MATH 375.19
Class 19: Selected Answers

The following 8 permuations in Sy are known as the Octic group, O = {e, a,a? a>b,g,d,t}, where
e= (1), a=(1234), a* = (13)(24), a®> = (1432) b = (14)(23), g = (12)(34), d = (13), and t = (24).
a) Find all the left cosets of O in Sy. Solution: The cosets are O itself,
(12)0 = {(12), (234), (1324), (143), (1423), (34), (132), (124) }
(14)0 = {(14), (123), (1342), (243), (23), (1243), (134), (142) }
b) What are the right cosets of 0 is 947 Solution: The cosets are O itself,
O(12) ={(12), (134), (1423), (243), (1324), (34), (123), (142) }
O(14) ={(14), (234), (1243), (132), (23), (1342), (143), (124) }
c¢) Is 0 normal in 547 Solution: No. (12)0 # O(12)

Find all the left cosets of < 4 > in U(15). Then find the right cosets. Is < 4 > normal? Solution: The
left and right cosets must be the same since U(15) = {1,2,4,7,8,11,13,14} is ablelian. So < 4 >= {1,4}
is normal. The cosets are: < 4 > itself, 2 < 4 >= {2,8} =< 4 > 2, 7< 4 >={7,13} =< 4 > 7, and
11 <4>={11,14} =<4 > 11.

Find all the left and right cosets of As in A4. Is A3z normal in A47 Solution: Using the handout,
As = {(1), (123), (132)} while

Ay ={(1),(123),(132),(234), (12)(34), (134), (243), (124), (13)(24), (142), (143), (14)(23) }.

So the left cosets are Ajs itself,
(234) 45 = {(234), (13)(24), (142)}

(243) A3 = {(243), (143), (12)(34)}
{(124), (14)(23), (134)}
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The right cosets are Az itself,

A is not normal since (234)As # A3(234).
Let UR,n) = {4 € GI(R,n) | det A = £1}. Show that AU(R,n) = BU(R,n) <= |deta| = |detb|.

Solution:

(143), (14)(23), (142)}

AU(R,n) = BU(R,n) <= A'BcU(R,n) <= det(A™'B) =41
< det A7 det B = 1
det B

= Jet A
< det B =4det A

< |det B| = | det 4|

=41

Evaluate the following indices (justify your answers)
a) |[A,:A,_1| = % = n.

b) |Zs:<2>|=p=1=2

c) |Z:<n>|=mn.if n#0, there are n cosets: 0+ < n >,1+ <n >,...,(n— 1)+ < n >. Otherwise if
n = 0 the index is infinite.
d) |D4:<v>|:%:§:4.

2
e) [S4:0|=% =3.
f) IR*:< =1 > | =00 because |R*| = oo and | — 1| = 2.
g) [GL(R,n): U(R,n)] = oo because you proved above that there were an infinite number of cosets, one
for each nonnegative real number.
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Gallian page 143 #14. Solution: Given K < H < G with |K| = 42 and |G| = 420. So by Lagranges’s
Theorem, the order of H must be divisible by 42 and a divisor of 420. Possible orders are 84 and 210.

Gallian page 143 #20. Solution: Given KG and Given H < ¢, with |K| =12 and |H| = 35. Since KNH
is a subgroup of both K and H, |K N H|[12] and |K N H|‘35|. Therefore, |K N H| = 1.

Gallian page 143 #24. |G| = 25. So by Lagrange, if @ € G, then |a| = 1,5, or 25. If |a| = 25, then G is
cyclic. If GG is not cyclic, then every element has order 5 (or 1), so ¢° = e for all elements of G.

a)

b)

£)

b)

Suppose that G is a group such that g?> = e for all ¢ € G. Prove that G is abelian. Solution: We
must show that Va,b € G ab = ba. But

ab = (ab)e = (ab)(ba)? = ab((ba)ba)
= a(bb)a(ba)
= aea(ba) = (aa)(ba) = e(ba) = ba.

Suppose that G is a non-abelian group of order 10. Prove that G has an element a of order 5.Solution:
If all elements @ € G have the property that a? = e, then we just showed that G would be abelian,
a contradiction. So there exists some a € G with a # e and |z| # 2. By Lagrange |a| = 5 or 10. If
|a| = 10, then G is cyclic, hence abelian. Contradiction. So there is some a € G so that |a| = 5.

(Continuation of part b): Let ¢ € G such that ¢ ¢< a >. Prove that there are only two left
cosets of < @ > in (G, namely < @ > and ¢ < a >. Solution: Since | < a > | = |a| = 5, then
[G:<a>]= 15—0 = 2. So let g be any element of G not in < @ >. Then g < a > is the other coset.

(Continuation of part b and ¢): Prove that g < @ >=< a >. Solution: Since there are only two
cosets, g> < a > is either < a > or ¢ < a >. But if ¢ < @ >= ¢*> < a >, then by the Coset Property
Theorem, ¢~ '¢? = g €< a > which contradicts that < @ > and ¢ < a > are distinct cosets.

(Continuation of part b and d): Prove that g = e. Solution: Use a proof by contradiction. If
g% # e, then |g| = 5 or 10. But the latter is impossible since G is not cyclid. But if |g] = 5, then
g% = gg° = ge = g. On the other hand, ¢*> < a >=< a >= ¢*> = a*. So ¢°% = (¢*)® = (¢¥)? and so
g €< a>. But <a> and g < a > are distinct cosets.

Ok, look at what you’ve now shown: If GG is a non-abelian group of order 10, then GG has an element
a of order 5. Further, any element g ¢< a > has order 2. But there are 5 such elements. Since none
of the elements of < @ > have order 2 (because elements of the cyclic group < @ > must have order
5 or 1), then GG has exactly 5 elements of order 2. (For example, D5 has 5 flips.) Can you conjecture
how many elements a non-abelian group of order 2p has? Conjecture p.

Let GG be a group of order n > 1. Suppose that the only subgroups of G are {e} and G itself. Prove
that (G is cyclic. Solution: Take any element a # e in (. Since a # €, then < a ># {e} is a subgroup
of G. By assumption, < a > must be G, itself. That is, G is cyclic.

Extra Credit: Show that the number n would have to be prime for the hypothesis in the part above
to be true. Solution: Let |G| = n. If n is not prime, then n = km, where 2 < k,m < n — 1. Since we
have shown that G is cyclic, by the Fundamental Theorem of Cyclic Groups, G has cylic subgroups
of orders both k and m. This contradicts the fact that the only subgroups of G are {e} and G itself.

Extra Credit: Gallian page 143 #26. This is not hard; there are just several cases to check.



