MATH 375.12 Class 12: Selected Answers

- 1. a) Reading: Chapter 5. Later in the week, look ahead to Chapter 6.
 - b) See the Web page www.hws.edu/PEO/faculty/mitchell/math375/index.html for previous answers and lecture notes.
 - c) Gallian page 107ff: #1, 3, 5, 9, 11, 13, 21 Assigned earlier: Gallian: page 80-81 #17, 21, 25, 31, 43, 51
- a) Let G be a group. Let a be a fixed element of G. Prove that φ : G → G by φ(g) = ag is one-to-one.
 b) Prove that φ is onto.
 - c) What is the mapping ϕ^{-1} ?
- **3.** Write each of the following permutations as a product of disjoint cycles. What is the order of each. Find the inverse of each. Write each as a product of transpositions. Determine which are odd and which are even.
 - a) $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = (123)(45)$, so $|\alpha| = \operatorname{lcm}(3,2) = 6$. $\alpha^{-1} = (54)(321)$. Finally, $\alpha = (13)(12)(45)$, so it is odd.
 - **b**) $\beta = (1358)$, so $|\beta| = 4$. $\beta^{-1} = (8531)$. Finally, $\beta = (18)(15)(13)$, so it is odd.
 - c) $\gamma = (15367)$, so $|\gamma| = 5$. $\gamma^{-1} = (76351)$. Finally, $\gamma = (17)(16)(13)(15)$, so it is even.
 - d) $\omega = (13)(324)(12) = (14)(23)$, so $|\omega| = \text{lcm}(2,2) = 2$. $\omega^{-1} = (32)(41)$. Finally, $\omega = (14)(23)$, so it is even.
- 4. Let $\alpha = (1,2,3)(4,5)$ and let $\beta = (1,2,5)$.
 - a) $\alpha\beta = (13)(245)$ and $\beta\alpha = (154)(23)$.
 - **b)** $|\alpha\beta| = \operatorname{lcm}(2,3) = 6.$ $|\beta\alpha| = \operatorname{lcm}(3,2) = 6.$
- 5. Label the vertices of a rhombus 1, 2, 3, and 4. Write each motion of the rhombus as an element of S_4 .

Solution: $r_0 = (1), r_{180} = (13)(24), v = (24), and h = (13).$

- **6.** Use the table for A_4 on page 101 to:
 - a) $C(A_4) = \{\alpha_1 = (1)\}.$
 - **b)** $C((123)) = \{(1), (123), (132)\}.$
 - c) Extra Credit: Let G be any group and $x \in G$. The **centralizer** of x is $C(x) = \{a \in G \mid ax = xa\}$. Prove that C(x) is a subgroup of G. Solution: Closure: Let $a, b \in C(x)$. Show $ab \in C(x)$. But

$$abx = a(bx) = a(xb) = (ax)b = (xa)b = xab.$$

Inverses: Let $a \in C(x)$. Then

$$ex = xe \Rightarrow (a^{-1}a)x = x(a^{-1}a) \Rightarrow (a^{-1}(ax) = x(a^{-1}a))$$
$$\Rightarrow (a^{-1}(xa) = x(a^{-1}a) \Rightarrow (a^{-1}x)a = (xa^{-1}a \Rightarrow a^{-1}x = xa^{-1}.$$

- 7. a) Let $\alpha = (a_1 a_2 \dots a_k)$ be a k-cycle. Prove that α is odd if and only if k is even. Solution: We saw in class that $\alpha = (a_1 a_k) \dots (a_1 a_3)(a_2 a_1)$ is a product of k 1 transpositions. Therefore, α is odd if and only if k 1 is odd if and only if k is even.
 - **b)** Prove that α is odd if and only if $|\alpha|$ is even. **Solution:** As seen in class, the order of a k-cycle is just its length. So $|\alpha|$ is even if and only if k is even and from the previous part k is even if and only if α is odd.
 - c) OK, here's the hard part on the homework: Now let β be any element of S_n. Prove that if β is odd, then |β| is even. Hint: First use Theorem 5.1. Then show at least one of the cycles must be even in length. Then use Ruffini's Theorem. Solution: We can write β as a product of n disjoint cycles, say β = α₁α₂ ···α_n. Let k_i be the length of α_i. First use a proof by contradiction to show that some k_i is even in length. Assume not. Then by part (a), all the k_i are odd, so all the α_i are even. So β ∈ A_n and therefore β is even. This contradicts that we are given that β is odd. So some k_i must be even. But then by Ruffini's Theorem,

$$|b| = \operatorname{lcm}(k_1 k_2 \cdots k_n)$$

must be even since $k_i \mid \text{lcm}(k_1k_2\cdots k_n)$ and k_i is even.

