MATH 375.6 Class 6: Selected Answers

1. Gallian page 52 #6. Solution: Look at a non-abelian group, say our old friend D_3 . Notice that

$$a^{-1}ba \neq b \iff ba \neq ab$$

In D_3 , if a and b are any two reflections, then $ba \neq ab$.

*	r_0	r_{120}	r_{240}	a	b	c
r_0	r_0	r_{120}	r_{240}	a	b	с
r_{120}	r_{120}	r_{240}	r_0	b	c	a
r_{240}	r_{240}	r_0	r_{120}	c	a	b
a	a	c	b	r_0	r_{240}	r_{120}
b	b	a	с	r_{120}	r_0	r_{240}
c	с	b	a	r_{240}	r_{120}	r_0

2. Gallian page 52 #8. Prove that (a⁻¹ba)ⁿ = a⁻¹bⁿa. Solution: We will first show that this is true for the non-negative integers by induction. Base case: n = 0. Then (a⁻¹ba)⁰ = e and we compare this to a⁻¹b⁰a = a⁻¹ea = e, so the the induction starts. Inductive step: Assume (a⁻¹ba)ⁿ = a⁻¹bⁿa and now show (a⁻¹ba)ⁿ⁺¹ = a⁻¹bⁿ⁺¹a. But

$$(a^{-1}ba)^{n+1} = (a^{-1}ba)^n \cdot a^{-1}ba = a^{-1}b^n a \cdot a^{-1}ba = a^{-1}b^n eba = a^{-1}b^{n+1}a.$$

So the result is true for all non-negative integers. Now consider -n where $n \in \mathbb{Z}^+$. Then using the fact that the inverse of a product is the product of the inverses in reverse order,

$$(a^{-1}ba)^{-n} = [a^{-1}ba)^n]^{-1} = [a^{-1}b^na]^{-1} = a^{-1}(b^n)^{-1}(a^{-1})^{-1} = a^{-1}b^{-n}a.$$

This completes the proof.

- **3.** Gallian page 53 #24. Prove that every Cayley table is a Latin square. **Solution:** Assume not. Assume that in there is an element $a \in G$ so that in the *a*-row of the table, the same element, say x, appears twice. This means that there are two distinct elements, say $s, t \in G$ such that as = x and at = x. But then as = at and by left cancellation, s = t. This contradicts that s and t are distinct. So the same element cannot appear twice in any row. A similar argument works for columns and uses right cancellation.
- 4. Gallian page 53 #26. Prove that if $(ab)^2 = a^2b^2$ in a group G, then ab = ba. Solution: Finally, an easy one. Just write it out.

$$(ab)^2 = a^2 b^2 \iff abab = aabb \iff bab = abb \iff ba = ab$$

where we have used left and right cancellation in the last two steps.

5. Let H(n) denote the set of $n \times n$ symmetric matrices. That is,

$$H(n) = \{A \in M_{nn} \mid A^T = A\},\$$

where A^T denotes the *transpose* of A. Show that H(n) is a subgroup of M_{nn} , the group of all $n \times n$ matrices under addition. Solution: Check closure and invervess. Closure: Let $A, B \in H(n)$. Then $A = A^T$ and $B = B^T$. Show A + B is symmetric.

$$(A+B)^T = A^T + B^T = A + B.$$

So A + B is symmetric. Inverses: Remember the group operation is addition. Then if A is symmetric, we must show -A is symmetric. Now $A^T = A$ and one can pull scalars out of the transpose operation, so

$$(-A)^T = -(A^T) = -(A) = -A.$$

So -A is symmetric and H(n) is a subgroup of M_{nn}

6. a) The Heisenberg Group (Heisenberg was a Nobel prize winner in physics) is the set of 3×3 matrices defined by:

$$H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \, \middle| \, a, b, c \in \mathbf{R} \right\}.$$

Show that H is an *subgroup* of GL(3), the group of 3×3 matrices under multiplication. Solution: Closure: Let

$$A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix}.$$

Then

$$AB = \begin{pmatrix} 1 & a+d & b+af+e \\ 0 & 1 & c+f \\ 0 & 0 & 1 \end{pmatrix}.$$

Note that AB has the correct form to be in H. Inverses: From the product AB above, you can see what the inverse has to be. If we want B to be the inverse, then

$$AB = I = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

So comparing to the earlier calculation, we need d = -a, f = -c, and e = -b + ac. Alternately, you could get theinverse by the usual reduction process. In either case:

$$A^{-1} = \begin{pmatrix} 1 & -a & -b + ac \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix}.$$

Note that this matrix has the correct form to be in H.

b) In H, find the order of the element

$$\left(\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Solution: From the calculation of AB above, it follows that for any $n \in \mathbf{Z}^+$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

So the order is ∞ .

