MATH 375.1

Class 1: Selected Answers

1. a) There are four rigid motions of a rectangle: r_{0}, r_{180}, v, and h, where v is the reflection across the vertical bisector of the rectangle and h is the reflection across the horizontal bisector.
b) Check that

$*$	r_{0}	r_{180}	v	h
r_{0}	r_{0}	r_{180}	v	h
r_{180}	r_{180}	r_{0}	h	v
v	v	h	r_{0}	r_{180}
h	h	v	r_{180}	r_{0}

c) Each element appears once in each row and each column.
d) $r 0$ is the identity element. Each element is its own inverse.
e) It is closed and commutative. It is a group (check associativity).
2. The Cayley Table for $\left(Z_{4}, \oplus\right)$ is not the same as the one above. In the Z_{4} table, not every element is its own inverse, so the identity does not always appear on the diagonal.
3. $\left(Z_{5}, \oplus\right)$ is also a commutative group. See the table on the left below.

$\oplus \bmod 5$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$\bmod 5$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

4. The table for $\left(Z_{5}, \odot\right)$ is on the right above. It is commutative. It is not a group. 1 is the identity, but 0 has no inverse. Note that 0 is a problem in that it appears too often in its row and column.
5. The Cayley table for the set of motions of a square is:

$*$	r_{0}	r_{90}	r_{180}	r_{270}	h	v	d	d^{\prime}
r_{0}	r_{0}	r_{90}	r_{180}	r_{270}	h	v	d	d^{\prime}
r_{90}	r_{90}	r_{180}	r_{270}	r_{0}	d	d^{\prime}	v	h
r_{180}	r_{180}	r_{270}	r_{0}	r_{90}	v	h	d^{\prime}	d
r_{270}	r_{270}	r_{0}	r_{90}	r_{180}	d^{\prime}	d	h	v
h	h	d^{\prime}	v	d	r_{0}	r_{180}	r_{270}	r_{90}
v	v	d	h	d^{\prime}	r_{180}	r_{0}	r_{90}	r_{270}
d	d	h	d^{\prime}	v	r_{90}	r_{270}	r_{0}	r_{180}
d^{\prime}	d^{\prime}	v	d	h	r_{270}	r_{90}	r_{180}	r_{0}

This is the group D_{4}, the dihedral group of order 8 . It is not commutative (not the table is not symmetric about the main diagonal). (h is the horizontal reflection, v the vertical, d is the reflection across the main diagonal, and d^{\prime} is the reflection across the off diagonal.)

