MATH 375.24 Class 24: Selected Answers

- 1. Gallian page 170 #50. Solution: $H \cap K$ is a subgroup of both H and K, so its order must divide both |H| and |K|. But gcd(|H|, |K|) = 1, so $|H \cap K| = 1$ and therefore $H \cap K = \{e\}$.
- 2. You are familiar with the group $\mathbf{R} \oplus \mathbf{R}$ from calculus, linear algebra, and analytic geometry where you thought of it at \mathbf{R}^2 . Let *m* be a fixed real number. Define $H_m = \{(x, y) \in \mathbf{R} \oplus \mathbf{R} \mid y = mx\}$. Note that H_m is just the straight line through the origin with slope *m*.
 - a) Show that $H_m < \mathbf{R} \oplus \mathbf{R}$. Solution: Use the two-step method. Closure: Let $(\text{Let } (x_1, y_1), (x_2, y_2) \in H_m$. Show that $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in H_m$. But $y_1 = mx_1$ and $y_2 = mx_2$, so $y_1 + y_2 = m(x_1 + x_2)$. Therefore, $(x_1 + x_2, y_1 + y_2) \in H_m$. Inverses: Let $(x_1, y_1) \in H_m$. Show that $-(x_1, y_1) = (-x_1, -y_1) \in H_m$. But $y_1 = mx_1$ so $-y_1 = -mx_1 = m(-x_1)$, so $(-x_1, -y_1) \in H_m$.
 - b) Give a quick reason why $H_m \triangleleft \mathbf{R} \oplus \mathbf{R}$. Solution: $\mathbf{R} \oplus \mathbf{R}$ is abelian, so all subgroups are normal.
 - c) What geometric set in \mathbf{R}^2 does the coset $(0,b) + H_m$ correspond to? Solution: The line parallel to y = mx with intercept b, i.e., y = mx + b because

$$(0,b) + H_m = \{(0,b) + (x,y) = (x,y+b) \in \mathbf{R} \oplus \mathbf{R} \mid y = mx\} = \{(x,y') \in \mathbf{R} \oplus \mathbf{R} \mid y' = mx+b\}.$$

- d) What is $[\mathbf{R} \oplus \mathbf{R} : H_m]$? Hint: Use the previous part. Solution: $[\mathbf{R} \oplus \mathbf{R} : H_m] = \infty$. There is one coset for each line parallel to y = mx.
- **3.** a) Let $G = \mathbb{Z}_4 \oplus \mathbb{Z}_{12}$. *H* be the cyclic subgroup of *G* generated by (2, 2). Give a quick reason why is $H \triangleleft G$. Solution: *G* is abelian.
 - **b)** Let $H = \langle r_{60} \rangle$ in D_6 . Give a quick reason why $H \triangleleft D_6$. Solution: $[D_6:H] = \frac{12}{6} = 2$.
- 4. a) Let $GU(15) \oplus \mathbb{Z}_{10} \oplus S_5$. Find the order of (2, 3, (123)(15)). Solution: $|(2, 3, (123)(15))| = \operatorname{lcm}(|2|, |3|, |(1523)|) = \operatorname{lcm}(4, 10, 4) = 20$.
 - **b)** Find the inverse of (2, 3, (123)(15)). Solution: $(2, 3, (123)(15))^{-1} = (8, 7, (51)(321))$.
- 5. a) Is $Z_6 \oplus Z_{15}$ cyclic? Solution: No, $gcd(6, 15) \neq 1$.
 - b) Find an element of $\mathbb{Z}_6 \oplus \mathbb{Z}_{15}$ that has order 9 or explain why none exists. Solution: None exists. Elements in \mathbb{Z}_6 have order a = 1, 2, 3, or 6. Elements in \mathbb{Z}_{15} have order b = 1, 3, 5, or 15. No combination of a and b produce lcm(a, b) = 9.
 - c) Let H_1 be a subgroup of G_1 and H_2 be a subgroup of G_2 . It is easy to prove (you don't have to) that $H_1 \oplus H_2$ is a subgroup of $G_1 \oplus G_2$. Use this fact to find a subgroup of $\mathbb{Z}_6 \oplus \mathbb{Z}_{15}$ that has order 9. Solution: Use $\langle 2 \rangle \oplus \langle 5 \rangle$. Both $\langle 2 \rangle$ and $\langle 5 \rangle$ have order 3 in their respective groups, so their product has orde 9.
- 6. Use the Normal Subgroup Test (page 172) to determine whether $U(\mathbf{R}, n) \{A \in GL(\mathbf{R}, n) \mid \det A \pm 1\}$ is normal in $GL(\mathbf{R}, n)$. Solution: We must show that $BU(\mathbf{R}, n)B^{-1} \subset U(\mathbf{R}, n)$ for all $B \in GL(\mathbf{R}, n)$. But if $A \in U(\mathbf{R}, n)$, then

$$\det(BAB^{-1}) = \det B \det A \det(B^{-1}) = \frac{\det B \det A}{\det B} = \det A = \pm 1.$$

Therefore, $BU(\mathbf{R}, n)B^{-1} \subset U(\mathbf{R}, n)$.

- 7. a) Determine whether $\langle -I \rangle$ is normal in Q_8 . Solution: Yes, $\langle -I \rangle \triangleleft Q_8$. For any element $X \in Q_8$, $X \langle -I \rangle = \{X, -X\} = \langle -I \rangle X$.
 - **b**) Give a quick reason why $\langle J \rangle \triangleleft Q_8$. Solution: $[Q_8 : \langle J \rangle] = \frac{8}{4} = 2$.