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Statistics, vision, and the analysis
of artistic style
Daniel J. Graham,1 James M. Hughes,2 Helmut Leder1

and Daniel N. Rockmore2,3∗

In the field of literature, there is an established set of techniques that have
been successfully leveraged in the analysis of literary style, most often to answer
questions of authenticity and attribution. With the digitization of huge troves of art
images come significant opportunities for the development of statistical techniques
for the analysis of artistic style. In this article, we suggest that the progress made
and statistical techniques developed in understanding visual processing as it
relates to natural scenes can serve as a useful model and inspiration for visual
stylometric analysis. © 2011 John Wiley & Sons, Inc. WIREs Comp Stat 2011 0 000–000
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INTRODUCTION•

In 2011, a painting called ‘Salvator Mundi,’
purportedly by Leonardo Da Vinci, surfaced under

AQ1

mysterious circumstances in New York. A painting
matching its description was known to be part of
Leonardo’s œuvre, though at least 20 copies of
the original work by Leonardo’s students and other
imitators were also produced, some of which were in
the past claimed by their owners to be the original Da
Vinci. Without a secure provenance—or the record of
the chain of ownership of works from their creation
until the present—the ‘determination’ of a work’s
authenticity is more akin to trying a court case
than administering a paternity test. While there is
indeed a good amount of physical evidence (materials
analysis of the pigments, canvas, and frame), at
least as much weight comes from the opinions of
experts, or ‘connoisseurs,’ who, assuming that the
physical evidence agrees with their determination, act
effectively as judge, jury, and even counsel, forming
an opinion that is shaped by a lifetime of looking at

AQ2

and thinking about the works of the artist in question
as well as the historical context in which these works
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were created.1 Ultimately, they try to answer questions
of the form, ‘Is this work in the style of the artist?’ or,
‘Is the style of this work to be expected of the artist
at this time in his or her career?’ The stature of the
connoisseur and the strength of his or her arguments
make not only a significant historical impact, but a
financial one as well.

These questions of style comparison are at least
superficially ones that can easily be framed as ques-
tions of statistics. Given the known work of the artist
and the period, how likely is it that the artist would
create this kind of work at that specific time? At
this stage, of course, nothing more has been done
than to effectively translate the colloquial to the
(vaguely) technical. The construction of a rigorous
analysis requires objective measurements and a means
of comparison performed in the service of articulating
and understanding visual style. This is the goal of the
nascent field of visual stylometry. With the increasing
availability of large collections of high-resolution dig-
ital images of works of art, as well as new advances
in image processing and machine learning and the
understanding of the visual process, it is an area of
research poised to make great progress.

The general thesis put forward here is that ulti-
mately, style is a perceived phenomenon, and should
be treated as such. In particular, our understanding
of the human visual system and models of the way
in which we ‘see’ natural scenes can serve as a useful
means for visual stylometric analysis. In particular, the
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two primary components of stylometry, selection and
extraction of features and classification (or grouping)
according to style, can benefit from this perspective.
We show that going beyond mere metaphor and intro-
ducing statistical ideas from the understanding of
human perception of natural scenes, while incorpo-
rating high-level perceptual information into models
of style, proves effective in meaningfully organizing art
images according to their style and in understanding
some aspects of the perceptual basis of style.

VISUAL STYLOMETRY

The origins of visual stylometry can be traced back to
the work of Giovanni Morelli (1816–1891), an Italian
statesman who took it upon himself to both protect
and rescue the reputations of his artist countrymen
whom he felt were suffering from misattributions.
Morelli was trained as both a paleontologist and a
medical doctor and brought his scientific outlook and
visual classification skills to bear on this difficult prob-
lem. The solution that he arrived at, called ‘scientific
connoisseurship,’ was to compare specific details such
as ears or hands in an unknown work to collection
of exemplars (which he called a ‘schedule’), effec-
tively asking whether the same kinds of details in the
unknown work were consistent with the known exem-
plars. The choice of a less prominent feature like a
hand or ear was a purposeful one, for Morelli believed
that in these details the artist would be less driven by
market and societal concerns and pressures.2–4

