MATH 375.6

Class 6: Selected Answers

1. Gallian page $52 \# 6$. Solution: Look at a non-abelian group, say our old friend D_{3}. Notice that

$$
a^{-1} b a \neq b \Longleftrightarrow b a \neq a b
$$

In D_{3}, if a and b are any two reflections, then $b a \neq a b$.

$*$	r_{0}	r_{120}	r_{240}	a	b	c
r_{0}	r_{0}	r_{120}	r_{240}	a	b	c
r_{120}	r_{120}	r_{240}	r_{0}	b	c	a
r_{240}	r_{240}	r_{0}	r_{120}	c	a	b
a	a	c	b	r_{0}	r_{240}	r_{120}
b	b	a	c	r_{120}	r_{0}	r_{240}
c	c	b	a	r_{240}	r_{120}	r_{0}

2. Gallian page $52 \# 8$. Prove that $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$. Solution: We will first show that this is true for the non-negative integers by induction. Base case: $n=0$. Then $\left(a^{-1} b a\right)^{0}=e$ and we compare this to $a^{-1} b^{0} a=a^{-1} e a=e$, so the the induction starts. Inductive step: Assume $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$ and now show $\left(a^{-1} b a\right)^{n+1}=a^{-1} b^{n+1} a$. But

$$
\left(a^{-1} b a\right)^{n+1}=\left(a^{-1} b a\right)^{n} \cdot a^{-1} b a=a^{-1} b^{n} a \cdot a^{-1} b a=a^{-1} b^{n} e b a=a^{-1} b^{n+1} a .
$$

So the result is true for all non-negative integers. Now consider $-n$ where $n \in \mathbf{Z}^{+}$. Then using the fact that the inverse of a product is the product of the inverses in reverse order,

$$
\left.\left(a^{-1} b a\right)^{-n}=\left[a^{-1} b a\right)^{n}\right]^{-1}=\left[a^{-1} b^{n} a\right]^{-1}=a^{-1}\left(b^{n}\right)^{-1}\left(a^{-1}\right)^{-1}=a^{-1} b^{-n} a .
$$

This completes the proof.
3. Gallian page $53 \# 24$. Prove that every Cayley table is a Latin square. Solution: Assume not. Assume that in there is an element $a \in G$ so that in the a-row of the table, the same element, say x, appears twice. This means that there are two distinct elements, say $s, t \in G$ such that $a s=x$ and $a t=x$. But then $a s=a t$ and by left cancellation, $s=t$. This contradicts that s and t are distinct. So the same element cannot appear twice in any row. A similar argument works for columns and uses right cancellation.
4. Gallian page $53 \# 26$. Prove that if $(a b)^{2}=a^{2} b^{2}$ in a group G, then $a b=b a$. Solution: Finally, an easy one. Just write it out.

$$
(a b)^{2}=a^{2} b^{2} \Longleftrightarrow a b a b=a a b b \Longleftrightarrow b a b=a b b \Longleftrightarrow b a=a b
$$

where we have used left and right cancellation in the last two steps.
5. Let $H(n)$ denote the set of $n \times n$ symmetric matrices. That is,

$$
H(n)=\left\{A \in M_{n n} \mid A^{T}=A\right\},
$$

where A^{T} denotes the transpose of A. Show that $H(n)$ is a subgroup of $M_{n n}$, the group of all $n \times n$ matrices under addition. Solution: Check closure and invervses. Closure: Let $A, B \in H(n)$. Then $A=A^{T}$ and $B=B^{T}$. Show $A+B$ is symmetric.

$$
(A+B)^{T}=A^{T}+B^{T}=A+B .
$$

So $A+B$ is symmetric. Inverses: Remember the group operation is addition. Then if A is symmetric, we must show $-A$ is symmetric. Now $A^{T}=A$ and one can pull scalars out of the transpose operation, so

$$
(-A)^{T}=-\left(A^{T}\right)=-(A)=-A
$$

So $-A$ is symmetric and $H(n)$ is a subgroup of $M_{n n}$
6. a) The Heisenberg Group (Heisenberg was a Nobel prize winner in physics) is the set of 3×3 matrices defined by:

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbf{R}\right\} .
$$

Show that H is an subgroup of $G L(3)$, the group of 3×3 matrices under multiplication. Solution: Closure: Let

$$
A=\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & d & e \\
0 & 1 & f \\
0 & 0 & 1
\end{array}\right) .
$$

Then

$$
A B=\left(\begin{array}{ccc}
1 & a+d & b+a f+e \\
0 & 1 & c+f \\
0 & 0 & 1
\end{array}\right)
$$

Note that $A B$ has the correct form to be in H. Inverses: From the product $A B$ above, you can see what the inverse has to be. If we want B to be the inverse, then

$$
A B=I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

So comparing to the earlier calculation, we need $d=-a, f=-c$, and $e=-b+a c$. Alternately, you could get theinverse by the usual reduction process. In either case:

$$
A^{-1}=\left(\begin{array}{ccc}
1 & -a & -b+a c \\
0 & 1 & -c \\
0 & 0 & 1
\end{array}\right)
$$

Note that this matrix has the correct form to be in H.
b) In H, find the order of the element

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Solution: From the calculation of $A B$ above, it follows that for any $n \in \mathbf{Z}^{+}$

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{lll}
1 & 0 & n \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

