MATH 375.15

Class 15: Selected Answers

1. a) Gallian page $109 \# 38$. Solution: Any two non-identical 2-cycles will work, e.g., $\alpha \beta=(12)(13)=$ (132). $|\alpha|=|\beta|=2$ and $|\alpha \beta|=3$.
b) Gallian p. $109 \# 32$. Solution: $|\beta|=|(1357986)(2,4,10)|=\operatorname{lcm}(7,3)=21$. Then $\beta^{n}=\beta^{-5} \Longleftrightarrow$ $\beta^{n+5}=e \Longleftrightarrow 21 \mid n+5$. The smallest such n is 16 .
2. Let k be a fixed integer such that $1 \leq k \leq n$. Let $\operatorname{stab}(k)=\left\{\alpha \in S_{n} \mid \alpha(k)=k\right\}$. That is, $\operatorname{stab}(k)$ is the set of permutations that leaves k alone. Is $\operatorname{stab}(k)$ a subgroup of S_{n} ? Solution: Since S_{n} is finite, $\operatorname{stab}(k)$ is finite. So we can apply the Finite Subgroup Test. We need to show that $\operatorname{stab}(k)$ is closed. So let $\alpha, b \in \operatorname{stab}(k)$. Then $\alpha(k)=k$ and $\beta(k)=k$. So $(\alpha \beta)(k)=\alpha(\beta(k))=\alpha(k)=k$. That is, $\alpha \beta \in \operatorname{stab}(k)$.
3. Let G be a group and let a be a fixed element of G. Let $\phi: G \rightarrow G$ by $\phi(g)=a g a^{-1}$.
a) Show that ϕ is injective. Solution: Note that by cancellation.

$$
\phi(g)=\phi(h) \Longleftrightarrow a g a^{-1}=a h a^{-1} \Longleftrightarrow g=h .
$$

So ϕ is injective.
b) Show that ϕ is surjective. Solution: Let $b \in G$. We must find $g \in G$ so that $\phi(g)=b$. But

$$
\phi(g)=b \Longleftrightarrow a g a^{-1}=b \Longleftrightarrow g=a^{-1} b a .
$$

Note that $g=a^{-1} b a \in G$ since G is a group and it closed and has inverses.
c) Show that ϕ is a group isomorphism. Solution: We've shown injectivity, and surjectivity, so all we need to do is show that ϕ is a homomorphism. Let $g, h \in G$. Then

$$
\phi(g) \phi(h)=\left(a g a^{-1}\right)\left(a h a^{-1}\right)=a g\left(a^{-1} a\right) h a^{-1}=a(g h) a^{-1}=\phi(g h) .
$$

4. a) The following is part of a theorem about homomorphisms that we stated in class, but did not prove. Suppose that $\phi: G_{1} \rightarrow G_{2}$ is a group homomorphism. Prove by induction that $\phi\left(a^{n}\right) \phi=[\phi(a)]^{n}$.
Solution: Base Case: Let $n=0$. Then $f\left(a^{0}\right)=f\left(e_{1}\right)=e_{2}=[f(a)]^{0}$ since we proved that any homomorphis does map the identity of the domain to the identity of the codomain. Inductive Step: Assume that $\phi\left(a^{n}\right) \phi=[\phi(a)]^{n}$. Prove that $\phi\left(a^{n+1}\right)=[\phi(a)]^{n+1}$. But by the inductive hypothesis and the definition of a group homomorphism

$$
\phi\left(a^{n+1}\right)=\phi\left(a a^{n}\right)=\phi(a) \phi\left(a^{n}\right)=\phi(a)[\phi(a)]^{n}=[\phi(a)]^{n+1} .
$$

Finally, consider negative integers. By what we have already shown and by the fact that group homomorphisms respect inverses, i.e., $f\left(a^{-1}\right)=(f(a))^{-1}$, then

$$
f\left(a^{-n}\right)=f\left[\left(a^{-1}\right)^{n}\right]=f\left[\left(a^{-1}\right)\right]^{n}=\left[[f(a)]^{-1}\right]^{n}=[f(a)]^{-n} .
$$

b) Use this (in its additive form) to show that if $\phi: \mathrm{Z}_{n} \rightarrow \mathrm{Z}$ is a homomorphism, then $\phi(j)=0$ for all $j \in \mathbf{Z}_{n}$. Solution: Note that if $j \in \mathbf{Z}_{n}$, then $n \cdot j=0$, while if $k \in \mathbf{Z}$, then $n \cdot k=0 \Rightarrow k=0$. So let $j \in Z_{n}$. Then $\phi(n j)=\phi(0)=0$ because any homommorphism maps the identity in the first group to the identity in the second. Next, because ϕ is a homomorphism, we just showed that $\phi(n \dot{j})=n \cdot \phi(j)$. So combining these two observations, $n \cdot \phi(j)=0$ in \mathbf{Z} which only happens if $\phi(j)=0$ (since \mathbf{Z} is infinite cyclic). Here's another solution. Since $j \in \mathbf{Z}_{n}$, by Sma's Theorem, $|j| \mid n$. (So $|j|$ is finite.) On the other hand, Let $\phi(j)=k \in \mathbf{Z} . k \in \mathbf{Z}$, so

$$
|k|= \begin{cases}\infty, & \text { if } k \neq 0 \\ 1, & \text { if } k=0\end{cases}
$$

But one of the basic properties of a group homomorphism is that $|\phi(j)|||j|$. Since $| j \mid$ is finite, we must have $|\phi(j)|=|k|$ also finite. Therefore, $|\phi(j)|=1$, and so $\phi(j)=0$.
5. Recall that the natural \log function is important in calculus. Show that $f: \mathbf{R}^{+} \rightarrow \mathbf{R}$ by $f(x)=\ln x$ is an injective, surjective group homomorphism. Be careful! The two group operations are different. Solution: Injective: From Calculus, we know that

$$
f(x)=f(y) \Longleftrightarrow \ln x=\ln y \Longleftrightarrow e^{\ln x}=e^{\ln y} \Longleftrightarrow x=y
$$

