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Abstract: Meteorological and water quality data were collected in offshore and nearshore settings
over 4 years in the oligotrophic–mesotrophic Owasco and Seneca Lakes in order to assess cyanobacte-
ria bloom (CyanoHABs) spatial and temporal variability and precursor meteorological and water
quality conditions. CyanoHABs were detected from August through mid-October in both lakes.
Blooms were temporally and spatially isolated, i.e., rarely concurrently detected at 3 (4.2%) or more of
the 12 sites, and blooms (75.6%) were more frequently detected at only 1 of the 12 sites in the 10 min
interval photologs. Both lakes lacked consistent meteorological and water quality precursor condi-
tions. CyanoHABs were detected during the expected calm (<1 kph), sunny (600–900 W/m2), and
warm water (>23 ◦C) episodes. However, more CyanoHABs were detected during overcast/shady
(<250 W/m2) and windier (1 to 20 kph) and/or in cooler water (16 to 21 ◦C). More importantly, the
majority of the sunny, calm, and/or warm water episodes did not experience a bloom. This suggests
that nutrient availability was essential to trigger blooms in these two lakes, and we speculate that the
nutrients originate from the decomposition of nearshore organic matter and runoff from the largest
precipitation events.

Keywords: cyanobacteria; meteorological conditions; water quality; nutrients; oligotrophic-mesotrophic
lakes; finger lakes; spatial variability; temporal variability

1. Introduction

Over the last several decades, cyanobacterial harmful algal blooms (CyanoHABs) have
impacted freshwater ecosystems and local economies throughout the world, e.g., Lake
Taihu, China; Lake Erie, North America; Lake Victoria, Africa; and Lake Nieuwe Meer,
the Netherlands, e.g., [1–9]. Nutrient loading and global climate change are evoked to
explain the recent rise in CyanoHABs, e.g., [1,10–16]. Blooms more frequently impacted
shallow, nutrient-rich, water bodies. For example, Microcystis blooms were more frequently
found in western Lake Erie, which is smaller, warmer, and more nutrient rich than its
eastern basin [17]. Sodus Bay on Lake Ontario and Missisquoi Bay on Lake Champlain are
additional examples of shallow, warm, nutrient-rich water bodies frequented with late sum-
mer CyanoHABs [18–20]. These paradigms are being refined. For example, CyanoHABs
are also detected in oligotrophic lakes, and are enhanced by the presence of dreissenid
mussels [21–23]. However, challenges still exist in tracking and, more importantly, under-
standing their spatial and temporal variability, even in well-studied water bodies [1,24,25].

Since 2012, CyanoHABs with high toxins (blue-green algae chlorophyll > 25 mg/L,
microcystin > 20 mg/L; New York State Department of Environmental Conservation
(NYSDEC)) have been documented in the ultra-oligotrophic to eutrophic Finger Lakes
in central and western New York State [26]. These lakes are critical for the regional
agricultural–tourism economies and a source of municipal drinking water [27]. Local
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watershed monitoring groups trained by the NYSDEC have documented numerous blooms
with annual mean concentrations of 3600 to 6600 µg/L, and a few samples exceeding
10,000 µg/L, blue-green algae chlorophyll, during the August through mid-October HAB
season, which are typically concentrated along the shoreline with limited aerial extent,
especially in the oligo-mesotrophic Finger Lakes [28–30]. Dreissenid mussels are in these
lakes. The spatial and temporal variabilities make the oligo-mesotrophic Finger Lakes ideal
systems to increase our understanding of HAB events in freshwater ecosystems.