What Morelli did by eye and brain, researchers
are now attempting to accomplish via statistical and
image processing techniques. The problem remains a
difficult one. Analogous efforts in the study of litera-
ture, where the notion of ‘stylometry’ was born, have
been successful, and today there is a host of techniques
that are used to answer questions of genre, authorship,
and the dating of works—all of which are questions
that we might hope to address in a quantifiable way
in visual art as well.5 Indeed, the following tasks are
ones for which a combination of statistical and image
processing tools might be able to provide a novel
and compelling form of evidence that complements
evidence acquired using more traditional techniques
such as chemical and materials analysis, historical
records, and, of course, human connoisseurship:

• Authentication: Given a set of ‘known’ works
by a given artist, the task is to determine if an
unknown work is or is not similar to the known
works.

• Attribution: Given a work that could be by more
than one artist, the task is to develop a model

of each artist’s style to see which model best
explains the work in question.

• Cultural evolution: Many questions in this area
can be approached with image processing such as
the influence of a given artist on contemporaries,
students, and later artists, the influence of one
artistic movement on a later movement, or the
stylistic evolution of a particular type of work.

• Technical art history: Statistical research and
simulation has produced important insights
into artists’ methods for viewing, lighting, and
capturing scenes on canvas.

• Conservation: Artwork from all eras—including
the 20th century—shows degradation over time
because of color fading, faulty previous attempts
at conservation, air pollution, and other factors.
Stylometric investigations can reveal important
information used to conserve artworks and
restore them to their original condition.

To date, progress in visual stylometry has been
achieved in something of an ad hoc manner. In
literature, or more generally, writing, we have the
advantage of at least being able to identify a basic
atom of relevance: the word. In visual art, we are less
fortunate in that finding the basic elements of style is
already a significant challenge. One might expect that
standard image processing techniques such as SIFT6

or color histogram statistics7 would prove useful in
the analysis of style in visual art, and indeed, many of
these techniques have shown some success in sorting
artworks with respect to general stylistic categories
(e.g., broad stylistic groupings such as Impressionism,
or sorting the works of famous artists by author-
ship). Nevertheless, many of these techniques often
fail when confronted with the subtleties inherent in
stylistic categorization.

For example, Gunsel and colleagues8 work at
the level of pixels and define six features derived
from the pixel intensities in images of works of art.
Using an •SVM classifier, the authors are able to sep- AQ3
arate Cubist, Classicist, and Impressionist works with
good accuracy. However, the addition of works in the
Expressionist and Surrealist style causes performance
to drop dramatically. While Cubist, Classicist, and
Impressionist works may each be relatively distinct in
terms of these low level features, it is clear that this
approach does not scale up to finer grained distinc-
tions. Other work9 confirms the potential utility of
these low level statistics for genre classification.

Some efforts attempt to aggregate pixel informa-
tion at the level of the brushstroke. For example, the
problem of brushstroke identification and extraction
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can be approached via filtering and subsequent model-
ing of lines, for example, using splines.10,11 Sablatnig
and colleagues12 have developed sophisticated line
‘skeleton’ models for extracting brushstrokes from
paintings. These kinds of models can also be used
to extract strokes with respect to the order in which
they were applied to the canvas. Subsequent pro-
cessing and comparison can be accomplished by a
variety of means including hidden Markov trees.13–15

Unfortunately, it is often unclear how much the sty-
lometric algorithms are measuring differences in the
technical aspects of a painting (i.e., how the paint
is applied to the canvas), and how much they are
measuring differences in the visual ‘space’ represented
in the painting (i.e., the depicted objects, scenes, and
forms).

