Class 17: PracTest Selected Answers

1. a) Suppose that $g \in G$, a group and that $g^{12}=e$. What can you say about $|g|$? Solution: $|g| \mid 12 \Rightarrow$ $|g|=1,2,3,4,6$, or 12 .
b) Suppose that $x \in \mathbf{Z}_{35}$. What can you say about $|x|$? Solution: By Sam's Theorem $|x||35 \Rightarrow| x \mid=$ $1,5,7$ or 35 .
c) Suppose that $\phi: G \rightarrow Z_{35}$ is a group homomorphism of the groups in parts (a) and (b). What are the possible choices for $\phi(g)$ in Z_{35} ? Explain. Solution: Since ϕ is a homomorphism, $|\phi(g)||g|$. But from the previous two parts, the only possibility is $|\phi(g)|=1$, so $\phi(g)=0$.
2. a) Show that $\left|S_{4}\right|=\left|D_{12}\right|$. Prove that S_{4} is not isomorphic to D_{12}. Solution: D_{12} has an element of order 12 (namely r_{30}). But the maximum order of an element in S_{4} is 4 (as you can check). Since the order of an element is preserved under isomorphism, there can't be any isomorphism between these two groups even though both groups have the same number of elements, $4!=24=12 \times 2$.
b) Prove that neither is isomorphic to Z_{24}. Solution: Z_{24} is cyclic, the other two are not.
3. Let $G=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$. Note that G is a group under addtion. Show that $\mathbf{Z} \cong G$. Do this by finding a mapping $\phi: Z \rightarrow G$ which you verify is an isomorphism. Solution: Both are infinite cyclic groups. Use the mapping $\phi(n)=3 n$ or $\gamma(n)=-3 n$. These are the only two possible isomorphisms, which are easily checked.
4. Find three elements that generate \mathbf{Z}_{10} and two that don't. Solution: Generators are $1,3,7,9$ (elements relatively prime to 10). All others are not generators.
5. a) Let H be a subgroup of an abelian group G. Let $K=\left\{a \in G \mid a^{2} \in H\right\}$. (In other words, a is in K if its square is in H.) Is K a subgroup of G ? Solution: Use the two step method. Closure: Let $a, b \in K$. Show that $a b \in K$, that is, show $(a b)^{2} \in H$. But $a, b \in K$ means that a^{2} and b^{2} are in H. So because G is abelian,

$$
(a b)^{2}=(a b)(a b)=a^{2} b^{2} \in H
$$

because H is closed and both a^{2} and b^{2} are in H. Inverses: Let $a \in K$. Show $a^{-1} \in K$, that is, show $\left(a^{-1}\right)^{2} \in H$. But $a \in K$, so $a^{2} \in H$. Since H is a subgroup, $\left(a^{2}\right)^{-1}=\left(a^{-1}\right)^{2} \in H$.
6. Find $|400|$ in \mathbf{Z}_{532}. Solution: $|400|=\frac{532}{\operatorname{gcc}(532,400)}=\frac{532}{4}=133$.
7. Suppose that $a^{6}=a^{10}$ in a group. What is the maximum possible order of a ? Solution: We have $|a| \mid 6$ and $|a| \mid 10$, so $|a| \mid \operatorname{gcd}(6,10)=2$. So the maximum possible order is 2 .
8. Express $\alpha=(1,3,4,5,2)(1,2,3,4,6,5)(3,2,4,1,5)$ as a product of disjoint cycles, and as a product of transpositions. What is its order? Is it odd or even? Find its inverse. Solution: $\alpha=(134)(26)=$ (14)(13)(26). $|\alpha|=\operatorname{lcm}(3,2)=6$, It is odd. $\alpha^{-1}=(62)(431)$.
9. a) Determine whether the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $f(x, y)=(x+y, x+2 y)$ is one-to-one.Solution: Assume $f(a, b)=f(x, y)$. Show $(a, b)=(x, y)$. But

$$
\begin{aligned}
f(a, b)=f(x, y) \Longleftrightarrow(a+b, a+2 b)=(x+y, x+2 y) & \Longleftrightarrow\left\{\begin{array}{l}
a+b=x+y \\
a+2 b=x+2 y
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array} { l }
{ a + b = x + y } \\
{ b = y }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a=x \\
b=y
\end{array}\right.\right. \\
& \Longleftrightarrow(a, b)=(x, y)
\end{aligned}
$$

b) Is it onto? Solution: Let $(c, d) \in \mathbf{R}^{2}$ (codomain). Find $(x, y) \in \mathbf{R}^{2}$ so that $f(x, y)=(c, d)$. But

$$
\begin{aligned}
f(x, y)=(c, d) \Longleftrightarrow(x+y, x+2 y)=(c, d) & \Longleftrightarrow\left\{\begin{array}{l}
x+y=c \\
x+2 y=d
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x+y=c \\
y=d-c
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x=2 c-d \\
y=d-c
\end{array}\right.
\end{aligned}
$$

So let $(x, y)=(2 c-d, d-c)$.
c) Is it a group homomorphism? Solution: Let $(a, b),(c, d) \in \mathbf{R}^{2}$.

$$
\begin{aligned}
f((a, b)+(c, d))=f((a+c, b+d)) & =((a+c)+(b+d),(a+c)+2(b+d)) \\
& =((a+b)+(c+d),(a+2 b)+(c+2 d)) \\
& =(a+b, a+2 b)+(c+d, c+2 d) \\
& =f(a, b)+f(c, d) .
\end{aligned}
$$

So it is a group homomorphism.
10. From a previous homework: Let $a \in G$, where G is a group. Define $f: G \rightarrow G$ by $f(g)=a g a^{-1}$. Show that f is a one-to-one, onto, group homomorphism. Solution: Injective: Note that by cancellation.