- c) What is |H|? Solution: $|H| = \infty$ since it contains at least the infinite number of matrices from the previous part.
- 7. Find |8| in \mathbb{Z}_{10} and |8| in U(9). Solution: |8| = 5 in \mathbb{Z}_{10} (since $5 \cdot 8 = 40 \equiv 0 \mod 10$) and |8| = 2 in U(9) (since $8^2 = 64 \equiv 1 \mod 9$).
- a) Gallian page 65 #4. Prove that any element a and its inverse a⁻¹ have the same order. Solution: If both elements have infinite order then we are done. So assume that at least one of a or a⁻¹ has finite order. Suppose a has order m. Then

$$a^m = e \Rightarrow (a^m)^{-1} = e^{-1} = e.$$

So a^{-1} has finite order. And similarly, if a^{-1} has finite order, so does a (just) reverse the arrow above). Now we check to see if they are the same order. (The potential problem is that both could have finite order, say 4 and 8, but not the same order.) So assume |a| = m, so m is the smallest positive integer such that $a^m = e$. And assume $|a^{-1}| = n$, so n is the smallest positive integer such that $(a^{-1})^n = e$. However, we just saw that $a^m = e \Rightarrow (a^m)^{-1} = e$, so this means that $n \le m$ since n is the smallest power of a^{-1} to produce e. Of course, $(a^{-1})^n = e \Rightarrow [(a^{-1})^n]^{-1} = a^n = e^{-1} = e$, so now $m \le n$. Therefore m = n.

- **b)** Prove that the number of elements x in a group G such that $x^3 = e$ is odd. Solution: Clearly $e^3 = e$. Now if $x \neq e$ then $x^2 = x^{-1}$ because $xx^2 = x^3 = e$. This also means that $x^2 \neq e$ otherwise we would have $x^2 = x^{-1} = e \Rightarrow x = e$. But from part a), both x and x^{-1} have the same order, namely 3. That is, the elements of order 3 come in pairs of the form x and $x^2 = x^{-1}$. So the the number of elements of order 3 is *even*. But we also have that $e^3 = e$, so the total number of elements satisfying the condition is odd.
- **9.** a) Gallian page 68 #38 (a) and (c). Solution: |U(3)| = 2, |U(4)| = 2, |U(12)| = 4. |U(4)| = 2, |U(5)| = 4, |U(12)| = 8.

b) Conjecture: $|U(m)| \times |U(n)| = |U(mn)|$, at least if gcd(m, n) = 1.

10. This problem combines linear algebra, trigonometry, and abstract algebra. Great! For any real number α , let

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

a) Show that $R_{\alpha} \in SL(2, \mathbf{R})$. Solution:

$$\det R_{\alpha} = \cos^2 \alpha + \sin^2 \alpha = 1 \Rightarrow R_{\alpha} \in SL(2, \mathbf{R}).$$

b) Show that $R_{\alpha}R_{\beta} = R_{\alpha+\beta}$. Solution:

$$R_{\alpha}R_{\beta} = \begin{pmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \cos\beta & -\sin\beta\\ \sin\beta & \cos\beta \end{pmatrix}$$
$$= \begin{pmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta & -\cos\alpha\sin\beta - \sin\alpha\cos\beta\\ \sin\alpha\cos\beta + \cos\alpha\sin\beta & \cos\alpha\cos\beta - \sin\alpha\sin\beta \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta)\\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix}$$
$$= R_{\alpha + \beta}$$

c) Show that $R_{-\alpha} = (R_{\alpha})^{-1}$. Solution: From the last step

$$R_{\alpha}R_{-\alpha} = R_{\alpha-\alpha} = R_0 = \begin{pmatrix} \cos 0 & -\sin 0\\ \sin 0 & \cos 0 \end{pmatrix} = I$$

- d) Show that $\mathbf{Rot} = \{R_{\alpha} \mid \alpha \in \mathbf{R}\}$ is a subgroup of $SL(2, \mathbf{R})$. Solution: Part b) shows closure and part c) shows that the inverse has the right form, so **Rot** is a subgroup of $SL(2, \mathbf{R})$.
- e) Let's assume that α measures an angle in *radians*. $|R_{\pi/4}| = 8$, since a rotation needs to be a multiple of 2π to be I. $|\mathbf{Rot}| = \infty$ since there are an infinite number of different angles between 0 and 2π .
- f) Extra Credit: Go back to your linear algebra text (or use your head) and figure out what R_{α} represents geometrically. Solution: It represents a rotation of the plane of α radians with the origin as the center of rotation.
- g) Extra Credit: What is $|R_1|$? Remember the angle is measured in radians! Justify your answer. $|R_1| = \infty$ since 2π is irrational, no integer multiple of 1 will ever be a multiple of 2π .
- 11. Extra Credit or may be substituted for any one problem in #1-5. Let G be an *abelian* group and let n be a fixed positive integer. Let $H = \{x \in G \mid x^n = e\}$. Is H a subgroup of G? Solution: Closure: Let $x, y \in H$. Show $xy \in H$. But $x^n = e$ and $y^n = e$, so since the G is abelian

$$(xy)^n = xy \cdot xy \cdots xy = x^n y^n = ee = e.$$

Inverses: We showed in problem #8 that $x^n = e \iff (x^{-1})^n = e$.

12. Extra Credit: Gallian page 54 #32. Done in class.