Several studies have examined artwork for reg-
ularities in the spatial statistical properties of the
contours in art images. Perhaps the most well-known
early example of work in the field of visual stylometry
is that of Taylor,16,17 who showed that the fractal
dimension of works by Jackson Pollock, obtained
using box-counting statistics, follows a very particu-
lar trend over the span of the artist’s career. This work
has not been without its critics.18 Keren19 suggested
a model to describe local stylistic characteristics that
uses the discrete cosine transform (DCT), along with
a naı̈ve Bayes classifier. The author’s suggestion of
a paradigm of ‘recognition by type,’ as opposed to
recognition based on content, is a critical distinction
in the application of image processing methods to the
evaluation of artistic style, particularly in the context
of image retrieval. Furthermore, Keren suggests that
the obtained results are in accordance with human
perception of style, and that his approach could be
used to synthesize images of a particular style.19

In the work of Lyu et al.,20 the authors applied
spatial statistical techniques to the problem of distin-
guishing a set of authentic drawings by Pieter Bruegel
the Elder from a set of imitation drawings using
quadrature mirror filters to decompose the drawings,
along with a hierarchical set of features derived from
the filter coefficients, to demonstrate that the authentic
drawings grouped tightly together in stylistic space.
Work by Hughes et al.21 demonstrated the technique
of the Empirical Mode Decomposition (also known as
the Hilbert–Huang transform)22 to the same dataset.
The authors showed that a newly created framework
for a two-dimensional extension of EMD is capable of
distinguishing between Bruegel and Bruegel-imitation
drawings, as well as between a set of drawings by
Rembrandt and his pupils. Other examples include the
use of a combination of a wavelet decomposition and
artificial neural networks capable of distinguishing

between the works of Matisse and stylistic imitations
of the artist’s work.23

Other work focuses on nonspatially localized
features or ‘bags of features,’ which are not ordered
or arranged in any meaningful way. One example of
this is the work of Berezhnoy et al.,24 who analyzed

AQ4

the paintings of Van Gogh in terms of their use of
complementary colors. They examined both the con-
sistency of the artist’s use of complementary colors,
as well as the usefulness of this measure for orga-
nizing Van Gogh’s works by the period in which
they were painted. Another example is the work
of Zujovic et al.25 In this study, the authors used a
collection of gray scale edge detection and Gabor
wavelet pyramid sub-band statistics, along with color
histogram statistics, to sort images into several stylis-
tic categories. The idea of this study was to search
for a solution that would be robust to a variety of
digital image degradations and manipulations (e.g.,
downsampling, color space modification, compres-
sion, etc.). Thus, no attempt was made to normalize
the images or to acquire high quality, distortion free
images. While the authors show that this approach
can be successful and may thus be of use in consumer-
level applications involving variable-quality images, it
remains unclear whether this approach can scale up
to more than five categories or whether image quality
biases themselves contributed to performance.

STATISTICAL MODELS OF VISION
AND STYLE FEATURES

The use of wavelet and other multiscale techniques
in stylometric analysis has been driven more by their
utility in edge and orientation detection than any con-
nection to the organization of the visual cortex.26–28

On the other hand, our recent work has involved
the development of new stylometric techniques that
take as a starting point models of visual cortex. These
models attempt to explain the organization of visual
cortex and the encoding of visual information as an
efficient, if not optimal, means of matching and cod-
ing the information contained in natural scenes. For
example, the sparse coding model of Olshausen and
Field seeks to explain the response properties of simple
cells in primary visual cortex in terms of the statis-
tical structure of natural images.29 That is, the brain
itself builds a model of the visual world that is an
optimal representation of the statistical structure in
natural scenes, where optimality is defined in terms
of coding efficiency. According to their model, visual
inputs should be represented using activations of as
few model neurons as possible, such that the overall
response characteristics of neurons is sparse, while at
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the same time preserving accuracy of neural represen-
tation by minimizing the error between inputs and
their reconstructions.29 Using a linear image model

I(x, y) =
∑

i

αiφi(x, y) + ε, (1)

for some pixel location x, y in image patch I with
coefficients α and Gaussian noise term ε, the goal is
to learn the functions φ, assuming a sparse prior on α

