MATH 375.24

Class 24: Selected Answers

1. Gallian page $170 \# 50$. Solution: $H \cap K$ is a subgroup of both H and K, so its order must divide both $|H|$ and $|K|$. But $\operatorname{gcd}(|H|,|K|)=1$, so $|H \cap K|=1$ and therefore $H \cap K=\{e\}$.
2. You are familiar with the group $\mathbf{R} \oplus \mathbf{R}$ from calculus, linear algebra, and analytic geometry where you thought of it at \mathbf{R}^{2}. Let m be a fixed real number. Define $H_{m}=\{(x, y) \in \mathbf{R} \oplus \mathbf{R} \mid y=m x\}$. Note that H_{m} is just the straight line through the origin with slope m.
a) Show that $H_{m}<\mathbf{R} \oplus \mathbf{R}$. Solution: Use the two-step method. Closure: Let (Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ H_{m}. Show that $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \in H_{m}$. But $y_{1}=m x_{1}$ and $y_{2}=m x_{2}$, so $y_{1}+y_{2}=m\left(x_{1}+x_{2}\right)$. Therefore, $\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \in H_{m}$. Inverses: Let $\left(x_{1}, y_{1}\right) \in H_{m}$. Show that $-\left(x_{1}, y_{1}\right)=\left(-x_{1},-y_{1}\right) \in H_{m}$. But $y_{1}=m x_{1}$ so $-y_{1}=-m x_{1}=m\left(-x_{1}\right)$, so $\left(-x_{1},-y_{1}\right) \in H_{m}$.
b) Give a quick reason why $H_{m} \triangleleft \mathbf{R} \oplus \mathbf{R}$. Solution: $\mathbf{R} \oplus \mathbf{R}$ is abelian, so all subgroups are normal.
c) What geometric set in \mathbf{R}^{2} does the coset $(0, b)+H_{m}$ correspond to? Solution: The line parallel to $y=m x$ with intercept b, i.e., $y=m x+b$ because

$$
(0, b)+H_{m}=\{(0, b)+(x, y)=(x, y+b) \in \mathbf{R} \oplus \mathbf{R} \mid y=m x\}=\left\{\left(x, y^{\prime}\right) \in \mathbf{R} \oplus \mathbf{R} \mid y^{\prime}=m x+b\right\}
$$

$\mathbf{d)}$ What is $\left[\mathbf{R} \oplus \mathbf{R}: H_{m}\right]$? Hint: Use the previous part. Solution: $\left[\mathbf{R} \oplus \mathbf{R}: H_{m}\right]=\infty$. There is one coset for each line parallel to $y=m x$.
3. a) Let $G=\mathrm{Z}_{4} \oplus \mathrm{Z}_{12}$. H be the cyclic subgroup of G generated by $(2,2)$. Give a quick reason why is $H \triangleleft G$. Solution: G is abelian.
b) Let $H=<r_{60}>$ in D_{6}. Give a quick reason why $H \triangleleft D_{6}$. Solution: $\left[D_{6}: H\right]=\frac{12}{6}=2$.
4. a) Let $G U(15) \oplus \mathbf{Z}_{10} \oplus S_{5}$. Find the order of $(2,3,(123)(15))$.

Solution: $|(2,3,(123)(15))|=\operatorname{lcm}(|2|,|3|,|(1523)|)=\operatorname{lcm}(4,10,4)=20$.
b) Find the inverse of $(2,3,(123)(15))$. Solution: $(2,3,(123)(15))^{-1}=(8,7,(51)(321))$.
5. a) Is $\mathbf{Z}_{6} \oplus \mathbf{Z}_{15}$ cyclic? Solution: No, $\operatorname{gcd}(6,15) \neq 1$.
b) Find an element of $\mathbf{Z}_{6} \oplus \mathbf{Z}_{15}$ that has order 9 or explain why none exists. Solution: None exists. Elements in \mathbf{Z}_{6} have order $a=1,2,3$, or 6 . Elements in \mathbf{Z}_{15} have order $b=1,3,5$, or 15 . No combination of a and b produce $1 \mathrm{~cm}(a, b)=9$.
c) Let H_{1} be a subgroup of G_{1} and H_{2} be a subgroup of G_{2}. It is easy to prove (you don't have to) that $H_{1} \oplus H_{2}$ is a subgroup of $G_{1} \oplus G_{2}$. Use this fact to find a subgroup of $\mathbf{Z}_{6} \oplus \mathbf{Z}_{15}$ that has order 9. Solution: Use $<2>\oplus<5>$. Both $<2>$ and $<5>$ have order 3 in their respective groups, so their product has orde 9 .
6. Use the Normal Subgroup Test (page 172) to determine whether $U(\mathbf{R}, n)\{A \in G L(\mathbf{R}, n) \mid \operatorname{det} A \pm 1\}$ is normal in $G L(\mathbf{R}, n)$. Solution: We must show that $B U(\mathbf{R}, n) B^{-1} \subset U(\mathbf{R}, n)$ for all $B \in G L(\mathbf{R}, n)$. But if $A \in U(\mathbf{R}, n)$, then

$$
\operatorname{det}\left(B A B^{-1}\right)=\operatorname{det} B \operatorname{det} A \operatorname{det}\left(B^{-1}\right)=\frac{\operatorname{det} B \operatorname{det} A}{\operatorname{det} B}=\operatorname{det} A= \pm 1
$$

Therefore, $B U(\mathbf{R}, n) B^{-1} \subset U(\mathbf{R}, n)$.
7. a) Determine whether $<-I>$ is normal in Q_{8}. Solution: Yes, $<-I>\triangleleft Q_{8}$. For any element $X \in Q_{8}$, $X<-I>=\{X,-X\}=<-I>X$.
b) Give a quick reason why $\left\langle J>\triangleleft Q_{8}\right.$. Solution: $\left[Q_{8}:<J>\right]=\frac{8}{4}=2$.

