MATH 375.22

Class 22: Selected Answers

1. Let $G=\mathbf{Z}_{4} \oplus \mathbf{Z}_{12}$.
a) What is the order of G ? Solution:

$$
|G|=\left|\mathbf{Z}_{\mathbf{4}} \oplus \mathbf{Z}_{12}\right|=\left|\mathbf{Z}_{\mathbf{4}}\right| \times\left|\mathbf{Z}_{12}\right|=4 \times 12=48
$$

b) Let H be the cyclic subgroup of G generated by $(2,2)$. What is the order of H ? Solution:

$$
|H|=|(2,2)|=\operatorname{lcm}(|2|,|2|)=\operatorname{lcm}\left(\frac{4}{\operatorname{gcd}(4,2)}, \frac{12}{\operatorname{gcd}(12,2)}\right)=\operatorname{lcm}(2,6)=6 .
$$

c) List all the elements of H and their orders. Solution: The six elements of $\langle 2,2\rangle$ are:

$$
\begin{gathered}
(0,0):|(0,0)|=1 \\
(2,2):|(2,2)|=6 \\
(0,4):|(0,4)|=3 \\
(2,6):|(2,6)|=2 \\
(0,8):|(0,8)|=3 \\
(2,10):|(2,10)|=6
\end{gathered}
$$

d) What is $[G: H]$? Solution: $[G: H]=\frac{|G|}{|H|}=\frac{48}{6}=8$.
e) Are $(3,7)$ and $(1,1)$ in the same coset of H ? Explain. Solution: Yes. Remember from the coset property list that $b \in a H \Longleftrightarrow a^{-1} b \in H$. In additive notation, $b \in a+H \Longleftrightarrow-a+b \in H$. But $-(3,7)+(1,1)=(1,5)+(1,1)=(2,6) \in H$.
2. a) Try the same question for $G=\mathbf{Z}_{6} \oplus \mathbf{Z}_{8}$ where $H=<(2,2)>$. Solution: $|G|=\left|\mathbf{Z}_{6} \oplus \mathbf{Z}_{8}\right|=$ $\left|Z_{6}\right| \times\left|Z_{8}\right|=6 \times 8=48$.

$$
|(2,2)|=\operatorname{lcm}(|2|,|2|)=\operatorname{lcm}\left(\frac{6}{\operatorname{gcd}(6,2)}, \frac{8}{\operatorname{gcd}(8,2)}\right)=\operatorname{lcm}(3,4)=12
$$

The 12 elements of $\langle 2,2\rangle$ and their orders are: $|(0,0)|=1,|(2,2)|=12,|(4,4)|=6,|(0,6)|=4$, $|(2,0)|=3,|(4,2)|=12,|(0,4)|=2,|(2,6)|=12,|(4,0)|=3,|(0,2)|=4,|(2,4)|=6$, and $|(4,6)|=12 .[G: H]=\frac{|G|}{|H|}=\frac{48}{12}=4 .-(3,7)+(1,1)=(3,1)+(1,1)=(4,2) \in H$, so $(3,7)$ and $(1,1)$ are in the same coset.
b) A bit harder: try the same question for $G=U(8) \oplus \mathbf{Z}_{8}$ where $H=<(3,2)>$. Solution: $|G|=$ $\left|U(8) \oplus \mathbf{Z}_{8}\right|=|U(8)| \times\left|\mathbf{Z}_{8}\right|=4 \times 8=32$.

$$
|H|=(3,2) \left\lvert\,=\operatorname{lcm}(|3|,|2|)=\operatorname{lcm}\left(2, \frac{8}{\operatorname{gcd}(8,2)}\right)=\operatorname{lcm}(2,4)=4 .\right.
$$

The four elements of $<3,2>$ and their orders are: $|(1,0)|=1,|(3,2)|=4,|(1,4)|=2$, and $|(3,6)|=4$. $[G: H]=\frac{|G|}{|H|}=\frac{32}{4}=8 .\left(3^{-1},-7\right)(1,1)=(3,1)(1,1)=(3,2) \in H$, so $(3,7)$ and $(1,1)$ are in the same coset.
3. Determine the orders of each of the following product groups and state whether the group is (a) finite or infinite; (b) abelian or not; (c) cyclic or not.
a) $V_{4} \oplus \mathrm{Z}_{5}$
b) $D_{4} \oplus S_{4}$
c) $\quad \mathbf{Q} \oplus \mathbf{Q}_{8}$
d) $\mathrm{Z}_{6} \oplus \mathrm{Z}_{8}$
e) $\mathrm{Z}_{12} \oplus \mathrm{Z}_{5}$
f) $\mathbf{C} \oplus \mathbf{R}$