Our aim in this study is to present 4 years of nearshore and offshore meteorological
and water quality data in Seneca and Owasco Lakes to elucidate the spatial and temporal
circumstances for HAB events (Figure 1). Seneca and Owasco Lakes, 2 of the 11 Finger
Lakes in western and central New York State, drain a mixture of agricultural (40–50%) and
forested (35–40%) landscapes [31]. Both are deep, elongated, north-to-south-orientated,
and borderline oligotrophic to mesotrophic systems. Seneca Lake is deeper (198 vs. 54 m),
longer (57 vs. 18 km), and wider (maximum of 5.2 vs. 2.1 km) than Owasco Lake. Seneca
is warm monomictic, whereas Owasco is dimictic. Seneca also has a smaller watershed-
to-lake-surface-area ratio (6.7 vs. 17.4) than Owasco Lake. Both lakes have the invasive
dreissenid mussels. Volunteers detected up to 100 CyanoHABs in both lakes during any
one season (typically late July through October), which were first documented in 2012 at
Owasco and 2015 at Seneca Lake [26,32].
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every 10 min from 0700 to 1800 h to document bloom event timing. An Ambient 10002-
WS or WS-2000 Osprey weather station recorded air temperature, rainfall, barometric 
pressure, humidity, light intensity, wind speed, and wind direction every 30 min. Starting 
in 2017, a HOBO TidbiT MX or HOBO U20L-04 logger was placed inside a 2” PVC pipe 
and strapped to a dock post in ~1 m of water to measure water temperature every 30 min. 
Water grab samples from 11 dock sites in 2018 and 4 sites in 2022 in Owasco Lake were 
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sites in Seneca and Owasco Lakes. The inserts reveal the location of Seneca and Owasco Lakes in the
Finger Lakes of central New York, USA.
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2. Methods

Meteorological and limnological data were collected at multiple dock sites in Seneca
(2019–2021) and Owasco (2019–2022) Lakes during the mid-July through October HAB
season (Figure 1, Table 1). At each dock site, an automated camera, a weather station, and
a water temperature logger were deployed and water samples collected for nutrient and
algal concentrations. A Brinno TLC200 automated camera, deployed approximately 3 m
above the lake’s surface, recorded 2 m × 3 m to 3.5 m × 5 m images of the lake’s surface
every 10 min from 0700 to 1800 h to document bloom event timing. An Ambient 10002-WS
or WS-2000 Osprey weather station recorded air temperature, rainfall, barometric pressure,
humidity, light intensity, wind speed, and wind direction every 30 min. Starting in 2017, a
HOBO TidbiT MX or HOBO U20L-04 logger was placed inside a 2” PVC pipe and strapped
to a dock post in ~1 m of water to measure water temperature every 30 min. Water grab
samples from 11 dock sites in 2018 and 4 sites in 2022 in Owasco Lake were analyzed
for total phosphorus (TP), soluble reactive phosphate (SRP), nitrate–nitrite (NOx), total
suspended sediment (TSS), and chlorophyll-a concentrations following spectrophotomet-
ric limnological techniques [33]. Finally, an in situ Aqua Troll 600 water quality sonde
(YSI/Xylem EXO2 at FL-20) was deployed at the four dock sites in Owasco Lake from 2020
through 2022 to measure water temperature, conductivity, dissolved oxygen, total, and
phycocyanin fluorescence every 30 min. Each sonde was deployed inside a 4” diameter
PVC pipe for the sonde’s protection from waves, and strapped to a dock post. The PVC
pipes had numerous holes for water flow.

Table 1. Instrument deployment matrix in Owasco and Seneca Lakes.

Instrument Deployed Sample
Interval

Owasco
#Sites Seneca #Sites

Dock Sites 20
17

20
18

20
19

20
20

20
21

20
22

20
19

20
20

20
21

Weather Station—Air
Temperature, Rainfall,

Solar Intensity, Wind Speed, and
Direction

August–
October 30 min 2 4 4 4 8 8 8

Photographs–
Lake Surface

August–
October 10 min 2 4 4 4 8 8 8

Water Temperature, ~1 m Depth August–
October 30 min 4 4 2 4 4 4 8 8 8

Sondes, ~1 m Depth,
Temperature, Conductivity,

Dissolved Oxygen, Total, and
Phycocyanin Chlorophyll

August–
October 30 min 4 4 4

Nutrients (TP, SRP, NOx) and TSS,
Surface Grabs

August–
October Bimonthly 11 4

Nearshore Limnology

Nutrients (TP, SRP, NOx) and TSS,
Surface Grabs

August–
October Bimonthly 6 5 5

Offshore Limnology
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Table 1. Cont.