So the order is ∞.
c) What is $|H|$? Solution: $|H|=\infty$ since it contains at least the infinite number of matrices from the previous part.
7. Find $|8|$ in \mathbf{Z}_{10} and $|8|$ in $U(9)$. Solution: $|8|=5$ in $\mathbf{Z}_{10}($ since $5 \cdot 8=40 \equiv 0 \bmod 10)$ and $|8|=2$ in $U(9)$ (since $8^{2}=64 \equiv 1 \bmod 9$).
8. a) Gallian page 65 \#4. Prove that any element a and its inverse a^{-1} have the same order. Solution: If both elements have infinite order then we are done. So assume that at least one of a or a^{-1} has finite order. Suppose a has order m. Then

$$
a^{m}=e \Rightarrow\left(a^{m}\right)^{-1}=e^{-1}=e .
$$

So a^{-1} has finite order. And similarly, if a^{-1} has finite order, so does a (just) reverse the arrow above). Now we check to see if they are the same order. (The potential problem is that both could have finite order, say 4 and 8 , but not the same order.) So assume $|a|=m$, so m is the smallest positive integer such
that $a^{m}=e$. And assume $\left|a^{-1}\right|=n$, so n is the smallest positive integer such that $\left(a^{-1}\right)^{n}=e$. However, we just saw that $a^{m}=e \Rightarrow\left(a^{m}\right)^{-1}=e$, so this means that $n \leq m$ since n is the smallest power of a^{-1} to produce e. Of course, $\left(a^{-1}\right)^{n}=e \Rightarrow\left[\left(a^{-1}\right)^{n}\right]^{-1}=a^{n}=e^{-1}=e$, so now $m \leq n$. Therefore $m=n$.
b) Prove that the number of elements x in a group G such that $x^{3}=e$ is odd. Solution: Clearly $e^{3}=e$. Now if $x \neq e$ then $x^{2}=x^{-1}$ because $x x^{2}=x^{3}=e$. This also means that $x^{2} \neq e$ otherwise we would have $x^{2}=x^{-1}=e \Rightarrow x=e$. But from part a), both x and x^{-1} have the same order, namely 3 . That is, the elements of order 3 come in pairs of the form x and $x^{2}=x^{-1}$. So the the number of elements of order 3 is even. But we also have that $e^{3}=e$, so the total number of elements satisfying the condition is odd.
9. a) Gallian page $68 \# 38$ (a) and (c). Solution: $|U(3)|=2,|U(4)|=2,|U(12)|=4$. $|U(4)|=2$, $|U(5)|=4,|U(12)|=8$.
b) Conjecture: $|U(m)| \times|U(n)|=|U(m n)|$, at least if $\operatorname{gcd}(m, n)=1$.
10. This problem combines linear algebra, trigonometry, and abstract algebra. Great! For any real number α, let

$$
R_{\alpha}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

a) Show that $R_{\alpha} \in S L(2, \mathbf{R})$. Solution:

$$
\operatorname{det} R_{\alpha}=\cos ^{2} \alpha+\sin ^{2} \alpha=1 \Rightarrow R_{\alpha} \in S L(2, \mathbf{R}) .
$$

b) Show that $R_{\alpha} R_{\beta}=R_{\alpha+\beta}$. Solution:

$$
\begin{aligned}
R_{\alpha} R_{\beta} & =\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & -\cos \alpha \sin \beta-\sin \alpha \cos \beta \\
\sin \alpha \cos \beta+\cos \alpha \sin \beta & \cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right) \\
& =R_{\alpha+\beta}
\end{aligned}
$$

c) Show that $R_{-\alpha}=\left(R_{\alpha}\right)^{-1}$. Solution: From the last step

$$
R_{\alpha} R_{-\alpha}=R_{\alpha-\alpha}=R_{0}=\left(\begin{array}{cc}
\cos 0 & -\sin 0 \\
\sin 0 & \cos 0
\end{array}\right)=I
$$

d) Show that Rot $=\left\{R_{\alpha} \mid \alpha \in \mathbf{R}\right\}$ is a subgroup of $S L(2, \mathbf{R})$. Solution: Part b) shows closure and part c) shows that the inverse has the right form, so Rot is a subgroup of $S L(2, \mathbf{R})$.
e) Let's assume that α measures an angle in radians. $\left|R_{\pi / 4}\right|=8$, since a rotation needs to be a multiple of 2π to be I. $|\operatorname{Rot}|=\infty$ since there are an infinite number of different angles between 0 and 2π.
f) Extra Credit: Go back to your linear algebra text (or use your head) and figure out what R_{α} represents geometrically. Solution: It represents a rotation of the plane of α radians with the origin as the center of rotation.
g) Extra Credit: What is $\left|R_{1}\right|$? Remember the angle is measred in radians! Justify your answer. $\left|R_{1}\right|=\infty$ since 2π is irrational, no integer multiple of 1 will ever be a multiple of 2π.
11. Extra Credit or may be substituted for any one problem in $\# 1-5$. Let G be an abelian group and let n be a fixed positive integer. Let $H=\left\{x \in G \mid x^{n}=e\right\}$. Is H a subgroup of G ? Solution: Closure: Let $x, y \in H$. Show $x y \in H$. But $x^{n}=e$ and $y^{n}=e$, so since the G is abelian

$$
(x y)^{n}=x y \cdot x y \cdots x y=x^{n} y^{n}=e e=e .
$$

Inverses: We showed in problem \#8 that $x^{n}=e \Longleftrightarrow\left(x^{-1}\right)^{n}=e$.
12. Extra Credit: Gallian page $54 \# 32$. Done in class.