Surjective: Let $y \in \mathbf{R}$. Then $f(x)=\ln x=y \Longleftrightarrow x=e^{y}$. Note that $e^{y} \in \mathbf{R}^{+}$. Homomorpism: Note that the operation in \mathbf{R}^{+}is multiplication and the operation in \mathbf{R} is addition. But one of the basic \log rules says that

$$
\phi(x y)=\ln (x y)=\ln x+\ln y=\phi(x)+\phi(y) .
$$

6. Is the mapping $\phi: \mathbf{C}^{*} \rightarrow \mathbf{C}^{*}$ by $(a+b i) \phi=a-b i$ a group isomorphism? Solution: Let $a+b i, c+d i \in \mathbf{C}^{*}$. Then

$$
\phi(a+b i) \phi(c+d i)=(a-b i)(c-d i)=a c-b d-(a d+b c) i .
$$

Compare this to

$$
\phi((a+b i)(c+d i))=\phi(a c-b d+(a d+b c) i)=a c-b d-(a d+b c) i .
$$

They are the same, so ϕ is a homomorphism.
7. The following is part of a theorem about isomorphisms that we stated in class, but did not prove. Let $\phi: G_{1} \rightarrow G_{2}$ be a group isomorphism. Then:
a) Prove that if $a, b \in G_{1}$ commute, then $\phi(a), \phi(b) \in G_{2}$ commute. Solution: Assume $a, b \in G_{1}$ commute. Show that $\phi(a) \phi(b)=\phi(b) \phi(a)$. But we are given that $a b=b a$, so by the definition of a homomorphism,

$$
\phi(a) \phi(b)=\phi(a b)=\phi(b a)=\phi(b) \phi(a) .
$$

b) Prove that if G_{1} is abelian, then G_{2} is abelian. Solution: Let $c, d \in G_{2}$. We must show that $c d=d c$. But ϕ is onto since it is an isomorphism. Therefore, there exist $a, b \in G_{2}$ so that $\phi(a)=c$ and $\phi(b)=d$. By the previous part, since G_{1} is abelian, then a and b commute, hence so do $\phi(a)$ and $\phi(b)$. Therefore,

$$
c d=\phi(a) \phi(b)=\phi(b) \phi(a)=d c
$$

8. a) Notice that we can write the 5 -cycle (12345) $=(145)(123)$ as a product of 3 -cycles. Write (1234567) as a product of 3 -cycles. Write ($a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9}$) as a product of 3 -cycles. Write the 1 -cycle $e=(1)$ as a product of 3 -cycles (assuming that we are are in S_{k} with $k \geq 3$.) Solution: (1234567) $=$ (167)(145)(123).

$$
\left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9}\right)=\left(a_{1} a_{8} a_{9}\right)\left(\left(a_{1} a_{6} a_{7}\right)\left(a_{1} a_{4} a_{5}\right)\left(a_{1} a_{2} a_{3}\right) .\right.
$$

$(1)=(123)(321)$.
b) Ok, you should have the idea by now. Let $\left(a_{1} a_{2} a_{3} \ldots a_{2 n} a_{2 n+1}\right)$ be any odd length cycle in S_{k} where $k \geq 3$. Prove by induction that such odd length cyles can be written as a 3 -cycle or a product of 3 -cycles. Solution: Base Case: For $n=0$ this reduces to writing ($a_{)}=(1)$ as product of 3 -cycles. This is done above. Inductive Step: Assume that $\left(a_{1} a_{2} a_{3} \ldots a_{2 n} a_{2 n+1}\right)$ can be written as a product of 3 -cycles. Show that $\left(a_{1} a_{2} a_{3} \ldots a_{2 n} a_{2 n+1} a_{2(n+1)} a_{2(n+1)+1}\right)$ can be written as product of 3 -cycles. But

$$
\left(a_{1} a_{2} a_{3} \ldots a_{2 n} a_{2 n+1} a_{2(n+1)} a_{2(n+1)+1}\right)=\left(a_{1} a_{2(n+1)} a_{2(n+1)+1}\right)\left(a_{1} a_{2} a_{3} \ldots a_{2 n} a_{2 n+1}\right),
$$

where by assumption the second permutation is a product of 3 -cycles.
9. Extra Credit: D_{12} has 24 elements (12 rotations which are generated by r_{30} the rotation of 30 degrees and 12 flips). S_{4} also has 24 elements. Both groups are not cyclic and neither is abelian. Are they isomoprphic? Hint: what is the maximum order of an element in S_{4} ? Is the same true about D_{12} ?
10. Extra Credit: Is D_{4} is isomorphic to Q_{8} ? Compare their tables and see if you can match up the entries. If you can, that matching is the isomorphism.
11. Extra Credit: Page 128, \#27. ($M^{\#}$ means that the zero matrix is not included.)
12. Extra Credit: Let a be a fixed element in $U(n)$. Let $\phi: \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{n}$ by $b \phi=a b \bmod n$.
a) Show that ϕ is a homomorphism.
b) Show that ϕ is injective. Hint: Suppose that $b \phi=c \phi$. Write out what this means mod n. (Eculid's Lemma will be very useful here. If n, a and d are integers such that $n \mid a d$ and $\operatorname{gcd}(n, a)=1$, then $n \mid d$.)
c) ϕ is surjective. Try to show it. There are lots of ways to do it. Some are easy and some are hard.

