combination of these orders that has an lcm of 4.
 - b) Find a subgroup of order 4 in $\mathbf{Z}_{10} \oplus \mathbf{Z}_{14}$ or explain why none exist is. Solution: Use $< 5 > \oplus < 7 >$.
- 8. The Cayley Table for the dihedral group D_3 is given below.

	r_0	r_{120}	r_{240}	a	b	c
r_0	r_0	r_{120}	r_{240}	a	b	c
r_{120}	r_{120}	r_{240}	r_0	c	a	b
r_{240}	r_{240}	r_0	r_{120}	b	c	a
a	a	b	c	r_0	r_{120}	r_{240}
b	b	c	a	r_{240}	r_0	r_{120}
с	с	a	b	r_{120}	r_{240}	r_0

- a) Write out the left and right cosets of $H = \langle a \rangle$. Solution: The left cosets are: $H = \{r_0, a\} = aH = r_0H, r_{120}H = \{r_{120}, c\} = cH$, and $r_{240}H = \{r_{240}, b\} = bH$. The right cosets are: $H = \{r_0, a\} = Ha = Hr_0, Hr_{120} = \{r_{120}, b\} = Hb$, and $Hr_{240} = \{r_{240}, c\} = Hc$.
- **b**) Determine whether H is normal in G. Solution: It is not since $bH \neq Hb$, for example.
- c) Find elements x and y, z and w in D_3 so that all of the following conditions hold simultaneously (or explain why this is impossible):
 - i. Hx = Hy;ii. Hz = Hw;iii. $Hxz \neq Hyw.$
 - Solution: $Hr_{120} = Hb$ and $Hr_{240} = Hc$. But $Hr_{120}r_{240} = H$ while $Hbc = Hr_{120}$.
- **9.** Give an example of a group G and a subgroup H of G such that [G : H] = 3 and $H \triangleleft G$, or explain why no such example exists. Solution: There are lots. Use $[\mathbf{Z} : 3\mathbf{Z}] = 3$ or $[\mathbf{Z}_{3n} :< n >] = 3$ for any positive integer n.
- 10. On the first exam I asked you to show that: If H and K are subgroups of G, then H ∩ K is subgroup of G. Now prove that if H and K are both normal subgroups of G, then H ∩ K is normal in G. Solution: Let x ∈ H ∩ K. Then x ∈ H which is normal in G, so for any g ∈ G, gxg⁻¹ ∈ H. Similarly, gxg⁻¹ ∈ K. So gxg⁻¹ ∈ H ∩ K. By condition (iii), H ∩ K is normal in G.
- 11. As usual, let $SL(\mathbf{R}, n)$ denote the $n \times n$ matrices whose determinants are 1. Determine whether $SL(\mathbf{R}, n)$ is normal in $GL(\mathbf{R}, n)$. Solution: See class notes from Wednesday, 3 November 1999.