Instrument Deployed Sample
Interval

Owasco
#Sites Seneca #Sites

CTD Profile, Plankton Tow, Secchi
Depth,

Surface, and Bottom
Nutrients (TP, SRP, NOx), TSS,

Chlorophyll-a

May–
October

Monthly–
Weekly 2 2 2 2 2 2 4 4 4

Monitoring Buoy April–
October 1 1 1 1 1 1 1 1 1

Metrological Data 30 min

Water Column WQ Profiles 12 h

Macrophyte Surveys

Macrophyte, Quadrat
Surveys (0.5 m × 0.5 m) July 3

Macrophyte, 897 Rake Tosses, N
and S Ends

July–
September x x

Weekly limnological data from 4 offshore sites in Seneca Lake and 2 offshore and
7 nearshore (<4 m water depth, 2017–2019) sites in Owasco Lake were collected to compare
nearshore and offshore abiotic conditions. CTD (SeaBird SBE-25) profiles, Secchi depths,
and plankton tows (80 µm mesh, towed vertically through 20 m of water) were collected at
each site. Surface water grab samples were analyzed for TP, SRP, NOx, TSS, and chlorophyll-
a concentrations [33].

A YSI/Xylem meteorological and water quality monitoring buoy was deployed in
each lake from April through October at an offshore, midlake site. Each buoy collected
air temperature, barometric pressure, relative humidity, light intensity, wind speed, and
wind direction data every 30 min, and water column profiles using a YSI/Xylem EXO2
water quality sonde outfitted with temperature, conductivity, dissolved oxygen, turbidity,
chlorophyll, and phycocyanin sensors at noon and midnight every 1.5 m down the water
column, starting at 1 m below the surface. Data from a USGS buoy were used in 2020, while
the Seneca WQ buoy experienced COVID-delayed repairs.

Finally, preliminary macrophyte surveys were collected at 3 nearshore (<4 m water
depth) sites in Owasco Lake in July 2021. Site selection reflected the variability in substrate
in the lake from harder cobbles (Site G) to softer macrophyte-covered lake floors (Sites
C and D). At each site, triplicate 0.5 m × 0.5 m quadrats were tossed into the water, and
scuba divers removed all of the plants in each quadrant. Macrophytes were then separated,
identified to species, and weighed wet.

3. Results and Discussion

Data recovery and completeness was good (Table S1). Missed data were typically due
to power failures and the inability of the newer meteorological sensors to automatically
reconnect to the base station after a power failure at individual sites. These outages were
typically skewed towards the beginning (July) or end (October) of the deployment and
when blooms were not detected by the cameras. The camera, water temperature loggers,
and sonde were recovered early at FL-20 (A) because the homeowner had to remove the
dock for winter.

Deployment dates; the number of blooms detected at each site by the cameras and
volunteers; and mean, standard deviation, and maximum values of the water and air tem-
perature, wind speed, and light intensity data are shown in the Supplementary Materials
(Tables S2 and S3). The data are typically consistent across sites for each parameter, i.e.,
within 1 standard deviation. For example, the site averaged bloom-season water temper-
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atures for the dock and buoy sites were between 20 and 23 ◦C (±2 to 3 ◦C) through the
4 years of the study. Some differences exist. Mean wind speeds were notably faster at the
offshore buoy site than the dock sites in each lake, and were small and typically smaller
during blooms at the dock sites than other times. Light intensity was slightly elevated
during bloom events than other times as well. Finally, deviations detected in the Martin S
(E2) meteorological data from the other sites during 2022 were due to missed data, as this
site missed 86% of the data during the deployment due to power issues. Each parameter is
discussed in more detail below.

The literature indicates that CyanoHABs prefer warm water, sufficient light for pho-
tosynthesis and growth, lake stratification, calm or near-calm conditions, and elevated
concentrations of nutrients, e.g., [11,34–37]. The onset of CyanoHABs paralleled recent
surface water warming and increased anthropogenic nutrient loads related to increased
intensity and localization of precipitation events in these lakes due to global climate
change [33,35]. Daytime (defined by >0 W/m2 light intensities) meteorological and water
quality data presented here refine these criteria.

Diatoms dominated the phytoplankton mean annual assemblages from the offshore
sites. Diatoma (spring), Asterionella (spring), and Fragilaria (fall) species were the three
most common diatoms. Other diatom species detected (<1% annual count means) include
Tabellaria, Synedra, and Melosira. Dolichospermum (formerly Anabaena) and Microcystis species
were the two common forms of cyanobacteria. Low counts of Dolichospermum usually
appeared first, quickly followed by much larger counts of Microcystis during the HAB
season. Other cyanobacteria detected (<1% annual count means) include Stichosiphon and
Chroococcus. Varieties of green algae (Scenedesmus, Closteriopsis, Staurastrum, Pediastrum, and
Trichiscia) and dinoflagellates, chrysophytes, and euglenoids (Chrysosphaerella, Dinobryon,
Epipyxis, Ceratium, and Colacium) make up the rest of the community. The counts paralleled
FluoroProbe results when they were measured. The 20-year record from the offshore
sites indicates that cyanobacteria were always a few percent (<10%) of the annual mean
plankton community in both lakes; however, major shoreline blooms were not observed
until more recently.

