MATH 375.12

Class 12: Selected Answers

1. a) Reading: Chapter 5. Later in the week, look ahead to Chapter 6.
b) See the Web page www.hws.edu/PEO/faculty/mitchell/math375/index.html for previous answers and lecture notes.
c) Gallian page $107 \mathrm{ff}: \# 1,3,5,9,11,13,21$ Assigned earlier: Gallian: page $80-81 \# 17,21,25,31,43$, 51
2. a) Let G be a group. Let a be a fixed element of G. Prove that $\phi: G \rightarrow G$ by $\phi(g)=a g$ is one-to-one.
b) Prove that ϕ is onto.
c) What is the mapping ϕ^{-1} ?
3. Write each of the following permutations as a product of disjoint cycles. What is the order of each. Find the inverse of each. Write each as a product of transpositions. Determine which are odd and which are even.
a) $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)=(123)(45)$, so $|\alpha|=\operatorname{lcm}(3,2)=6 . \quad \alpha^{-1}=(54)(321)$. Finally, $\alpha=$ $(13)(12)(45)$, so it is odd.
b) $\beta=(1358)$, so $|\beta|=4 . \beta^{-1}=(8531)$. Finally, $\beta=(18)(15)(13)$, so it is odd.
c) $\gamma=(15367)$, so $|\gamma|=5 . \gamma^{-1}=(76351)$. Finally, $\gamma=(17)(16)(13)(15)$, so it is even.
d) $\omega=(13)(324)(12)=(14)(23)$, so $|\omega|=1 \mathrm{~cm}(2,2)=2 . \omega^{-1}=(32)(41)$. Finally, $\omega=(14)(23)$, so it is even.
4. Let $\alpha=(1,2,3)(4,5)$ and let $\beta=(1,2,5)$.
a) $\alpha \beta=(13)(245)$ and $\beta \alpha=(154)(23)$.
b) $|\alpha \beta|=\operatorname{lcm}(2,3)=6 .|\beta \alpha|=\operatorname{lcm}(3,2)=6$.
5. Label the vertices of a rhombus $1,2,3$, and 4 . Write each motion of the rhombus as an element of S_{4}.

Solution: $r_{0}=(1), r_{180}=(13)(24), v=(24)$, and $h=(13)$.
6. Use the table for A_{4} on page 101 to:
a) $C\left(A_{4}\right)=\left\{\alpha_{1}=(1)\right\}$.
b) $C((123))=\{(1),(123),(132)\}$.
c) Extra Credit: Let G be any group and $x \in G$. The centralizer of x is $C(x)=\{a \in G \mid a x=x a\}$. Prove that $C(x)$ is a subgroup of G. Solution: Closure: Let $a, b \in C(x)$. Show $a b \in C(x)$. But

$$
a b x=a(b x)=a(x b)=(a x) b=(x a) b=x a b
$$

Inverses: Let $a \in C(x)$. Then

$$
\begin{aligned}
e x=x e \Rightarrow\left(a^{-1} a\right) x=x\left(a^{-1} a\right) & \Rightarrow\left(a^{-1}(a x)=x\left(a^{-1} a\right)\right. \\
& \Rightarrow\left(a^{-1}(x a)=x\left(a^{-1} a\right) \Rightarrow\left(a^{-1} x\right) a=\left(x a^{-1} a \Rightarrow a^{-1} x=x a^{-1}\right.\right.
\end{aligned}
$$

7. a) Let $\alpha=\left(a_{1} a_{2} \ldots a_{k}\right)$ be a k-cycle. Prove that α is odd if and only if k is even. Solution: We saw in class that $\alpha=\left(a_{1} a_{k}\right) \ldots\left(a_{1} a_{3}\right)\left(a_{2} a_{1}\right)$ is a product of $k-1$ transpositions. Therefore, α is odd if and only if $k-1$ is odd if and only if k is even.
b) Prove that α is odd if and only if $|\alpha|$ is even. Solution: As seen in class, the order of a k-cycle is just its length. So $|\alpha|$ is even if and only if k is even and from the previous part k is even if and only if α is odd.
c) OK, here's the hard part on the homework: Now let β be any element of S_{n}. Prove that if β is odd, then $|\beta|$ is even. Hint: First use Theorem 5.1. Then show at least one of the cycles must be even in length. Then use Ruffini's Theorem. Solution: We can write β as a product of n disjoint cycles, say $\beta=\alpha_{1} \alpha_{2} \cdots \alpha_{n}$. Let k_{i} be the length of α_{i}. First use a proof by contradiction to show that some k_{i} is even in length. Assume not. Then by part (a), all the k_{i} are odd, so all the α_{i} are even. So $\beta \in A_{n}$ and therefore β is even. This contradicts that we are given that β is odd. So some k_{i} must be even. But then by Ruffini's Theorem,

$$
|b|=1 \mathrm{~cm}\left(k_{1} k_{2} \cdots k_{n}\right)
$$

must be even since $k_{i} \mid \operatorname{lcm}\left(k_{1} k_{2} \cdots k_{n}\right)$ and k_{i} is even.