Solution: $\left|V_{4} \oplus \mathbf{Z}_{5}\right|=20$. It is finite, abelian, but not cyclic. $\left|D_{4} \oplus S_{4}\right|=8 \times 24=192$. It is finite, not abelian, and not cyclic. $\left|\mathbf{Q} \oplus \mathbf{Q}_{8}\right|=\infty$. It is infinite, not abelian, and not cyclic. $\left|\mathbf{Z}_{6} \oplus \mathbf{Z}_{8}\right|=48$. It is finite, abelian, and not cyclic. $\left|\mathbf{Z}_{12} \oplus \mathbf{Z}_{5}\right|=60$. It is finite, abelian, and cyclic. $|\mathbf{C} \oplus \mathbf{R}|=\infty$. It is infinite, abelian, and not cyclic.
4. a) What is the smallest value of n greater than 1 that makes $\mathbf{Z}_{n} \oplus \mathbf{Z}_{210}$ cyclic? Solution: we need the smallest n such that $\operatorname{gcd}(n, 210)=1 . n=11$.
b) Is $\mathbf{Z}_{3} \times \mathbf{Z}_{7}$ isomorphic to \mathbf{Z}_{21} ? Explain. Solution: Yes, both are cyclic (since $\operatorname{gcd}(3,7)=1$) and of order 21.
c) Is $\mathbf{Z}_{8} \times \mathbf{Z}_{12}$ isomorphic to \mathbf{Z}_{96} ? Explain. Solution: No. Since $\operatorname{gcd}(8,12) \neq 1$, then $\mathbf{Z}_{8} \times \mathbf{Z}_{12}$ is not cyclic but Z_{96} is.
5. Find the orders of these elements in their given product groups.
a) $(3,4) \in \mathbf{Z}_{5} \oplus \mathbf{Z}_{6}$
b) $((1243)(13), i) \in S_{4} \oplus C^{*}$
c) $(v, 2) \in D_{4} \oplus \mathbf{Z}$
d) $\left(6, r_{180}\right) \in \mathrm{Z}_{8} \oplus D_{4}$

Solution: $|(3,4)|=\operatorname{lcm}\left(\frac{5}{\operatorname{gcd}(5,3)}, \frac{6}{\operatorname{gcd}(6,4)}\right)=\operatorname{lcm}(5,3)=15$.
$|((1243)(13), i)|=|(243), i|=\operatorname{lcm}(3,4)=12$.
$|(v, 2)|=\infty$.
$\left|\left(6, r_{180}\right)\right|=\operatorname{lcm}(4,2)=4$.
6. Each part below is a separate question. Find groups G and H or state why it is impossible.
a) $|G \oplus H|=36$ and $G \oplus H$ is not abelian. Solution: One example, $S_{3} \oplus \mathbf{Z}_{6}$.
b) $|G \oplus H|=36$ and $G \oplus H$ is abelian, but not cyclic. Give an example with $G \oplus H$ cyclic. Solution: Try $V_{4} \times \mathbf{Z}_{9}$ and then $\mathbf{Z}_{4} \times \mathbf{Z}_{9}$.
c) $|G \oplus H|=64$ which is cyclic and neither group has order 1 . Solution: Impossible. The groups would have to be (isomorphic to) \mathbf{Z}_{k} and \mathbf{Z}_{m} with $\operatorname{gcd}(k, m)=1$ and $k m=64$. But the only factorizations of 64 into two factors are: $2 \times 32,4 \times 16$, and 8×8.
7. a) How many non-isomorphic groups of order 24 can you find. Solution: Here are the abelian ones: $\mathrm{Z}_{24} \cong \mathrm{Z}_{8} \times \mathrm{Z}_{3}, \mathrm{Z}_{2} \times \mathrm{Z}_{12} \cong \mathrm{Z}_{2} \times \mathrm{Z}_{3} \times \mathrm{Z}_{4} \cong \mathrm{Z}_{6} \times \mathrm{Z}_{4}$, and $\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{3} \cong \mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{6}$. Some non-abelian ones: $S_{3} \times \mathbf{Z}_{4}, S_{3} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}, D_{4} \times \mathbf{Z}_{3}, A_{4} \times \mathbf{Z}_{2}$.
8. Notice that the three groups $D_{11} \oplus Z_{3}, D_{3} \times Z_{11}$, and D_{33} are non-abelian and have order 66 . This problem asks you to show that no two of these are isomorphic. (Hint: What else can you check about these groups and their elements that would have to be the same if they were isomorphic?)
a) Prove that $D_{11} \oplus \mathbf{Z}_{3} \not \approx D_{3} \times \mathbf{Z}_{11}$.
b) Prove that $D_{11} \oplus \mathbf{Z}_{3} \not \approx D_{33}$.
c) Prove that $D_{33} \not \approx D_{3} \times \mathbf{Z}_{11}$.