CTD and monitoring buoy data from 1995 (Seneca) and 2005 (Owasco) indicate that
surface water temperatures have warmed by ~0.2 ◦C/year over the past few decades
in both lakes (Figure 2). A temperature benchmark of 25 ◦C was recently attained in
these lakes that served as a threshold for the increased dominance of CyanoHABs over
other forms of phytoplankton elsewhere [10–12]. Large runoff events delivered significant
nutrient loads to both lakes just prior to the first documented reports of Cyanobacteria
in both lakes [38,39]. More intense (>5 in/day, >12 cm/day) and more localized rainfall
events were more frequent in the past decade [38,40]. Both trends are consistent with
global climate change scenarios [41]. Warmer water also promotes faster decomposition of
macrophytes and other lake floor organic matter, and provides a potential nutrient source
for CyanoHABs and other phytoplankton in these borderline oligotrophic–mesotrophic
lakes, e.g., [1,42,43].

The automated cameras faithfully detected a total of 68 and 92 days with blooms in
Seneca and Owasco Lakes, respectively, during this study (Figure 3). The cameras typically
detected more blooms than the local watershed association bloom-watch volunteers at
every site (Table S2). Differences are expected, as the camera’s 10 min interval photos
imaged a small (2 m × 3 m) portion of the lake, whereas each volunteer typically looked for
blooms once a week anywhere along their ~1.6 km (1 mile) long segment of shoreline. The
volunteers confirmed that the typical bloom was localized and found along the shoreline,
i.e., infrequently extending lakeward beyond the end of the docks. Longshore currents
transported these localized blooms along the shoreline. In both lakes, blooms were detected
from August through mid-October, and more often from 1100 through 1700 (60%). They
lasted from 0.2 to 12 h with a mean duration of 3.2 h. Blooms were rarely detected
concurrently at 3 or more sites (<4.2%), and were typically detected at only 1 of the 12 sites
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(75.6%) during each 10 min photolog interval of the investigation. Thus, the photologs
confirmed the spatial and temporal variability of CyanoHABs.
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Figure 3. (a) Representative photo of a cyanobacterial bloom imaged by the automated camera.
(b) Percentage of concurrent CyanoHAB events in both lakes (12 sites) by year. Dates for each bloom
in (c) Owasco and (d) Seneca Lakes. (e) Time of day for blooms from 7 a.m. through 6 p.m. in both
lakes. (f) Lake wide mean and annual mean bloom durations in both lakes. The whiskers span the
minimum and maximum durations.
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Histograms of bloom and no-bloom episodes and bloom/no-bloom ratios versus
water temperature, light intensity, wind speed, wind direction, and rainfall revealed similar
patterns in both lakes. Blooms were detected when the nearshore water was warm, from
23 to 25 ◦C (44% of the blooms in Owasco, 33% in Seneca, Figure 4). However, an unex-
pected peak in bloom counts was observed in cooler nearshore water, cooler than most
bloom reports in the literature (16 to 21 ◦C, 23% of the blooms in Owasco, 33% in Seneca).
Blooms in cooler water may reflect the transition into the fall season and/or wind-driven
mixing events discussed below. At this range of surface water temperatures, both lakes
were stratified, as bottom water temperatures were within a degree of 4 ◦C year-round as
verified by the buoy and CTD data. Larger bloom/no-bloom ratios parallel the peaks in
the bloom histograms, suggesting that the two temperature intervals are more ideal for
CyanoHABs than other temperatures. For each parameter, the bloom/no-bloom ratios were
larger in Owasco Lake, reflecting a larger number of detected blooms by the automated
cameras during the deployments.
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bloom counts are on different scales.

