MATH 375.1 Class 1: Selected Answers

- 1. a) There are four rigid motions of a rectangle: r_0 , r_{180} , v, and h, where v is the reflection across the vertical bisector of the rectangle and h is the reflection across the horizontal bisector.
 - **b**) Check that

*	r_0	r_{180}	v	h
r_0	r_0	r_{180}	v	h
r_{180}	r_{180}	r_0	h	v
v	v	h	r_0	r_{180}
h	h	v	r_{180}	r_0

- c) Each element appears once in each row and each column.
- d) r0 is the identity element. Each element is its own inverse.
- e) It is closed and commutative. It is a group (check associativity).
- 2. The Cayley Table for (\mathbf{Z}_4, \oplus) is not the same as the one above. In the \mathbf{Z}_4 table, not every element is its own inverse, so the identity does not always appear on the diagonal.
- **3.** (\mathbf{Z}_5, \oplus) is also a commutative group. See the table on the left below.

$\oplus \mod 5$	0	1	2	3	4	$\odot \mod 5$	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

- 4. The table for (\mathbf{Z}_5, \odot) is on the right above. It is commutative. It is not a group. 1 is the identity, but 0 has no inverse. Note that 0 is a problem in that it appears too often in its row and column.
- 5. The Cayley table for the set of motions of a square is:

*	r_0	r_{90}	r_{180}	r_{270}	h	v	d	d'
r_0	r_0	r_{90}	r_{180}	r_{270}	h	v	d	d'
r_{90}	r_{90}	r_{180}	r_{270}	r_0	d	d'	v	h
r_{180}	r_{180}	r_{270}	r_0	r_{90}	v	h	d'	d
r_{270}	r_{270}	r_0	r_{90}	r_{180}	d'	d	h	v
h	h	d'	v	d	r_0	r_{180}	r_{270}	r_{90}
v	v	d	h	d'	r_{180}	r_0	r_{90}	r_{270}
d	d	h	d'	v	r_{90}	r_{270}	r_0	r_{180}
d'	d'	v	d	h	r_{270}	r_{90}	r_{180}	r_0

This is the group D_4 , the dihedral group of order 8. It is not commutative (not the table is not symmetric about the main diagonal). (*h* is the horizontal reflection, *v* the vertical, *d* is the reflection across the main diagonal, and *d'* is the reflection across the off diagonal.)