$$
\phi(g)=\phi(h) \Longleftrightarrow a g a^{-1}=a h a^{-1} \Longleftrightarrow g=h .
$$

Surjective: Let $b \in G$. We must find $g \in G$ so that $\phi(g)=b$. But

$$
\phi(g)=b \Longleftrightarrow a g a^{-1}=b \Longleftrightarrow g=a^{-1} b a .
$$

Note that $g=a^{-1} b a \in G$ since G is a group and it closed and has inverses. Homomorphism: Let $g, h \in G$. Then

$$
\phi(g) \phi(h)=\left(a g a^{-1}\right)\left(a h a^{-1}\right)=a g\left(a^{-1} a\right) h a^{-1}=a(g h) a^{-1}=\phi(g h) .
$$

11. a) If possible, find a one-to-one function from \mathbf{Z}^{+}to \mathbf{Z}^{+}that is not onto. Solution: There are many: How about $f(n)=(n+1)$. Notice that there is no $n \in \mathbf{Z}^{+}$such that $f(n)=1$ because $f(n)=n+1=1 \Longleftrightarrow$ $n=0 \notin \mathbf{Z}^{+}$. So f is not onto, but it is injective because $f(n)=f(m) \Longleftrightarrow n+1=m+1 \Longleftrightarrow m=n$.
b) If possible, find an onto function from \mathbf{Z}^{+}to \mathbf{Z}^{+}that is not one-to-one. Solution: There are many: How about:

$$
f(n)=\left\{\begin{array}{ll}
1, & \text { if } n=1 \\
n-1, & \text { if } n>1
\end{array} .\right.
$$

Then $f(1)=f(2)=1$, so f is not injective, but it is surjective because if $m \in \mathbf{Z}^{+}$, then $f(n)=m \Rightarrow$ $n-1=m \Rightarrow n=m+1 \in \mathbf{Z}^{+}$.
12. Let $G=\langle a\rangle$ be a cyclic group of order n. Suppose that there is an element $g \in G$ of order 2 . Prove that n is even. Solution: Since $g \in\langle a\rangle$, then $g=a^{k}$, where $0 \leq k<n$. Since $|g|=2$, then $g \neq e$ so $k \neq 0$. But then, $g^{2}=e \Rightarrow\left(a^{k}\right)^{2}=a^{2 k}=e$, where $2 \leq 2 k<2 n$. But $n \mid 2 k$, and so we must have $n=2 k$. That is, n is even.
13. a) What is the largest possible order of an element in S_{9}. Solution: The largest possible order is 20 (use disjoint 4 and 5 -cycles).
b) True or false: If α and β are in S_{4} and $|\alpha|=2$ and $|\beta|=3$, then $|\alpha \beta|=6$. Solution: False: Let $\alpha=(12)$ and $\beta=(123)$. Then $(12)(123)=(23)$ So $|\alpha|=2$ and $|\beta|=3$, but $|\alpha \beta|=2$.
14. Let $\beta \in S_{7}$. Suppose that $\beta^{4}=(2143567)$. Find β. Solution: If you are being careful, note that $\left|\beta^{4}\right|||\beta|$ since $\beta^{4} \in\langle\beta>$. So 7$||\beta|$. But you can check that the only elements of S_{7} whose orders are divisible by 7 are 7 -cycles. So $|\beta|=7$. Thus, $\left(\beta^{4}\right)^{2}=\beta^{8}=\beta^{1}=\beta=(2457136)$.
15. Assume that $\phi: V_{4} \rightarrow Z_{4}$ is a group homomorphism. Prove that ϕ is not an isomorphism. Solution: Recall that V_{4} is the Klein Four-Group with Cayley Table

\cdot	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Notice that the square of every element is e, so there is no element of order 4 . But \mathbf{Z}_{4} is cyclic of order 4 . So the groups cannot be isomorphic.
16. Is there an isomorphism $\phi: U(14) \rightarrow \mathbf{Z}_{6}$. Explain. Solution: Yes. Verify that

$$
U(14)=\{1,3,5,9,11,13\}=\langle 3\rangle .
$$

That is, $U(14)$ is a cyclic group of order 6 so it isomorphic to Z_{6}.
17. Here's one I was going to put on the test. Assume that $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism such that the only element that ϕ maps onto $\epsilon_{2} \in G_{2}$ is the identity is $\epsilon_{1} \in G_{1}$. Prove that ϕ is injective. Solution: Assume that $\phi(a)=\phi(b)$. Then notice that

$$
\phi\left(a b^{-1}\right)=\phi(a) \phi\left(b^{-1}\right)=\phi(b) \phi\left(b^{-1}\right)=\phi\left(b b^{-1}\right)=\phi\left(e_{1}\right)=e_{2} .
$$

By assumption, since only e_{1} is mapped to e_{2}, then $a b^{-1}=e_{1} \Rightarrow a=b$. So ϕ is injective.
18. The following 8 permuations in S_{4} are known as the Octic group, $O=\left\{\varepsilon, a, a^{2}, a^{3}, b, g, d, t\right\}$, where $e=(1), a=(1234), b=(14)(23), g=(12)(34), d=(13)$, and $t=(24)$, and $t=g d=d g$.
a) Construct a group table for O.
b) Find the cyclic subgroups of O. Solution:

$$
\begin{aligned}
<e> & =\{e\} \\
<a^{2}> & =\left\{e, a^{2}\right\} \\
<a> & =\left\{e, a, a^{2}, a^{3}\right\}=<a^{3}> \\
 & =\{e, b\} \\
<c> & =\{e, c\} \\
<d> & =\{e, d\} \\
<g> & =\{e, g\} \\
<t> & =\{e, t\}
\end{aligned}
$$

