Owasco Lake
Its Watershed and Water Quality

John D Halfman, PhD
Environmental Studies Program
Department of Geoscience
Finger Lakes Institute
Hobart & William Smith Colleges

Finger Lakes Institute
Mission:

Environmental Research & Education:
Finger Lakes Institute is dedicated to the promotion of environmental research and education about the Finger Lakes and surrounding environments.

Environmentally-Sound Development:
In collaboration with regional environmental partners and state and local government offices, the Institute fosters "environmentally-sound" development practices throughout the region and disseminates the accumulated knowledge to the general public.

Web site: http://FLI.hws.edu/
Background Information

- **Economic Drivers**
 - Tourism
 - Agriculture

- **Class AA Drinking Water**
 - Seneca Lake
 - ~100,000 Residents
 - Skaneateles & Otisco
 - Syracuse
 - Hemlock & Canadice
 - Rochester

Water Quality

- **Pure Water**
 - Rare
 - Rain
 - Gases & Dust

- **Weathering Reactions**
 - Dissolved Salts
 - Organics
 - Metals

- **Erosion**
 - Clay & Silt
 - Colloids
 - Bacteria
 - Viruses

Press, Siever, Grotzinger & Jordan, 2004
Pollutants

Organic Wastes

- **Sewage Outfall**
 - Organic Rich
 - Disease Breeding Ground
 - Bacteria Decompose
 - Removal of Dissolved Oxygen
- **Point Source**
 - Downstream
 - Recovery
- **Municipal Sewage Treatment**
 - Remove Organics “BOD”
 - Nutrients?
- **Stream Segment Analysis**
 - Locate Point Source

Additional

Local Concerns

- **Animal Agriculture**
 - “CAFO” Operations
 - Steroids & Antibiotics
 - Animal Waste
- **Plant Agriculture**
 - Fertilizers, Pesticides
 - Soil Erosion

Enger and Smith, 2006
Agricultural Impact
Atrazine Runoff – Source(s)?

Cory McSweeney (WS’99) Environmental Firm
Sandy Baldwin (WS’02), Wood Hole Oceanographic
Support: US EPA

Atrazine Concentration in Streams

Lake Impact?
Nutrient Cycle

Streams, Rain

Dissolved Nutrients

Bacterial Decomposition

Dead Organics

Plankton

Fish (Lake Trout) & Other Organisms

Lake Trout (Salvelinus namaycush)

Sediments
Impact: Nutrient Cycle

- Agricultural Fertilizers
- Wastewater Nutrients
- Streams, Rain
- Dissolved Nutrients
- Bacterial Decomposition
- Anoxia?
- Dead Organics
- Organic Matter
- Plankton
- Algae Scum
- Weeds
- Outlet
- Fish (Lake Trout)
- Other Organisms
- Outlet
- Streams, Rain
- Sediments
- Finger Lakes: Water Quality
- Impact of Land Use, Bedrock Geology & Watershed Protection Legislation
- Limestone vs. Shales & Sandstones
- Forested vs. Agricultural Landscapes
Water Quality & Its Protection

Finger Lake Water Quality

Bacteria (Total Coliform & E. coli)
Algae (Chlorophyll-a)
Nutrients (Phosphates, Nitrates)
Suspended Sediments (TSS)
Water Clarity (Secchi disk)

Legislation

Bush, 2006, Undergraduate Honors Thesis

Wastewater Phosphorus Effluents

From: Bruce Natale, CC WQMA Chair
Preliminary Recommendations

- Groton Wastewater Plant (P-N Loading)
 - Moravia P Load Limits OK
- Agricultural Sources (BMPs)
 - Animals & Crops
- Onsite Systems
- Watershed Inspector(s)
 - $4/User/Inspector is a Deal!
- Owasco Inlet
 - Owasco Flats - Floodplain
 - Remediate Channelization
 - Remove Flood Fluxes
- Update Water Quality Regulations
- Research & Education

Summer 2007 Research

NYS Funds - Senator Nozzolio

- John Halfman, Hobart & William Smith Colleges (HWS)
 - Expanded Lake and Stream Water Quality Survey
- Tim Sellers, Keuka College
 - Limitations Productivity (Nutrients, Light)
- Meghan Brown, HWS
 - Zooplankton Impact & Historical Record
- Bin Zhu & Bruce Gilman, HWS & Finger Lakes Community College
 - Macrophytes & Shallow-Water Biology
 - Zebras, Diporeia & Deep-Water Biology
- Susan Cashman, HWS
 - Stream Benthic Ecology
- Jim Ryan, HWS
 - Toxicology
- Tara Curtin, HWS
 - Environmental Change
- Marion Balyszak, Finger Lakes Institute
 - Regional Water Quality Legislation
2007 – Lake & Stream Data to Date

Lake

Dissolved Phosphate Annual Averages

<table>
<thead>
<tr>
<th>Year</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>2007</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>

Lake

Total Phosphate Annual Averages

<table>
<thead>
<tr>
<th>Year</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>100</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>200</td>
<td>220</td>
<td>240</td>
<td>260</td>
<td>280</td>
</tr>
<tr>
<td>2006</td>
<td>110</td>
<td>130</td>
<td>160</td>
<td>190</td>
<td>210</td>
<td>230</td>
<td>250</td>
<td>270</td>
<td>290</td>
</tr>
</tbody>
</table>

Stream

Dissolved Phosphate Average Flux

<table>
<thead>
<tr>
<th>Year</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>2007</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>

Thanks - Questions?

John Halfman, HWS
email: halfman@hws.edu