As expected, blooms were frequent during calm, <1 kph, conditions (48% in Owasco,
45% in Seneca, Figure 5). However, over 52% of the blooms were detected at wind speeds
of 1 to 20 kph, which were more often blowing onshore. Bloom/no-bloom ratios were
generally larger at slower wind speeds, suggesting that CyanoHABs preferred slower
wind speeds. The onshore wind direction was unexpected because waves associated
with faster winds (e.g., >10 kph, >6 mph) typically retard cyanobacteria buoyancy [37].
Shoreline orientation relative to the offshore wind directions explained some of the spatial
variability in blooms in that blooms were more likely along protected, calm shorelines
than unprotected shorelines. Blooms were rarely detected (<0.5%) when rain was detected
during the previous 30 min of a bloom (Figure 6). The bloom/no-bloom histograms of air
temperature revealed similar bell-shaped curves. The most frequent (74%) air tempera-
tures during blooms were from 18 to 27 ◦C. Larger-bloom/no-bloom ratios parallel the
bloom histograms.
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sites over the course of the study, and annual means for the FLI Buoys in (g) Owasco and (h) Seneca. 

Figure 5. Histograms of wind speed during blooms and no blooms and bloom/no-bloom ratios in
(a,c) Owasco and (b,d) Seneca Lakes (identified by the automated cameras). Histograms of wind
direction during blooms and no blooms in (e) Owasco and (f) Seneca. Mean HAB season percent
calm conditions (<2.5 kph or <1.5 mph) and wind speeds (range: 0–15 kph) at the dock and buoy
sites over the course of the study, and annual means for the FLI Buoys in (g) Owasco and (h) Seneca.

Finally, bloom counts peaked at low light intensities, i.e., from 100 to 200 W/m2 (25% in
Owasco, 35% in Seneca) with a secondary peak at the expected larger light intensities, i.e.,
sunny conditions, from 600 to 900 W/m2 (25% in Owasco, 23% in Seneca, Figure 7).
For reference, daily light intensities peak just above 1100 W/m2 during cloud-free days
during the HAB season. Some of the low light episodes reflected cloudy weather but
others were due to shading by nearby trees, homes, and steep shorelines adjacent to the
dock. Bloom/no-bloom ratios were larger at the larger solar intensities, suggesting that
CyanoHABs preferred sunny skies. More importantly, 99% of the calm, sunny, warm-
water, and/or rain-free episodes did not experience a bloom. It confirms the lack of
consistent meteorological or limnological conditions during blooms, and suggests that
nutrient availability could be a factor for bloom genesis in these borderline oligotrophic–
mesotrophic lakes.
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Nutrient concentrations in surface water grab samples collected at dock, nearshore,
and offshore sites in Owasco Lake revealed similar concentration means and ranges of
total phosphorus (14 µg/L, P), soluble reactive phosphate (0.7 µg/L, P) and nitrate–nitrite
(0.6 mg/L, N, Figure 8). Estimated concentrations of phosphorus in the CyanoHABs
using measured cyanobacteria bloom concentrations and mean algal Redfield ratios were
approximately 10 to 100 times larger than the water column concentrations detected in
these lakes, e.g., [44]. The low nutrient concentrations and minimal spatial variability in
those concentrations indicate that the water column lacks sufficient nutrients to support
the detected bloom biomass. Perhaps a unique series of precursor events are required to
initiate a nearshore spike in nutrients and subsequently a bloom.
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plotting the “25, 50, 75% box”.

Numerous blooms were detected after the heaviest rain events over the course of the
study and consistent with findings elsewhere, e.g., [1,7,11,45] (Figure 9). In Owasco Lake,
the 18–20 August 2021 event preceded blooms at 3 of 4 sites around Owasco Lake. Blooms
were not detected around Seneca Lake during these dates because this intense precipitation
event was localized to the Owasco watershed [40]. This atypical and very localized event
provided over 20 cm of rain and 50% of the seasonal nutrient and suspended sediment loads
in the second largest basin in the watershed [40]. Lake levels rose by ~1 m and delivered
nearshore rotting organic debris to the water column. Atypical localized and intense rain
events are becoming the new normal as global temperatures continue to rise [41]. However,
blooms were not detected after most, i.e., smaller (<2 in, 5 cm) rain events.
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Blooms were also detected on the first calm day after a strong wind event, e.g., daylong,
sustained winds greater than 15 kph (Figure 10). For example, the 2020 peak in bloom
counts during October in Seneca Lake were associated with the first calm days after many
days with strong winds (Figure 2). We hypothesize that the strong winds and associated
waves uprooted macrophytes and other organic debris leading to biomass accumulation
along the downwind shoreline. The decaying biomass could provide a viable supply
of nutrients for the blooms. In support, two sites, Site C in Seneca Lake, and FL-20
(A) in Owasco Lake, experienced significantly fewer strong wind events and smaller
seasonal mean wind speeds than the other sites in these lakes (Figure 5). Site C experienced
the third fewest blooms in Seneca Lake, and the FL-20 (A) site experienced the fewest
blooms in Owasco Lake. This indicates that a lack of strong wind events hampered bloom
development during the subsequent calm day. For Owasco, the FL-20 (A) site lacks an
extensive shallow-water shelf (15 m wide compared to >100 m wide in the northern Owasco
Lake), as the lake floor descends quickly to the deepest and aphotic parts of the lake just
offshore of the dock. Thus, the FL-20 (A) site has less benthic biomass to decompose and
supply nutrients for blooms.