(e.g., a Cauchy distribution). The resultant functions
φ, which are treated as a basis for representing inputs,
possess a structure very similar to the response prop-
erties of cortical simple cells when trained on natural
image inputs, in that they are spatially localized and
have orientation and spatial frequency selectivity.29,30

Figure 1a shows a set of sparse coding basis functions
trained on the set of natural images used in Ref 29.
Furthermore, although the sparse coding model builds
a basis for the space R

n, where n is the number of
pixels in an input image patch, the basis functions
are merely linearly independent and not guaranteed to
be orthogonal. Such a representation results from the
constraint that the patch coefficient distributions be
sparse, that is, that only a few basis functions should
have significantly nonzero weight for representing any
particular patch. This stands in contrast to an orthogo-
nal basis for the inputs such as a Fourier basis or a PCA
basis created from the input patches, each of which
would potentially utilize all basis functions in creating
a minimum-error reconstruction for each patch.

The sparse coding model was first used for sty-
lometry to capture the structure of a set of authentic
drawings by Pieter Bruegel the Elder31 where the
basis functions were then used to distinguish authen-
tic and imitation drawings based on how efficiently

(a) (b)

FIGURE 1 | Two set of basis functions trained using the sparse
coding model. The set (a) was trained on the natural image set used in
the original work of Olshausen and Field.29 The set (b) corresponds to
the art image (shown in Figure 2) that produced a set of basis functions
that had minimal average histogram intersection using the distributions
of spatial frequency and orientation bandwidth with respect to the basis
functions (a).

they represented the statistical structure in a set of
test images. A further study32 explored the extent
to which various statistics derived from the learned
sparse coding basis functions were useful for classifi-
cation according to style, with some promising initial
results. In particular, the authors trained a set of basis
functions to represent each work in a set of art images
by several artists. The learned functions were then
examined for features such as spatial frequency and
orientation selectivity and spatial frequency and ori-
entation bandwidth that were capable of grouping the
images by artist.32 Additionally, statistics derived from
sparse coding basis functions have proven useful for
organizing artwork according to its painterliness.33

The efficiency criterion of the sparse coding
model suggests that comparing sets of learned
filters—and the statistical characteristics of coefficient
distributions for inputs—may highlight the underlying
statistical differences in potentially different sets of
inputs. Furthermore, because the sparse coding model
captures higher order statistical characteristics as
opposed to two-point correlations between spatial
frequencies and orientations, a learned sparse coding
model is a window into the important structure
present in images, and in particular a window that
allows insight into structure at a scale that is likely to
be relevant for human perception.

Previous work has shown that artwork pos-
sesses a statistical structure similar to that of natural
scene images, but with important distinctions. Work
by Graham and Field34 and Redies et al.35 estab-
lished that natural scenes and visual art share similar
Fourier spatial frequency amplitude spectra, which are
found to be roughly scale invariant (amplitude scales
approximately as 1/f k where k ≈ 1, for frequency f ).
Spatial frequency and orientation information can be
indicative of some of the higher order statistical prop-
erties that differentiate art from natural images and
highlight the effectiveness of the sparse coding model
at articulating these differences, albeit in a numerical
fashion. In order to see this, we computed the fol-
lowing features on the set of basis functions shown in
Figure 1a and on a set of 308 high-resolution images
of works of art (the same set used in Ref 32):

1. Distribution of spatial frequency bandwidths:
given the two-dimensional Fourier transform
of each basis function, compute the band-
width in octaves (measured by full width at
half-maximum) of the function, averaged across
all orientations, centered around its peak spa-
tial frequency ω∗. This quantity measures how
selective the basis functions are for their pre-
ferred spatial frequencies.
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2. Distribution of orientation bandwidths: given
the two-dimensional Fourier transform of each
basis function, compute the bandwidth in
octaves (measured by full width at half-
maximum) of the function, averaged across all
spatial frequencies, centered around its peak
orientation θ∗. This quantity measures how
selective the basis functions are for their pre-
ferred orientations.

