Class 9: Selected Answers

1. The Klein Four-Group is the following set of 4 matrices. It is denoted by V_{4}.

$$
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad a=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad b=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad c=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

a) Fill in a Cayley Table for these matrices.

\cdot	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

b) Prove that V_{4} is a subgroup of $G L(\mathbf{R}, 2)$. Solution: By the Finite Subgrpoup Test, since V_{4} is closed (see table) it is a subgroup.
c) Normally matrix multiplication is not commutative. But is this subgroup commutative? Solution: Yes, the table is symmetric.
d) Is V_{4} cyclic? Explain. Solution: No, every non-identity element has order 2 (note the the e 's on the diagonal). To be cyclic, there would have to be an element of order 4.
2. a) Find $\operatorname{gcd}(624,500)$. Solution: Using Katie's applet, I get $\operatorname{gcd}(624,500)=4$.
b) Express the gcd as a linear combination of 624 and 500 . Solution: Again with her applet $4=$ $5 \cdot 500-4 \cdot 624$.
c) Find $\left|a^{500}\right|$ if $|a|=624$. Solution: From Sam's Theorem,

$$
\left|a^{500}\right|=\frac{624}{\operatorname{gcd}(624,500)}=\frac{624}{4}=156 .
$$

d) Find $|500|$ in Z_{624}. Solution: Same as above since $|1|=624$.
3. Gallian page $79 \# 8$ (a). Solution: From Sam's Theorem, $\left|a^{3}\right|=\frac{15}{\operatorname{gcd}(3,15)}=\frac{15}{3}=5$. The others are the same: $\left|a^{6}\right|=\left|a^{9}\right|=\left|a^{12}\right|=5$, since the gcd with 15 is 3 in each case.
4. Let G be a finite group. Let p be a prime. Show that if $x \neq e$ and $x^{p}=e$, then $|x|=p$. Solution: We have shown that if $|a|=n$ and $a^{k}=e$, then $n \mid k$. Here, if $|x|=n$, since $x^{p}=e$, so $n \mid p$. Since p is prime either $n=1$ (this leads to a contadiction since we are given $x \neq e$) or $n=p$. Therefore, $|x|=p$.
5. a) List (describe) all the elements of $<\frac{1}{2}>$ in $(\mathbf{Q},+)$. Solution: Remember to use both positive, 0 , and negative multiples: $\left\{\ldots,-2,-\frac{3}{2},-1,-\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right\}$.
b) List (describe) all the elements of $\left\langle\frac{1}{2}\right\rangle$ in $\left(\mathbf{Q}^{*}, \cdot\right)$. Solution: Remember to use both positive, 0 , and negative powers: $\left\{\ldots, 8,4,2,1,0, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}$.
6. Without doing any computations, explain why both elements in each of the following pairs in Z_{30} have the same order: $\{2,28\}$ and $\{8,22\}$. Solution: Because each pair of elements are inverses of each other and inverses have the same order.
7. What is the order of $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ in $G L\left(\mathbf{Z}_{3}, 2\right)$? The Z_{3} means that you do the multiplcation mod 3 . Solution: Just multiply and reduce mod 3.

$$
A^{2}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \quad A^{3}=\left(\begin{array}{ll}
1 & \\
0 & 1
\end{array}\right)=I
$$

So $|A|=3$.
8. D_{4} has 7 distinct cyclic subgroups. What are they? Hint: Dig out your table and just see what each element generates! Solution: The cyclic subgroups are:

$$
\begin{aligned}
<r_{0}> & =\left\{r_{0}\right\} \\
<r_{180}> & =\left\{r_{0}, r_{180}\right\} \\
<r_{90}> & =\left\{r_{0}, r_{90}, r_{180}, r_{270}\right\}=<r_{270}> \\
<h> & =\left\{r_{0}, h\right\} \\
<v> & =\left\{r_{0}, v\right\} \\
<d> & =\left\{r_{0}, d\right\} \\
<d^{\prime}> & =\left\{r_{0}, d^{\prime}\right\}
\end{aligned}
$$

9. If $G=<a>$ is a cyclic group of order p where p is prime, what is the order of a^{k} where $1<k<p$? Solution: From Sam's Theorem, $\left|a^{k}\right|=\frac{p}{\operatorname{gcd}(k, p)}=\frac{p}{1}=p$. This means that any non-identity element generates G.
10. From the Fundamental Theorem on Cyclic Groups, we know that any subgroup of a cyclic group is also cyclic. We also know that \mathbf{Z}_{n} is always cyclic since it is generated both by 1 and $n-1$. (Sam's Theorem may be helpful here.)
a) Find the generators and the corresponding elements of all the cyclic subgroups of \mathbf{Z}_{18}. Solution:

$$
\begin{aligned}
& \langle 1\rangle=\mathrm{Z}_{18}=\langle 5>=<7>=<11>=<13>=<17\rangle \\
& \langle 2\rangle=\{0,2,4,6,8,10,12,14,16\}=\langle 4\rangle=\langle 8\rangle=\langle 10\rangle=\langle 14\rangle=\langle 16\rangle \\
& \langle 3\rangle=\{0,3,6,9,12,15\}=\langle 9\rangle=\langle 15\rangle \\
& <6>=\{0,6,12\}=<12> \\
& <9>=\{0,9\} \\
& <0>=\{0\}
\end{aligned}
$$

b) Find the generators and the corresponding elements of all the cyclic subgroups of \mathbf{Z}_{25}. Solution:

$$
\begin{aligned}
& <5>=\{0,5,10,15,20\}=<10>=<15>=<20> \\
& <0>=\{0\}
\end{aligned}
$$

Every other element is relatively prime to 25 and generates all of \mathbf{Z}_{25}.
c) Find the generators and the corresponding elements of all the cyclic subgroups of \mathbf{Z}_{19}. Solution: Every element (other than 0) is relatively prime to 19 and so generates all of \mathbf{Z}_{19}.
d) From the exam, you know that U_{5} is cyclic. Find the generators and the corresponding elements of all its cyclic subgroups. Solution: From the exam $\langle 2\rangle=\langle 3\rangle=U(5)$. Obiously $\langle 1\rangle=\{1\}$, and finally $\langle 4\rangle=\langle 1,4\rangle$.

