Class 26: Selected Answers

1. a) $\left.\left[Z_{120} \oplus S_{5}:<15,(1235)\right\rangle\right]=\frac{120 \cdot 120}{8 \cdot 4}=450$.
b) $\left[S_{6} \oplus Q_{8}:<((134)(25), K)>\right]=\frac{6!\cdot 8}{6 \cdot 4}=240$.
c) $\left[\mathbf{R}^{*} \oplus D_{4}:<\left(-1, r_{90}\right)>\right]=\infty$ because the subgroup is finite while the group is infinite. Therefore it would take an infinite number of cosets to partition the group.
2. a) Let $H=<(1,2)>$ in $\mathbf{Z}_{4} \oplus U(5)$.
b) Are $(3,2)$ and $(4,1)$ in the same left coset of H ?

Solution: $H=<(1,2)>=\{(0,1),(1,2),(2,4),(3,3)\} .(3,2)$ and $(4,1)$ in the same left coset of H if and only if $(0,2)^{-1}(4,1)=(1,3)(4,1)=(0,3) \in H$. But this is not the case. No.
c) Is H normal in $\mathbf{Z}_{\mathbf{4}} \oplus U(5)$. Solution: Yes, $\mathbf{Z}_{\mathbf{4}} \oplus U(5)$ is abelian.
3. a) Suppose that $|G|=49$. Show that every proper subgroup of G is cyclic. Solution: By Lagrange, the only proper subgroups of G have order 1 and 7 . Since 7 is prime, any subgroup of order 7 is cyclic. And, of course, if the subgroup has order 1 , then it is $\{\epsilon\}=\langle e\rangle$.
4. Consider the following group table with 8 elements

$*$	e	a	b	c	d	x	f	g
e	e	a	b	c	d	x	f	g
a	a	b	c	e	x	f	g	d
b	b	c	e	a	f	g	d	x
c	c	e	a	b	g	d	x	f
d	d	g	f	x	e	c	b	a
x	x	d	g	f	a	e	c	b
f	f	x	d	g	b	a	e	c
g	g	f	x	d	c	b	a	e

a) Use the table to find $C(G)$ (the center). Solution: $C(G)=\{e, b\}$.
b) Show that $H=\langle b\rangle$ is normal in G. Solution: $\langle b\rangle=\mathbf{C}(G)$.
5. Let $x \in G$. Prove: If for each $g \in G$ there is some integer n_{g} so that $g x g^{-1}=x^{n_{g}}$, then $<x>\triangleleft G$. Solution: Let $x^{k} \in\langle x\rangle$. Then using the given condition

$$
g x^{k} g^{-1}=g x g^{-1} \cdot g x g^{-1} \cdots g x g^{-1}=\left(g x g^{-1}\right)^{k}=\left(x^{n_{s}}\right)^{k}=x^{k n_{g}} \in\langle x\rangle .
$$

This means that $g x g^{-1} \in\langle x\rangle$. By condition (iii) for normality, this means that $\langle x\rangle \triangleleft G$.
6. Use the FTFAG to determine which product of cylic groups is isomorphic to
a) $U(150) \cong \mathbf{Z}_{20} \oplus \mathbf{Z}_{2} \cong \mathbf{Z}_{5} \oplus \mathbf{Z}_{\mathbf{4}} \oplus \mathbf{Z}_{2}$.
b) $U(320) \cong \mathbf{Z}_{16} \oplus \mathbf{Z}_{\mathbf{4}} \oplus \mathbf{Z}_{2}$
c) a group G of order 48 with 1 element of order 1,7 elements of order 2,2 elements of order 3,8 elements of order 4,1414 elements of order 6 , and 16 elements of order 12 . Solution: $\mathbf{Z}_{12} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$
d) Here's a useful fact: Suppose that

$$
G=\mathbf{Z}_{n_{1}} \oplus \mathbf{Z}_{n_{2}} \oplus \cdots \oplus \mathbf{Z}_{n_{k}} \oplus \mathbf{Z}_{m_{1}} \oplus \mathbf{Z}_{m_{2}} \oplus \cdots \oplus \mathbf{Z}_{m_{j}}
$$

