
MATH 375.12

Class 12: Selected Answers

1. a) Reading: Chapter 5. Later in the week, look ahead to Chapter 6.

b) See the Web page www.hws.edu/PEO/faculty/mitchell/math375/index.html for previous answers
and lecture notes.

c) Gallian page 107�: #1, 3, 5, 9, 11, 13, 21 Assigned earlier: Gallian: page 80{81 #17, 21, 25, 31, 43,
51

2. a) Let G be a group. Let a be a �xed element of G. Prove that � : G! G by �(g) = ag is one-to-one.

b) Prove that � is onto.

c) What is the mapping ��1?

3. Write each of the following permutations as a product of disjoint cycles. What is the order of each. Find
the inverse of each. Write each as a product of transpositions. Determine which are odd and which are
even.

a) � =

�
1 2 3 4 5
2 3 1 5 4

�
= (123)(45), so j�j = lcm(3; 2) = 6. ��1 = (54)(321). Finally, � =

(13)(12)(45), so it is odd.

b) � = (1358), so j�j = 4. ��1 = (8531). Finally, � = (18)(15)(13), so it is odd.

c) 
 = (15367), so j
j = 5. 
�1 = (76351). Finally, 
 = (17)(16)(13)(15), so it is even.

d) ! = (13)(324)(12) = (14)(23), so j!j = lcm(2; 2) = 2. !�1 = (32)(41). Finally, ! = (14)(23), so it is
even.

4. Let � = (1; 2; 3)(4; 5) and let � = (1; 2; 5).

a) �� = (13)(245) and �� = (154)(23).

b) j��j = lcm(2; 3) = 6. j��j = lcm(3; 2) = 6.

5. Label the vertices of a rhombus 1, 2, 3, and 4. Write each motion of the rhombus as an element of S4.
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Solution: r0 = (1), r180 = (13)(24), v = (24), and h = (13).

6. Use the table for A4 on page 101 to:

a) C(A4) = f�1 = (1)g.

b) C((123)) = f(1); (123); (132)g.

c) Extra Credit: Let G be any group and x 2 G. The centralizer of x is C(x) = fa 2 G j ax = xag.
Prove that C(x) is a subgroup of G. Solution: Closure: Let a; b 2 C(x). Show ab 2 C(x). But

abx = a(bx) = a(xb) = (ax)b = (xa)b = xab:

Inverses: Let a 2 C(x). Then

ex = xe) (a�1a)x = x(a�1a)) (a�1(ax) = x(a�1a)

) (a�1(xa) = x(a�1a)) (a�1x)a = (xa�1a) a�1x = xa�1:



7. a) Let � = (a1a2 : : :ak) be a k-cycle. Prove that � is odd if and only if k is even. Solution: We saw in
class that � = (a1ak) : : :(a1a3)(a2a1) is a product of k � 1 transpositions. Therefore, � is odd if and
only if k � 1 is odd if and only if k is even.

b) Prove that � is odd if and only if j�j is even. Solution: As seen in class, the order of a k-cycle is just
its length. So j�j is even if and only if k is even and from the previous part k is even if and only if �
is odd.

c) OK, here's the hard part on the homework: Now let � be any element of Sn. Prove that if � is odd,
then j�j is even. Hint: First use Theorem 5.1. Then show at least one of the cycles must be even in
length. Then use Ru�ni's Theorem. Solution: We can write � as a product of n disjoint cycles, say
� = �1�2 � � ��n. Let ki be the length of �i. First use a proof by contradiction to show that some ki
is even in length. Assume not. Then by part (a), all the ki are odd, so all the �i are even. So � 2 An

and therefore � is even. This contradicts that we are given that � is odd. So some ki must be even.
But then by Ru�ni's Theorem,

jbj = lcm(k1k2 � � �kn)

must be even since ki j lcm(k1k2 � � �kn) and ki is even.

Optional Mastery and Review Exercises

8. Let G be a group and let H be a subgroup of G. Let a be some �xed element of G. De�ne the set aHa�1

to be faha�1 j h 2 Hg. Show that aHa�1 is a subgroup of G. Solution: Closure: Let ah1a�1; ah2a
�1 2

aHa�1. Then h1; h2 2 H . So

(ah1a
�1)(ah2a

�1) = a(h1h2)a
�1 2 aHa�1:

because H is a subgroup so hhh� 2 2 H . Inverses: Let aha�1 2 aHa�1. Must show (aha�1)�1 2 aHa�1.
But h�1 2 H . So

(aha�1)�1 = ah�1a�1 2 aHa�1:

9. Suppose G is a group of order 16. If G has 5 elements for which x4 = e, can G be cyclic? Explain.
Solution: If G were cyclic of order 16, the elements whose order were were 4, 2 and 1 would satisfy this
condition. Now if < y >= G, then these elements would be y4; y12; y8, and e. So it is impossible.

10. Let P be the set of polynomials in x. De�ne � : P ! P by �(f) = f 0, where f 0 denotes the derivative
of f . Why is � not one-to-one? However, � is onto. Can you prove this? Solution: Note that �(x) =
�(x + 1) = 1. So � is not injective. It is onto. Let f 2 P . Let F =

R
f dx. Then F is a polynomial and

F 0 = f by the Fundamental Theorem of Calculus.

11. Let � : X ! Y be a mapping. For a; b 2 X , de�ne a � b to mean that �(a) = �(b). Is � an equivalence
relation on X? : Solution: Re
exive: For any a 2 X , we have �(a) = �(a), so a � a. Symmetric: Given
a � b. Show � a. But

a � b () �(a) = �(b) () �(b) = �(a) () b � a:

Transitive: Given a � b and b � c. Show a � c. But a � b ) �(a) = �(b) and b � c ) �(b) = �(c).
Therefore, �(a) = �(c), so � � c. Note that we have used the re
exive, symmetric, and transitive properties
of equality in succesive steps.

12. Let G be a group of order p, where p is a prime.

a) Suppose that x 2 G and jxj = p. Prove that G is cyclic. Solution: Consider the set fe =
x0; x; x2; : : : ; xp�1g. If these p elements are distinct, then < x >= G because G has order p and by
closure < x >� G. Assume they are not distinct. Then xj = xk where k 6= j. WMA 0 � j < k � p�1.
Then xj = xk ) e = xk�j ) jxj < k � j � k � p � 1. This contradicts the fact that jxj = p. So the
elements were distinct.

b) Prove even more: That G has exactly p�1 elements of order p. Solution: Just apply Sam's Theorem.
If 1 � k � p�1, then jxkj = p

gcd(p;k) = p since p is prime. So every non-identity element of G generates

the group.