Here, ω∗ and θ∗ are defined as follows: given the
two-dimensional Fourier transform F(ω, θ) of a basis
function (viewed as a function of frequency ω and
angle θ),

ω∗ = arg max
ω

1
|�|

∑
θ∈�

|F(ω, θ)|,

θ∗ = arg max
θ

1
|�|

∑
ω∈�

|F(ω, θ)|.

We can compare the distributions of these quantities
between images using, for example, the symmetrized
histogram intersection statistic,36

HI(H1, H2) = 1
2

[∑
b min(H1[b], H2[b])∑

b H1[b]

+
∑

b min(H1[b], H2[b])∑
b H2[b]

]

for histograms H1, H2, and bins b. Note that his-
togram intersection is a similarity metric, rather than
a dissimilarity metric, so that large values of HI imply
greater similarity between images. For the experi-
ments presented here, we considered both the spatial
frequency bandwidth and orientation bandwidth his-
togram intersections.

Figure 1b shows a set of basis functions trained
on an art image from our dataset; in particular, these
basis functions correspond to the art image that pro-
duced the set of basis functions with smallest average
histogram intersection for spatial frequency and ori-
entation information. This set of basis functions was
trained using the image in Figure 2a. This image, while
depicting a ‘natural scene,’ that is, a village, is itself
not particularly realistic. On the other hand, the image
in Figure 2b, which is the image corresponding to the
set of basis functions that had the largest average
histogram intersection with the natural image bases,
depicts a natural scene not unlike the ones used to train
the natural image bases, albeit in a painterly style.

If on the other hand we consider only spatial
frequency information, the result is somewhat differ-
ent. The closest image, shown in Figure 2d, is indeed

(a)

(b)

(c) (d)

FIGURE 2 | Four art images from the database used in our analysis.
Image (a) corresponds to the image that had the weakest similarity to
the natural images, using the histogram intersection statistic on the
spatial frequency and orientation bandwidth distributions. Image (b) is
the art image that was maximally similar to the natural images. Note
that it depicts a common natural scene (albeit in a painterly manner).
Image (c) is the art image that produced the basis functions most
different from the natural image basis functions, according to the
histogram images between the spatial frequency bandwidth
distributions only. Image (d) is a detail of the art image that was
maximally similar under the same analysis (i.e., considering only spatial
frequency information). Images (a)–(c) are courtesy of the Herbert F.
Johnson Museum of Art, Cornell University, and image (d) is courtesy of
the Metropolitan Museum of Art, New York.

a ‘natural scene’ (of a village in a drawing by an
imitator of Bruegel), thought it is quite different from
the painterly one in Figure 2b. The furthest-away art
image is an abstract rendering with little in com-
mon with natural scenes, and is shown in Figure 2c.
Figure 3 shows the histograms of spatial frequency
bandwidths for the basis functions corresponding to
the images in Figure 2c and d, along with the spa-
tial frequency bandwidth histogram for the natural
image basis. Clearly, the bandwidth distributions for
the natural image basis and the basis for the art
image in Figure 2d and quite different from the basis
trained on the image shown in Figure 2c, suggesting
that this approach is capable of meaningfully relating
the statistical structure of natural scenes and art.
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FIGURE 3 | Histogram of basis function spatial frequency bandwidths for the natural image basis (blue) and the images shown in Figure 2c and d
(orange and green, respectively).

PERCEPTUALLY DRIVEN FEATURE
SELECTION

Historically, psychologists and art historians have
taken an interest in the perception of style in visual
art, at least from a theoretical perspective.37–41 More
recent work by Leder and colleagues has elucidated
a number of basic properties of style perception. In
their work on empirical aesthetics, style as a prop-
erty of art has been treated as a candidate for a
special mode of visual processing. The model of
aesthetic experiences by Leder and colleagues,42 is
built around the central assumption that process-
ing of style—the manner of depiction as opposed
to content of depictions—distinguishes relevant ways
of approaching artworks and yields style-related pro-
cessing as a distinctive, art-typical experience.

