MATH 375.5 Class 5: Selected Answers

1. Let Q be the following set of ordered pairs of integers

$$Q = \{ (m, n) \mid m, n \in \mathbf{Z}, \ n \neq 0 \}.$$

If (m,n) and (j,k) are in Q define $(m,n) \approx (j,k)$ if mk = jn. Check that \approx is an equivalence relation on Q. Solution: As noted in the handout, (m,n) and (j,k) are equivalent if and only if the fractions m/n and j/k are equal. Symmetric: Given $(m,n) \in Q$. Then mn = mn so $(m,n) \sim (m,n)$. Reflexive: Given $(m,n) \sim (j,k)$. Then mk = jn, so jn = mk. Thus, $(j,k) \sim (m,n)$. Transitive: Given $(m,n) \sim (j,k)$ and $(j,k) \sim (a,b)$. Then mk = jn and jb = ak. Thus,

$$mk \cdot jb = jn \cdot ak \Rightarrow mb = na = an \Rightarrow (m, n) \sim (a, b).$$

- 2. On Z, let $aRb \iff ab \le 0$. Determine whether R is an equivalence relation. No, it is not reflexive. If $a \ne 0$, then $aa = a^2 > 0$, so a is not related to a. It is symmetric since ab = ba. But it is not transitive: 1R 1, -1R2, but $1R \sim 2$.
- **3.** On **Z**, define $a \sim b$ to mean that a + b is even.
 - a) Show that \sim is an equivalence relation. Reflexive: a + a = 2a is a always even. Symmetric: If $a \sim b$, then a + b is even. But integer addition is commutative, so b + a = a + b is even, so $b \sim a$. Transitive: Given $a \sim b$ and $b \sim c$. Then a + b and b + c are even. Hence (a + b) + (b + c) = a + 2b + c is even. Since 2b is even, then

$$(a+2b+c) - 2b = a + c$$

is even and so $a \sim c$.

- **b**) What are the equivalence classes of this relation? One class is the odd integers, the other the even.
- 4. Let M be the set of all $n \times n$ matrices. Define $A \sim B$ to mean det AB > 0. Show that this is not an equivalence relation. Which properties fail and which hold? Solution: The relation is not symmetric. If det A = 0 (i.e., A has no inverse), then det $AA = \det A \det A = 0$. (If det $A \neq 0$, then det $AA = (\det A)^2 > 0$.) The relation is symmetric, since if $A \sim B$, then det AB > 0, so

$$\det BA = \det B \det A = \det A \det B = \det AB > 0 \Rightarrow B \sim A.$$

Finally the relation is transitive. Notice that since det $AB = \det A \det B$, then det AB > 0 if and only if both determinants have the same sign, i.e., both are positive or both are negative. So $A \sim B$ means det Aand det B have the same sign and $B \sim C$ means that det B and det C have the same sign. It follows that all three determinants must have the same sign and in particular that det A and det C have the same sign. Therefore, det $AC = \det A \det C > 0$ and $A \sim C$.

5. Prove or find a counterexample: Let G be a group. For $a, b \in G$, define $a \sim b$ to mean ab = ba. Is ~ an equivalence relation on G? No. Use a non-abelian group like D_3 . While ~ is symmetric and reflexive, transitivity can fail. $ar_0 = a = r_0 a$, so $a \sim r_0$. And $r_0 r_{120} = r_{120} = r_{120} r_0$ so $r_0 \sim r_{120}$. But $r_{120}a = b$ while $ar_{120} = c$, so $r_{120} \not\sim a$.