where all the n 's are even and all the m 's are odd. Prove that G has $2^{k}-1$ elements of order 2 .
Solution: None of the Z_{m} have elements of order 2, so in manufacturing an element of order 2 for G we will have to use the identity element from each of these. Next, each $Z_{n_{i}}$ has 1 element of order 2. Then, we have two choices in the first k slots (either the identity or the element of order 2) and 1 choice in the last j slots for a total of 2^{k} choices. But this counts the identity element which has order 1 . Tossing that out, we get $2^{k}-1$ elements of order 2 .
7. a) Find an element of order 4 in $\mathbf{Z}_{10} \oplus \mathbf{Z}_{14}$ or explain why none exists. Solution: None exists. \mathbf{Z}_{10} has elements of order $1,2,5$, and 10 while \mathbf{Z}_{14} has elements of $1,2,7$, and 14 . There is no combination of these orders that has an 1 cm of 4 .
b) Find a subgroup of order 4 in $\mathbf{Z}_{10} \oplus \mathbf{Z}_{14}$ or explain why none existis. Solution: Use $<5>\oplus<7>$.
8. The Cayley Table for the dihedral group D_{3} is given below.

	r_{0}	r_{120}	r_{240}	a	b	c
r_{0}	r_{0}	r_{120}	r_{240}	a	b	c
r_{120}	r_{120}	r_{240}	r_{0}	c	a	b
r_{240}	r_{240}	r_{0}	r_{120}	b	c	a
a	a	b	c	r_{0}	r_{120}	r_{240}
b	b	c	a	r_{240}	r_{0}	r_{120}
c	c	a	b	r_{120}	r_{240}	r_{0}

a) Write out the left and right cosets of $H=\langle a\rangle$. Solution: The left cosets are: $H=\left\{r_{0}, a\right\}=a H=$ $r_{0} H, r_{120} H=\left\{r_{120}, c\right\}=c H$, and $r_{240} H=\left\{r_{240}, b\right\}=b H$. The right cosets are: $H=\left\{r_{0}, a\right\}=H a=$ $H r_{0}, H r_{120}=\left\{r_{120}, b\right\}=H b$, and $H r_{240}=\left\{r_{240}, c\right\}=H c$.
b) Determine whether H is normal in G. Solution: It is not since $b H \neq H b$, for example.
c) Find elements x and y, z and w in D_{3} so that all of the following conditions hold simultaneously (or explain why this is impossible):
i. $H x=H y$;
ii. $H z=H w$;
iii. $H x z \neq H y w$.

Solution: $H r_{120}=H b$ and $H r_{240}=H c$. But $H r_{120} r_{240}=H$ while $H b c=H r_{120}$.
9. Give an example of a group G and a subgroup H of G such that $[G: H]=3$ and $H \triangleleft G$, or explain why no such example exists. Solution: There are lots. Use $[\mathrm{Z}: 3 \mathrm{Z}]=3$ or $\left.\left[\mathrm{Z}_{3 n}:<n\right\rangle\right]=3$ for any positive integer n.
10. On the first exam I asked you to show that: If H and K are subgroups of G, then $H \cap K$ is subgroup of G. Now prove that if H and K are both normal subgroups of G, then $H \cap K$ is normal in G. Solution: Let $x \in H \cap K$. Then $x \in H$ which is normal in G, so for any $g \in G, g x g^{-1} \in H$. Similarly, $g x g^{-1} \in K$. So $g x g^{-1} \in H \cap K$. By condition (iii), $H \cap K$ is normal in G.
11. As ususal, let $S L(\mathbf{R}, n)$ denote the $n \times n$ matrices whose determinants are 1 . Determine whether $S L(\mathbf{R}, n)$ is normal in $G L(\mathbf{R}, n)$. Solution: See class notes from Wednesday, 3 November 1999.

