MATH 375.3

Class 3: Selected Answers

1. Basis Step: When $n=1$ we have $1=1^{2}$ so the induction starts. Inductive Step: Note the n-th odd integer is $2 n-1$. Given that $1+3+\cdots+(2 n-1)=n^{2}$. To show that

$$
1+3+\cdots+(2 n-1)+(2 n+1)=(n+1)^{2} .
$$

But

$$
\begin{aligned}
1+3+\cdots+(2 n-1)+(2 n+1)=[1+3+\cdots+(2 n-1)]+(2 n+1) & =n^{2}+(2 n+1) \quad \text { given } \\
& =(n+1)^{2} .
\end{aligned}
$$

So the formula holds for all positive integers.
2. Basis Step: When $n=1$ we have $1 \cdot 1!=2-1=(1+1)$! -1 so the induction starts. Inductive Step: Given that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$. To show that

$$
1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!+(n+1) \cdot(n+1)!=(n+2)!-1 .
$$

But

$$
\begin{aligned}
1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!+(n+1) \cdot(n+1)! & =[1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!]+(n+1) \cdot(n+1)! & \\
& =[(n+1)!-1]+(n+1) \cdot(n+1)! & \text { given } \\
& =-1+(n+1+1) \cdot(n+1)! & \text { factor } \\
& =(n+2)(n+1)!-1 & \\
& =(n+2)!-1 . &
\end{aligned}
$$

3. $d=\operatorname{gcd}(a, b)$ is a linear combination of a and b, say $d=m a+n b$. But $t \mid m a$ and $t \mid n b$, since $t \mid a$ and $t \mid b$, respectively. So $t \mid(m a+n b)$ and, therefore, $t \mid d$.
4. a) Gallian page $22 \# 17$. Given $a=b \bmod s t$, so $s t \mid(a-b)$. Therefore, both $s \mid(a-b)$ and $t \mid(a-b)$. Or equivalently, $a=b \bmod s$ and $a=b \bmod t$, respectively.
b) $\operatorname{gcd}(s, t)$ need to be relatively prime for the converse to hold. Can you prove it?
5. a) Gallian page $22 \# 15$. Solution:

$$
\begin{aligned}
126 & =34 \cdot 3+24 \\
34 & =24 \cdot 1+10 \\
24 & =10 \cdot 2+4 \\
10 & =4 \cdot 2+2 \\
4 & =2 \cdot 2+0
\end{aligned}
$$

So, $\operatorname{gcd}(126,34)=2$.
b) Simply work backwards through the chain of equalities in the Euclidean algorithm.

$$
\begin{array}{rlrl}
2 & =10-2 \cdot 4 & & \text { now eliminate } 4 \\
& =10-2(24-2 \cdot 10)=5 \cdot 10-2 \cdot 24 & & \text { now eliminate } 10 \\
5(34-24)-2 \cdot 24=5 \cdot 34-7 \cdot 24 & & \text { now eliminate } 24 \\
& =5 \cdot 34-7(126-3 \cdot 34) & & \\
& =-7 \cdot 126+26 \cdot 34 . \\
\square
\end{array}
$$

6. Gallian page $35 \# 3 . D_{3}$ is not abelian (you should give at least one example of why not). The Cayley table is not symmetric.

$*$	r_{0}	r_{120}	r_{240}	a	b	c
r_{0}	r_{0}	r_{120}	r_{240}	a	b	c
r_{120}	r_{120}	r_{240}	r_{0}	b	c	a
r_{240}	r_{240}	r_{0}	r_{120}	c	a	b
a	a	c	b	r_{0}	r_{240}	r_{120}
b	b	a	c	r_{120}	r_{0}	r_{240}
c	c	b	a	r_{240}	r_{120}	r_{0}

7. (Converse of the Linear Combination Theorem). Let $d=\operatorname{gcd}(s, n)$. Then d is the smallest positive linear combination of s and n. But by assumption, $1=a s+b n$. That is, 1 is a linear combination of s and n. Therefore d is a positive number such that $d \leq 1$. This forces $d=1$.
8. Gallian page $51 \# 1$. The odd integers are not closed under addition and there is no identity.
9. Gallian page $51 \# 25$. The table is

$*$	e	a	b	c	d
e	e	a	b	c	d
a	a	b	c	d	e
b	b	c	d	e	a
c	c	d	e	a	b
d	d	e	a	b	c

