MATH 375.5

Class 5: Selected Answers

1. Let Q be the following set of ordered pairs of integers

$$
Q=\{(m, n) \mid m, n \in \mathbf{Z}, n \neq 0\}
$$

If (m, n) and (j, k) are in Q define $(m, n) \approx(j, k)$ if $m k=j n$. Check that \approx is an equivalence relation on Q. Solution: As noted in the handout, (m, n) and (j, k) are equivalent if and only if the fractions m / n and j / k are equal. Symmetric: Given $(m, n) \in Q$. Then $m n=m n$ so $(m, n) \sim(m, n)$. Reflexive: Given $(m, n) \sim(j, k)$. Then $m k=j n$, so $j n=m k$. Thus, $(j, k) \sim(m, n)$. Transitive: Given $(m, n) \sim(j, k)$ and $(j, k) \sim(a, b)$. Then $m k=j n$ and $j b=a k$. Thus,

$$
m k \cdot j b=j n \cdot a k \Rightarrow m b=n a=a n \Rightarrow(m, n) \sim(a, b)
$$

2. On Z , let $a R b \Longleftrightarrow a b \leq 0$. Determine whether R is an equivalence relation. No, it is not reflexive. If $a \neq 0$, then $a a=a^{2}>0$, so a is not related to a. It is symmetric since $a b=b a$. But it is not transitive: $1 R-1,-1 R 2$, but $1 R \sim 2$.
3. On Z, define $a \sim b$ to mean that $a+b$ is even.
a) Show that \sim is an equivalence relation. Reflexive: $a+a=2 a$ is a always even. Symmetric: If $a \sim b$, then $a+b$ is even. But integer addition is commutative, so $b+a=a+b$ is even, so $b \sim a$. Tranisitive: Given $a \sim b$ and $b \sim c$. Then $a+b$ and $b+c$ are even. Hence $(a+b)+(b+c)=a+2 b+c$ is even. Since $2 b$ is even, then

$$
(a+2 b+c)-2 b=a+c
$$

is even and so $a \sim c$.
b) What are the equivalence classes of this relation? One class is the odd integers, the other the even.
4. Let M be the set of all $n \times n$ matrices. Define $A \sim B$ to mean $\operatorname{det} A B>0$. Show that this is not an equivalence relation. Which properties fail and which hold? Solution: The relation is not symmetric. If $\operatorname{det} A=0$ (i.e., A has no inverse), then $\operatorname{det} A A=\operatorname{det} A \operatorname{det} A=0$. (If $\operatorname{det} A \neq 0$, then $\operatorname{det} A A=(\operatorname{det} A)^{2}>$ 0 .) The relation is symmeteric, since if $A \sim B$, then $\operatorname{det} A B>0$, so

$$
\operatorname{det} B A=\operatorname{det} B \operatorname{det} A=\operatorname{det} A \operatorname{det} B=\operatorname{det} A B>0 \Rightarrow B \sim A
$$

Finally the relation is transitive. Notice that since $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$, then $\operatorname{det} A B>0$ if and only if both determinants have the same sign, i.e., both are positive or both are negative. So $A \sim B$ means det A and det B have the same sign and $B \sim C$ means that $\operatorname{det} B$ and $\operatorname{det} C$ have the same sign. It follows that all three determinants must have the same sign and in particular that det A and $\operatorname{det} C$ have the same sign. Therefore, $\operatorname{det} A C=\operatorname{det} A \operatorname{det} C>0$ and $A \sim C$.
5. Prove or find a counterexample: Let G be a group. For $a, b \in G$, define $a \sim b$ to mean $a b=b a$. Is \sim an equivalence relation on G ? No. Use a non-abelian group like D_{3}. While \sim is symmetric and reflexive, transitivity can fail. $a r_{0}=a=r_{0} a$, so $a \sim r_{0}$. And $r_{0} r_{120}=r_{120}=r_{120} r_{0}$ so $r_{0} \sim r_{120}$. But $r_{120} a=b$ while $a r_{120}=c$, so $r_{120} \nsim a$.