Optional Mastery and Review Exercises

8. Let G be a group and let H be a subgroup of G. Let a be some fixed element of G. Define the set aHa^{-1} to be $\{aha^{-1} \mid h \in H\}$. Show that aHa^{-1} is a subgroup of G. Solution: Closure: Let $ah_1a^{-1}, ah_2a^{-1} \in aHa^{-1}$. Then $h_1, h_2 \in H$. So

$$(ah_1a^{-1})(ah_2a^{-1}) = a(h_1h_2)a^{-1} \in aHa^{-1}.$$

because H is a subgroup so $h_hh - 2 \in H$. Inverses: Let $aha^{-1} \in aHa^{-1}$. Must show $(aha^{-1})^{-1} \in aHa^{-1}$. But $h^{-1} \in H$. So

$$(aha^{-1})^{-1} = ah^{-1}a^{-1} \in aHa^{-1}.$$

- 9. Suppose G is a group of order 16. If G has 5 elements for which $x^4 = e$, can G be cyclic? Explain. Solution: If G were cyclic of order 16, the elements whose order were were 4, 2 and 1 would satisfy this condition. Now if $\langle y \rangle = G$, then these elements would be y^4, y^{12}, y^8 , and e. So it is impossible.
- 10. Let P be the set of polynomials in x. Define $\phi: P \to P$ by $\phi(f) = f'$, where f' denotes the derivative of f. Why is ϕ not one-to-one? However, ϕ is onto. Can you prove this? Solution: Note that $\phi(x) = \phi(x+1) = 1$. So ϕ is not injective. It is onto. Let $f \in P$. Let $F = \int f \, dx$. Then F is a polynomial and F' = f by the Fundamental Theorem of Calculus.
- 11. Let $\phi : X \to Y$ be a mapping. For $a, b \in X$, define $a \sim b$ to mean that $\phi(a) = \phi(b)$. Is \sim an equivalence relation on X? : Solution: Reflexive: For any $a \in X$, we have $\phi(a) = \phi(a)$, so $a \sim a$. Symmetric: Given $a \sim b$. Show $\sim a$. But

$$a \sim b \iff \phi(a) = \phi(b) \iff \phi(b) = \phi(a) \iff b \sim a$$

Transitive: Given $a \sim b$ and $b \sim c$. Show $a \sim c$. But $a \sim b \Rightarrow \phi(a) = \phi(b)$ and $b \sim c \Rightarrow \phi(b) = \phi(c)$. Therefore, $\phi(a) = \phi(c)$, so $\alpha \sim c$. Note that we have used the reflexive, symmetric, and transitive properties of equality in succesive steps.

- **12.** Let G be a group of order p, where p is a prime.
 - a) Suppose that $x \in G$ and |x| = p. Prove that G is cyclic. Solution: Consider the set $\{e = x^0, x, x^2, \ldots, x^{p-1}\}$. If these p elements are distinct, then $\langle x \rangle = G$ because G has order p and by closure $\langle x \rangle \subset G$. Assume they are not distinct. Then $x^j = x^k$ where $k \neq j$. WMA $0 \leq j < k \leq p-1$. Then $x^j = x^k \Rightarrow e = x^{k-j} \Rightarrow |x| < k j \leq k \leq p 1$. This contradicts the fact that |x| = p. So the elements were distinct.
 - b) Prove even more: That G has exactly p-1 elements of order p. Solution: Just apply Sam's Theorem. If $1 \le k \le p-1$, then $|x^k| = \frac{p}{\gcd(p,k)} = p$ since p is prime. So every non-identity element of G generates the group.