MATH 375.14

Class 14: Selected Answers

1. Suppose $\alpha, \beta \in S_{n}$. Prove that if α is even, then so is $\beta^{-1} \alpha \beta$.
2. Let H be any subgroup of S_{n}. Prove: Either every element of H is even or that exactly half the members of H are even. Solution: If all the elements are even, done. Otherwise, let α be any odd permutation in H. You have shown in an earlier problem set that the mapping $f: H \rightarrow H$ by $f(\beta)=\alpha \beta$ is one-to-one and onto. [Caution: You need to use an odd permutation α in H so that $\alpha \beta \in H$ by closure. An arbtrary odd permutation γ from S_{n} won't do because then we would not know whether $\gamma \beta \in H$.] But since α is odd, then β is even $\Longleftrightarrow \alpha \beta=f(b)$ is odd. That is, f maps the odd permuations to the even permutations of H and vice versa. Therefore, there must be the same number of each.
3. a) What is the maximum order for an element in S_{6} ? Solution: If $\alpha \in S_{6}$, then it can be written as a product of disjoint cycles, whose lengths sum to 6 (if we include 1-cycles for those elements fixed by α). So the lengths of the disjoint cycles of such splittings are: [6], $[5,1],[4,2],[4,1,1],[3,3],[3,2,1]$, $[3,1,1],[2,2,2],[2,2,1],[2,1,1,1,1],[1,1,1,1,1,1]$. The maximum order of such a splitting (using Ruffini's Theorem) is 6 .
b) What about for A_{6} ? Solution: The following are the even splittings: $[5,1],[3,3],[3,1,1],[1,1,1,1,1,1]$. The maximum order is 5 .
c) Find an element of A_{8} of order 15. Solution: Use a [5,3] splitting: (12345)(678) will do.
d) Find an element of A_{10} of order 21. Solution: Use a $[7,3]$ splitting: $(1234567(8,9,10)$ will do.
4. Let $\phi: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by $\phi(a, b)=a b$. Determine whether ϕ is one-to-one and/or onto. Solutoin: ϕ is not injective because $\phi(1,0)=\phi(2,0)=0$. ϕ is onto. Let $x \in \mathbf{R}$. Then we must find $(a, b) \in \mathbf{R}^{2}$ so that $\phi(a, b)=x$. So we need $\phi(a b, b)=a b=x$. There are many choices, but the simplest is to let $(a, b)=(x, 1)$; then $\phi(x, 1)=x \cdot 1=x$.
5. Let $\phi: V_{4} \rightarrow V_{4}$ by $\phi(g)=g^{2}$ for all $g \in V_{4}$. Go back to your group table and actually figure out what $\phi(g)$ is for each element in V_{4}. Is ϕ injective? Surjective? Solution: Notice that $\phi(g)=g^{2}=e$ for all $g \in V_{4}$. So ϕ is neither injective nor surjective.

\cdot	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

6. a) Let $\alpha=\left(a_{1} a_{2} \ldots a_{k}\right)$ be a k-cycle. Prove that α is odd if and only if k is even. Solution: We saw in class that $\alpha=\left(a_{1} a_{k}\right) \ldots\left(a_{1} a_{3}\right)\left(a_{2} a_{1}\right)$ is a product of $k-1$ transpositions. Therefore, α is odd if and only if $k-1$ is odd if and only if k is even.
b) Prove that α is odd if and only if $|\alpha|$ is even. Solution: As seen in class, the order of a k-cycle is just its length. So $|\alpha|$ is even if and only if k is even and from the previous part k is even if and only if α is odd.
c) OK, here's the hard part on the homework: Now let β be any element of S_{n}. Prove that if β is odd, then $|\beta|$ is even. Hint: First use Theorem 5.1. Then show at least one of the cycles must be even in length. Then use Ruffini's Theorem. Solution: We can write β as a product of n disjoint cycles, say $\beta=\alpha_{1} \alpha_{2} \cdots \alpha_{n}$. Let k_{i} be the length of α_{i}. First use a proof by contradiction to show that some k_{i} is even in length. Assume not. Then by part (a), all the k_{i} are odd, so all the α_{i} are even. So $\beta \in A_{n}$ and therefore β is even. This contradicts that we are given that β is odd. So some k_{i} must be even. But then by Ruffini's Theorem,

$$
|b|=\operatorname{lcm}\left(k_{1} k_{2} \cdots k_{n}\right)
$$

must be even since $k_{i} \mid \operatorname{lcm}\left(k_{1} k_{2} \cdots k_{n}\right)$ and k_{i} is even.

Optional Mastery and Review Exercises

7. Let G be a group and let H be a subgroup of G. Let a be some fixed element of G. Define the set $a H a^{-1}$ to be $\left\{a h a^{-1} \mid h \in H\right\}$. Show that $a H a^{-1}$ is a subgroup of G. Solution: Closure: Let $a h_{1} a^{-1}, a h_{2} a^{-1} \in$ $a H a^{-1}$. Then $h_{1}, h_{2} \in H$. So

$$
\left(a h_{1} a^{-1}\right)\left(a h_{2} a^{-1}\right)=a\left(h_{1} h_{2}\right) a^{-1} \in a H a^{-1} .
$$

because H is a subgroup so $h_{h} h-2 \in H$. Inverses: Let $a h a^{-1} \in a H a^{-1}$. Must show ($\left.a h a^{-1}\right)^{-1} \in a H a^{-1}$. But $h^{-1} \in H$. So

$$
\left(a h a^{-1}\right)^{-1}=a h^{-1} a^{-1} \in a H a^{-1} .
$$

8. Suppose G is a group of order 16. If G has 5 elements for which $x^{4}=e$, can G be cyclic? Explain. Solution: If G were cyclic of order 16, the elements whose order were were 4,2 and 1 would satisfy this condition. Now if $\langle y\rangle=G$, then these elements would be y^{4}, y^{12}, y^{8}, and e. So it is impossible.
9. Extra Credit: For those who have taken probability: Show that A_{5} has 24 elements of order 5 and 20 elements of order 3. Solution: Note that the only elements of order 5 in S_{5} are 5 -cycles. But all 5 -cycles are even, so all 5 -cycles are in A_{5}. There are, of course, $5=120$! ways to fill in the 5 -cycle ($a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$) with the numbers 1 through 5 . But notice that

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{5}, a_{1}, a_{2}, a_{3}, a_{4}\right),
$$

and, in fact, there are 5 different ways to write ($a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$) as a 5 -cycle, depending on which element yo start with. So the number of 5 -cycles is $5!/ 5=4!=24$. Similarly, the only order 3 elements in S_{5} are 3 -cycles which are even so in A_{5}. But a there are $5 \cdot 4 \cdot 3=60$ ways to fill in a 3 -cycle (a_{1}, a_{2}, a_{3}) with the numbers 1 through 5 . Each such such cycle can be written 3 different ways so there are $60 / 3=20$ different such.

