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Abstract

To account for the spatial and temporal response properties of the retina, a number of studies have proposed that these properties
serve to ‘‘whiten’’ the visual input. In particular, it has been argued that the sensitivity of retinal ganglion cells is matched to the spatial
frequency spectrum of natural scenes, resulting in a flattened or ‘‘whitened’’ response spectrum across a range of frequencies. However,
we argue that there are two distinct hypotheses regarding the flattening of the spectrum. The decorrelation hypothesis proposes that the
magnitude of each ganglion cell tuning curve rises with spatial frequency, resulting in a flattened response spectrum for natural scene
stimuli. With appropriate sampling, this scheme allows neighboring neurons to be uncorrelated with each other. The response equaliza-

tion hypothesis proposes that the overall response magnitude of neurons increases with spatial frequency. The proposed goal of this mod-
el is to allow neurons with different receptive field sizes to produce the same average response to natural scenes. The response
equalization hypothesis proposes an explanation for the relative gain of different ganglion cells and we show that this proposal fits well
with published data. We suggest that both hypotheses are important in understanding the tuning and sensitivity of ganglion cells. How-
ever, using a simulation, both models are shown to be insufficient to explain the center-surround receptive field organization of ganglion
cells. We discuss other factors, including representational sparseness, which could be related to the goals of ganglion cell spatial process-
ing. We suggest three constraints needed to describe the basic linear properties of P-type ganglion cells: decorrelation, response equal-
ization, and a minimal wiring or minimal size constraint.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Across mammalian species one finds that the layout,
development, and structure of the retina is remarkably
well-conserved (Finlay, de Lima Silveira, & Reichenbach,
2004). Center-surround antagonism in particular is found
in some form in the early visual systems of all vertebrates
and invertebrates (e.g., Land, 1985). Although there have
been numerous proposals regarding what is achieved by
retinal processing—ranging from ‘‘edge enhancement’’
(Balboa & Grzywacz, 2000; Ratliff, 1965) to decorrela-
tion—we will argue that current models of retinal ganglion
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cells are insufficient to account for basic aspects of infor-
mation processing in the retina. We also wish to emphasize
that the account we provide here is in no way complete.
The varieties of non-linearities and cell types will certainly
require a much richer model. Our emphasis, however, is on
the basic center-surround organization of retinal ganglion
cells.

1.1. ‘‘Whitening’’ and decorrelation

Natural scenes typically have strong spatial pairwise
correlations which can be expressed as a spatial frequency
amplitude spectrum that falls as 1/frequency—or as a
power spectrum that falls as 1/f 2 (Burton & Moorhead,
1987; Field, 1987). The prevailing view of retinal coding
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1 If the tuning curve of the neuron increases with frequency out to some
peak frequency P and falls off sufficiently fast past this point, then
sampling at a frequency of 2 · P will produce uncorrelated responses in
the presence of an image with a 1/f 2 power spectrum. Sampling at higher
frequencies (>2 · P) and therefore at smaller distances will result in
correlated firing.
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was shaped by Srinivasan, Laughlin, and Dubs (1982), and
by Atick and Redlich (1992), whose decorrelation hypothe-

sis focuses on the relation between the ganglion cell tuning
curves and the spectra of natural scenes.

Srinivasan et al. (1982) showed that a group of detec-
tors sampling over space will transmit the greatest
amount of information given the presence of noise by
taking a weighted linear sum over the spatial arrange-
ment of a group of detectors. Atick and Redlich (1992)
extended this line of thinking and proposed that the goal
of retinal coding is to produce a decorrelated output in
response to natural scenes. They noted that for a range
of spatial frequencies, the tuning curve for ganglion cells
increases with spatial frequency. Since natural scenes’
amplitude spectra fall with increasing spatial frequency,
the multiplication of these two spectra (which corre-
sponds to a spatial convolution) will result in a flat spec-
trum over this range of frequencies. Flattening of the
spectrum is sometimes called ‘‘whitening’’ and it can
result in neurons with decorrelated activity under appro-
priate sampling conditions.

However, two quite separate ideas of whitening have
been proposed. Both address the ways in which the early
visual system handles the 1/f amplitude spectrum of natu-
ral scenes but each has different requirements and each
achieves different objectives:

• The first theory of whitening, which we will call the
response equalization hypothesis, was proposed by Field
(1987) for cortical neurons, and extended by Brady
and Field (1995, 2000) and Field and Brady (1997).
In this account, the goal is to produce a representation
where each neuron has roughly the same average
activity in the presence of natural scenes. Neurons
tuned to high frequencies would need increased
response gain to produce the same response as low fre-
quency neurons.

