MATH 375.1 Class 2: Selected Answers

1. The table for (\mathbf{Z}_5^*, \odot) is on the left below. It is a commutative group (e = 1).

$\odot \bmod 5$	1	2	3	4					
1	1	2	3	4	\odot mc	d 4	1	2	3
2	2	4	1	3		1	1	2	3
3	3	1	4	2		2	2	0	2
4	4	3	2	1		3	3	2	1

- 2. a) The table for (\mathbf{Z}_4^*, \odot) is on the right above. It is commutative. Again e = 1 is the identity, but it is not closed since $2 \odot 2 = 0$, and 2 has no inverse.
 - **b)** (\mathbf{Z}_6^*, \odot) will not be a group because it is not closed: $2 \odot 3 = 0$. Though e = 1, neither 2 nor 4 will have inverses.
- **3.** Let z = 2 + 5i and w = 4 + 3i. Calculate the following sums and products:

a) z + w = 6 + 8i b) z - w = -2 + 2i c) zw = -7 + 26i d) iz = -5 + 2i

4. a) The the set $G = \{1, i, -1, -i\}$ of complex numbers undercomplex multiplication is a group with e = 1 and it is commutative.

(G, \times)	1	i	-1	-i
1	$\frac{1}{i}$	i	-1	-i
i	i	-1	-i	1
-1	-1	-i	1	i
-i	-i	1	i	- 1

- 5. a) Find all numbers less than n = 30 that are relatively prime to 30. That is, find k so that gcd(30, k) = 1. k = 1, 7, 11, 13, 17, 19, 23, and 29.
 - **b**) Check that $81 \cdot 27 = 3 \mod 12$.
 - c) Find gcd(8767, 2178).

$$8767 = 2178 \cdot 4 + 55$$

$$2178 = 55 \cdot 39 + 33$$

$$55 = 33 \cdot 1 + 22$$

$$33 = 22 \cdot 1 + 11$$

$$22 = 11 \cdot 2 + 0$$

So gcd(8767, 2178) = 11.