Solution: For all three parts, use the table below which lists the elements of various orders in each of the groups. Notice that the elements of order 2 already distinguish them.

Orders	Z_{3}	Z_{11}	D_{3}	D_{11}	$\mathrm{Z}_{3} \oplus D_{11}$	$Z_{11} \oplus D_{3}$	D_{33}
1	1	1	1	1	1	1	1
2	0	0	3	11	11	3	33
3	2	0	2	0	2	2	2
6	0	0	0	0	22	0	0
11	0	10	0	10	10	10	10
22	0	0	0	0	0	30	0
33	0	0	0	0	20	20	20

9. We proved in class that: "Let G be a non-abelian group of order $2 p$, where $p \neq 2$ is prime. Then G has a cyclic subgroup of order p and it also has p elements of order 2." Let's apply this to the case where $p=3$. So let G be a non-abelian group of order 6 . Then G has an element x of order 3 and G has an element a of order 2. So $<x>=\left\{e, x, x^{2}\right\}$ and G is composed of the two disjoint cosets: $\langle x\rangle$ and $\left.a<x\right\rangle$, where $a<x>=\left\{a, a x, a x^{2}\right\}$ and these three elements have order 2. Of course this means that the six elements of the group $G=\left\{e, x, x^{2}, a, a x, a x^{2}\right\}$. We know that $a^{2}=(a x)^{2}=\left(a x^{2}\right)^{2}=e$ since each has order 2 . Fill in the Cayley Table for G. Some slots are easy to fill in: for example, $a \cdot x^{2}=a x^{2}$. The only hard entry to fill in is $x a$. Note that $x a$ must be one of the six elements listed above in G. What are the choices? Show by filling in the table that if $x \cdot a=a x$, then G turns out to be abelian. So then fill it in again with $x a$ being the only other possible choice. What is that choice?

Solution: If $x a=a x$ we get a contradiction in row 5 of the Cayley table. If $x a=a x^{2}$, the only other choice, then the Cayley table can be filled in. The format is the same as for $D_{3}=S_{3}$.

\cdot	e	x	x^{2}	a	$a x$	$a x^{2}$
e	e	x	x^{2}	a	$a x$	$a x^{2}$
x	x	x^{2}	e	$a x$	$a x^{2}$	a
x^{2}	x^{2}	e	x	$a x^{2}$	a	$a x$
a	a	$a x$	$a x^{2}$	e	x	x^{2}
$a x$	$a x$	$a x^{2}$	a	x	e	e
$a x^{2}$	$a x^{2}$					e

\cdot	e	x	x^{2}	a	$a x$	$a x^{2}$
e	e	x	x^{2}	a	$a x$	$a x^{2}$
x	x	x^{2}	e	$a x^{2}$	a	$a x$
x^{2}	x^{2}	e	x	$a x$	$a x^{2}$	a
a	a	$a x$	$a x^{2}$	e	x	x^{2}
$a x$	$a x$	$a x^{2}$	a	x^{2}	e	x
$a x^{2}$	$a x^{2}$	a	$a x$	x	x^{2}	e

10. Use the software Marc's $U(n)$ in the Math/CS Computer lab on either of the Macintoshes. Write each of the following groups as a product of Z_{n} 's using the FTAG. Describe your reasoning. Solution:
a) $U(38) \cong \mathrm{Z}_{18}$
b) $U(40) \cong Z_{4} \oplus Z_{2} \oplus Z_{2}$
c) $U(66) \cong \mathbf{Z}_{10} \oplus \mathbf{Z}_{2}$
d) $U(318) \cong \mathbf{Z}_{13} \oplus \mathbf{Z}_{\mathbf{4}} \oplus \mathbf{Z}_{2}$
e) Do one of your own choosing-make it an interesting one!
f) Extra Credit: Solution: $U(760) \cong \mathbf{Z}_{9} \oplus \mathbf{Z}_{\mathbf{4}} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$.