Optional Mastery and Review Exercises

8. Let G be a group and let H be a subgroup of G. Let a be some fixed element of G. Define the set $a H a^{-1}$ to be $\left\{a h a^{-1} \mid h \in H\right\}$. Show that $a H a^{-1}$ is a subgroup of G. Solution: Closure: Let $a h_{1} a^{-1}, a h_{2} a^{-1} \in$ $a H a^{-1}$. Then $h_{1}, h_{2} \in H$. So

$$
\left(a h_{1} a^{-1}\right)\left(a h_{2} a^{-1}\right)=a\left(h_{1} h_{2}\right) a^{-1} \in a H a^{-1}
$$

because H is a subgroup so $h_{h} h-2 \in H$. Inverses: Let $a h a^{-1} \in a H a^{-1}$. Must show $\left(a h a^{-1}\right)^{-1} \in a H a^{-1}$. But $h^{-1} \in H$. So

$$
\left(a h a^{-1}\right)^{-1}=a h^{-1} a^{-1} \in a H a^{-1}
$$

9. Suppose G is a group of order 16. If G has 5 elements for which $x^{4}=e$, can G be cyclic? Explain. Solution: If G were cyclic of order 16 , the elements whose order were were 4,2 and 1 would satisfy this condition. Now if $<y>=G$, then these elements would be y^{4}, y^{12}, y^{8}, and e. So it is impossible.
10. Let P be the set of polynomials in x. Define $\phi: P \rightarrow P$ by $\phi(f)=f^{\prime}$, where f^{\prime} denotes the derivative of f. Why is ϕ not one-to-one? However, ϕ is onto. Can you prove this? Solution: Note that $\phi(x)=$ $\phi(x+1)=1$. So ϕ is not injective. It is onto. Let $f \in P$. Let $F=\int f d x$. Then F is a polynomial and $F^{\prime}=f$ by the Fundamental Theorem of Calculus.
11. Let $\phi: X \rightarrow Y$ be a mapping. For $a, b \in X$, define $a \sim b$ to mean that $\phi(a)=\phi(b)$. Is \sim an equivalence relation on X ? : Solution: Reflexive: For any $a \in X$, we have $\phi(a)=\phi(a)$, so $a \sim a$. Symmetric: Given $a \sim b$. Show $\sim a$. But

$$
a \sim b \Longleftrightarrow \phi(a)=\phi(b) \Longleftrightarrow \phi(b)=\phi(a) \Longleftrightarrow b \sim a
$$

Transitive: Given $a \sim b$ and $b \sim c$. Show $a \sim c$. But $a \sim b \Rightarrow \phi(a)=\phi(b)$ and $b \sim c \Rightarrow \phi(b)=\phi(c)$. Therefore, $\phi(a)=\phi(c)$, so $\alpha \sim c$. Note that we have used the reflexive, symmetric, and transitive properties of equality in succesive steps.
12. Let G be a group of order p, where p is a prime.
a) Suppose that $x \in G$ and $|x|=p$. Prove that G is cyclic. Solution: Consider the set $\{e=$ $\left.x^{0}, x, x^{2}, \ldots, x^{p-1}\right\}$. If these p elements are distinct, then $<x>=G$ because G has order p and by closure $<x>\subset G$. Assume they are not distinct. Then $x^{j}=x^{k}$ where $k \neq j$. WMA $0 \leq j<k \leq p-1$. Then $x^{j}=x^{k} \Rightarrow e=x^{k-j} \Rightarrow|x|<k-j \leq k \leq p-1$. This contradicts the fact that $|x|=p$. So the elements were distinct.
b) Prove even more: That G has exactly $p-1$ elements of order p. Solution: Just apply Sam's Theorem. If $1 \leq k \leq p-1$, then $\left|x^{k}\right|=\frac{p}{\operatorname{gcd}(p, k)}=p$ since p is prime. So every non-identity element of G generates the group.