Surface water temperatures revealed consistent spatial and temporal variability in
water temperatures during each year of the study (Figure 11). The first major, i.e., mid-
August, bloom event of the season in both lakes were detected a week or so after the
summer peak in temperatures at ~25 ◦C, and more importantly, after a 2 to 3 ◦C multi-day
dip in surface water temperatures. The temperature dip was initiated by strong winds
that mixed cooler hypolimnetic water to the surface and/or were associated with a rain
event that brought cooler rainwater to the lake, and presumably delivered nutrients from
the watershed to the surface waters of the lake. We also hypothesize that strong winds
released nutrients from the decaying organics along the shoreline and/or stored in the
nearshore sediments. The amount of organic debris and nutrient cycling is presumably
augmented by the presence of dreissenid mussels nearshore [46]. The delay after the peak in
water temperatures may reflect the time required to stimulate benthic communities leading
to faster bacterial decomposition of organic debris along the shoreline. The prevailing
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southerly winds would accumulate the organic detritus to the northern shorelines, and
is consistent with more blooms detected along the northern shorelines. It suggests that
the warm water, wind/rain event, and subsequent temperature dip sequence defined a
series of events to initiate a bloom in these lakes. Unfortunately, subsequent blooms during
2017 and a few other years were less dependent on the warmer water, wind/rain, and
temperature dip sequence.
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The day-to-day change in water temperature, wind speed, light intensity, air temperature,
and rainfall over a 24 h period was investigated to explore these temporal relationships. The
mean of both 2 and 4 h windows during each sample point was subtracted from the mean
of the 2 and 4 h windows exactly 24 h before the sample point. This was calculated over the
entire dataset, counting if the sample time was during a bloom or not. The differences were
compiled for each lake and plotted as a percentage of the differences less than 0 to the total
dataset and its subsequent deviation from 50% (Figure 12). For example, 0% (50–50) indicates
an equal number of declines or increases in the environmental variable over the 24 h period.
A less-than-zero temperature difference indicates that the data point mean temperature was
warmer than during a previous 24 h window. Blooms occur after the water warms (65%), the
air warms (65%, in Owasco only), wind speed decreases (40%), light intensity increases (65%),
and rainfall declines (10%) from the previous day in both lakes. Temporal trends through the
bloom season in the percent difference were not observed in these parameters. The no-bloom
differences are typically separated by 15% from bloom comparison. It suggests that the change
in these environmental variables impacts the timing for many blooms. The wind speed and
rainfall results are consistent with the earlier findings, yet water and air temperature and light
intensity appear less consistent. However, these percentages are within 15% of 50%, and thus
do not exclude the opposite trend.
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The nutrient availability hypothesis for cyanobacteria blooms is supported by six
observations and preliminary macrophyte biomass data. First, approximately 100 mL
of distilled water was added to 50 mL of surficial sediments in 125 mL flasks, swirled,
and placed on a windowsill in full sunlight. The sediments were collected by ponar
dredge from water depths of 5 to 50 m at 8 different sites in Owasco Lake. Within a
week, cyanobacteria bloomed in every flask. It indicates that appropriate concentrations of
resting cysts and nutrients were present in the mud. The swirl, aka wind event, released
both for a bloom. Second, total phosphorus and total organic carbon concentrations in
these sediment samples ranged from 60 to 140 mg P/g dry sediment and 1 to 6% dry wt.,
respectively. These concentrations are sufficient to support a typical bloom of cyanobacteria
and consistent with findings elsewhere [47]. Third, cyanobacteria are frequently observed
near decaying macrophyte accumulations along the shoreline and floating macrophyte
mats in the open water. This suggests that decomposing organic material is supplying
nutrients for cyanobacterial growth, and is consistent with the unexpected detection of
blooms during onshore winds in these lakes and internal nutrient sources supporting
cyanobacterial blooms elsewhere, e.g., [14,48,49]. It also suggests a potential remediation
practice for these lakes; namely, remove shoreline accumulations of macrophytes and other
organic materials before they decompose.