Beyond the process of generating features, it can
be useful to take advantage of perceptual information
for classifying art images according to their style.

Classification schemes can take advantage of
perceptual information in several ways, but perhaps
the most obvious is to consider perceptual similar-
ities between works, derived using psychophysical
experiments in which human subjects rate the simi-
larity between two works on some predefined scale.
Although such an approach is certainly laborious, it
has the potential to yield a significant amount of fruit-
ful data. Once these similarities are obtained, they can
be used to train classification models in a supervised
fashion or to ‘discover’ latent stylistic dimensions in
an unsupervised learning model. As an example of
the former, weighting statistical features based on
perceptual information leads to automatic stylistic
distinctions that agree well with human perceptual
judgments.32 In essence, stylistic perception is not

random, and taking advantage of perceptual informa-
tion can guide the use of image features in explaining
variations in artistic style perception.

Another possible approach would be to use per-
ceptual data to learn feature weights in the context of
logistic regression.43 Such a model is a natural can-
didate as it transforms an inner product that reflects
similarity between two images into a scale (i.e., a prob-
ability in [0, 1]) that better reflects the intuitive notion
of similarity. For example, if pairs of art images were
labeled ‘similar’ and ‘dissimilar,’ these binary labels
would serve as natural class labels in a logistic regres-
sion setting. For example, given two images I1, I2, a
value L that equals 1 if the two images are similar and
0 if they are not, and some set of weights β, we let

P(L|I1, I2) = σ

(
β0 +

M∑
j=1

βjκj(φ
I1
j , φI2

j )
)L

×
[
1 − σ

(
β0 +

M∑
j=1

βjκj(φ
I1
j , φI2

j )
)]1−L

.

In this case, κj is some similarity function between fea-
tures φ

I1
j and φ

I2
j , which could be scalar, vector-valued,

etc., and σ is the logistic sigmoid function. More com-
plex models could be utilized to take advantage of
richer perceptual information, such as the similarity
ratings mentioned above, rather than binary inputs.

Another possible avenue for taking advantage
of perceptual information in classifying art images
according to style is to utilize this information for fea-
ture elimination, for example, as in recursive feature
elimination,44 or by performing a biased dimension-
ality reduction that takes advantage of perceptual
information. Some previous work has also been done
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to relate statistical features to the axes of embed-
dings of art images obtained using multidimensional
scaling.43,45

CONCLUSION
Although a great deal of progress has been made in
understanding and organizing art images according
to their style, we argue that a significant majority
of the research conducted in this field does not take
advantage of the fundamental connection between
visual perception and artistic style—and the ways
in which style should be measured. Because style is
ultimately perceived, it is important to concentrate
on developing features and classification methods for
organizing and understanding art images that utilize
the information vision science and visual psychol-
ogy can offer about human perception. Moreover,
because our visual system is well adapted to the sta-
tistical structure of the natural world, we believe that
the key to understanding the salient characteristics
of artistic style is to quantify the intrinsic differences

between art and natural images. Understanding this
fundamental distinction will also allow us to refine our
knowledge of human perception. In a sense, the way in
which natural scene statistics are manipulated to cre-
ate visual art will provide insight into the ‘allowable
deformations’ of visual content that are important for
human perception. Because we are dealing with digital
representations of art, image processing techniques
will remain critical in enabling us to quantify the style
present in works of art. Nevertheless, these techniques
should be shaped and utilized in accordance with our
understanding of the fundamental processes in human
vision. Such an approach will also allow us to extend
the scientific reach of stylometric investigations from
‘canned’ problems such as authentication or attribu-
tion of works whose attribution is already known to
subtler and more complex descriptions of art. With
the growing availability of digital representations of
many types of cultural heritage, the ability to mean-
ingfully organize these objects is of ever-increasing
importance.
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