MATH 375.1

Class 2: Selected Answers

1. The table for $\left(\mathrm{Z}_{5}^{*}, \odot\right)$ is on the left below. It is a commutative group $(e=1)$.

$\odot \bmod 5$	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

$\odot \bmod 4$	1	2	3
1	1	2	3
2	2	0	2
3	3	2	1

2. a) The table for $\left(\mathbf{Z}_{4}^{*}, \odot\right)$ is on the right above. It is commutative. Again $e=1$ is the identity, but it is not closed since $2 \odot 2=0$, and 2 has no inverse.
b) $\left(\mathbf{Z}_{6}^{*}, \odot\right)$ will not be a group because it is not closed: $2 \odot 3=0$. Though $e=1$, neither 2 nor 4 will have inverses.
3. Let $z=2+5 i$ and $w=4+3 i$. Calculate the following sums and products:
a) $z+w=6+8 i$
b) $z-w=-2+2 i$
c) $z w=-7+26 i$
d) $i z=-5+2 i$
4. a) The the set $G=\{1, i,-1,-i\}$ of complex numbers undercomplex multiplication is a group with $e=1$ and it is commutative.

(G, \times)	1	i	-1	$-i$
1	1	i	-1	$-i$
i	i	-1	$-i$	1
-1	-1	$-i$	1	i
$-i$	$-i$	1	i	-1

5. a) Find all numbers less than $n=30$ that are relatively prime to 30 . That is, find k so that $\operatorname{gcd}(30, k)=1$. $k=1,7,11,13,17,19,23$, and 29.
b) Check that $81 \cdot 27=3 \bmod 12$.
c) Find $\operatorname{gcd}(8767,2178)$.

$$
\begin{aligned}
8767 & =2178 \cdot 4+55 \\
2178 & =55 \cdot 39+33 \\
55 & =33 \cdot 1+22 \\
33 & =22 \cdot 1+11 \\
22 & =11 \cdot 2+0
\end{aligned}
$$

So $\operatorname{gcd}(8767,2178)=11$.