Fourth, intense nearshore biological activity was discerned from the dockside sonde
data. Sonde dissolved oxygen (DO) concentrations revealed a diel cycle at all four dock
sites that was not observed offshore (Figure 13). DO concentrations were largest during the
daytime when the water was warmer, smallest at night when the water was cooler, and
interpreted as intense daytime net photosynthesis and nighttime respiration in nearshore
settings. Between the 4 Owasco dock sites, Burtis Pt. (D) had the largest diel change in
DO concentrations, FL-20 (A) had the smallest diurnal change in DO, and the two Martin
sites (E1 and E2) were in between. It parallels the mean width of 120, 15, 60, and 70 m,
respectively, of the offshore shallow water shelves (<4 m water depth) at each site and, thus,
the aerial extent of macrophyte beds and benthic algae (e.g., chara, starry stonewort).

Fifth, during the second week of September 2021, DO concentrations decreased to
anoxia or close to anoxia on several occasions, and occurred when the deployment pipe
was clogged with macrophytes (Figure 13). The DO decrease is interpreted as respiration
resulting from bacterial decomposition of the decaying macrophytes in the deployment
pipe. The occasional increase in DO reflects the replenishment of lake water into the pipe
enclosure. For a few days after the initial decreased DO, total chlorophyll and phycocyanin
concentrations increased. We suspect that cyanobacteria growth was stimulated by the
release of nutrients by bacterial respiration. The blooms were restricted to the deployment
pipe as they were not observed in the adjacent automated camera. The anoxic conditions
may have also released ferrous iron, a suspected micronutrient for CyanoHABs [50,51].

Sixth, preliminary macrophyte surveys revealed populations that were dominated by
brittle and other naiads, starry stonewort, chara, small and other pondweeds, and Eurasian
watermilfoil (Figure 14). Brittle naiads dominated site C, chara site D, and starry stonewort
site G. Quadrat mean macrophyte masses ranged from 3800 to 10,000 g wet/m2. Assuming
an estimated water content of 90% and typical phosphorus contents of 0.2% (dry weight),
this equates to 1 to 2 g of phosphorus/m2 of lake floor (Figure 8). Even if only 0.01% of
this biomass decomposed along the shoreline in any given year, this yields more than
enough phosphorus to spur a typical CyanoHABs bloom in these lakes, assuming a 4 m
water depth. It compares nicely with a three- to fivefold increase in water column TP
concentrations after decomposing common macrophytes in controlled settings [43]. The
northerly locations that have more extensive shallow-water shelves presumably generate
more nutrients for CyanoHABs. It parallels more frequent blooms along the northerly
shoreline. These observations and preliminary data suggest that large rain events, wind,
and decomposition of macrophytes and other biomass are likely nutrient sources for the
HAB events. Clearly, more work is required to better quantify macrophyte densities by
adding monitoring sites, investigating the percentage of biomass decomposed each year,
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and understanding the biomass and nutrient recycling by other organisms, e.g., zebra
and quagga mussels, on the lake floor to confirm this nutrient source hypothesis for these
borderline oligotrophic to mesotrophic lakes.
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Figure 14. Preliminary nearshore macrophyte biomass (kg wet/m2) in Owasco Lake during 2021.

4. Conclusions

Nearshore cyanobacterial blooms favored calm, sunny, and warm conditions. How-
ever, they were not detected on every calm, sunny, and warm day. Blooms were also
detected on overcast, cool, and windy days. The first blooms of the season happened a few
days after the summer peak in water temperatures, occasionally following a significant
dip (~2 ◦C) in water temperatures. Nearshore, water column, nutrient concentrations (TP,
SRP, and NOx) from surface grabs were similar to offshore data and insufficient to support
bloom events. Potential nutrient sources for blooms may result from significant precipita-
tion events and/or the decomposition of nearshore and shoreline organic matter, e.g., dead
macrophytes, nearshore sediment organics augmented by dreissenid mussels, and earlier
CyanoHABs. Onshore winds released the nutrients from these nearshore and shoreline
sources to supply the typical shoreline-hugging cyanobacterial blooms in these lakes.
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