• As described above, the decorrelation hypothesis of Atick
and Redlich (1992) argues that the relationship between
the spectrum of each individual ganglion cell and the 1/f
spectrum of the input results in decorrelated responses.
This decorrelation depends on both the relative spectra
and the sampling density of neurons.

These two models are not incompatible with each
other (see Appendix A). Indeed, both can be indepen-
dently correct or incorrect. The decorrelation hypothesis
is appealing because it predicts spatial redundancy reduc-
tion at the retinal output. With appropriate retinal sam-
pling, neighboring neurons will have no pairwise
correlations in space. In the case of retinal neurons,
the center-surround structure of the filters results in
bandpass tuning curves for which a portion of the curve
rises with frequency. As Atick and Redlich note, the
increase in sensitivity with frequency has one important
cost: it magnifies the noise at high frequencies. They pro-
vide a convincing argument that the reduction in sensi-
tivity at the higher spatial frequencies, especially under
low light conditions (i.e., high noise) provides an efficient
strategy for coding natural scenes. This line or argument
requires two important features: (1) the tuning curves
must have the appropriate shape, and (2) the tiling of
neurons must be appropriate. For the decorrelation mod-
el, the peak of the tuning curve determines the sampling
distance that is required to achieve decorrelation.1 If the
response (i.e., the tuning curve multiplied with the image
spectrum) is not flat, or if the sampling rate of the gan-
glion cell mosaic is too low, neighboring neurons will be
correlated.

1.2. Ganglion cell correlations

Multineuron recording studies testing the independence
of ganglion cell responses find that nearby ganglion cells of
similar functional classes have significantly correlated firing
patterns across species (Arnett, 1978; Arnett & Sparker,
1981; DeVries, 1999; Johnsen & Levine, 1983; Mastro-
narde, 1989; Meister, 1996; Meister, Lagnado, & Baylor,
1995). There is also evidence that in development correlat-
ed firing is important for retinal neurons to innervate cor-
rectly: synchronized firing has been proposed as a
mechanism that helps coordinate the proper development
of neural wiring (see Wong, 2000). Therefore, if one wishes
to argue that the primary goal of retinal coding is to pro-
duce a representation with uncorrelated responses, one
must consider the evidence that the retina has not been ful-
ly successful.

1.3. Response equalization and vector length

The response equalization model does not make strong
arguments regarding the particular shape of any individu-
al tuning curves and it does not depend on the relative
spacing of neurons. Our model argues that neurons have
overall sensitivity set in such a way that different neurons
have the same average response to a natural scene. For
neurons tuned to different spatial frequency bands, those
tuned to higher spatial frequencies must increase their
overall sensitivity to counteract the 1/f falloff in ampli-
tude. In applying this argument to ganglion cells, we pro-
pose that the ‘‘integrated sensitivity’’ of neurons of
different sizes across the retina is set in such a way that
each neuron will respond approximately equally to natu-
ral scenes—despite the large differences in receptive field
sizes and regions of pooling. In this paper, we focus on
spatial properties but a full account would consider tem-
poral tuning as well.
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As an integrated measure of the sensitivity of a neuron,
we used its ‘‘vector length’’ (Brady & Field, 1995; Field &
Brady, 1997), i.e., the L2 norm of its sensitivity profile.2

Fig. 1 shows two models for how neural sensitivity pro-
files, assumed to have constant shape, might scale with
the peak spatial frequency of a neuron. On the left, peak
sensitivity is independent of peak spatial frequency, so the
L2 norm must increase with peak spatial frequency
(‘‘IVL’’ model). On the right, the L2 norm is constant
with respect to peak spatial frequency (‘‘CVL’’ model),
so the peak sensitivity must decline with peak spatial
frequency.

In a world with a 1/f 2 power spectrum, the vector length
must increase with frequency in order to achieve response
equalization (Brady & Field, 1995).

2. Study 1—calculation of vector length sensitivity of

ganglion cells

In this first study, we investigate the hypothesis that at
the level of the retina, ganglion cells already show evidence
of response equalization. The study makes use of the pub-
lished data of Croner and Kaplan (1995). That study is one
of the few that provides a measure of the absolute sensitiv-
ity of ganglion cell sensitivity for a relatively wide range of
receptive field sizes, as well as sufficient information for us
to calculate the vector length. This first analysis is therefore
a simple reanalysis of their data.

2.1. Methods

The Croner and Kaplan (1995) study measured
responses of ganglion cells across the retina in anesthe-
tized, paralyzed macaques when presented with gratings
of different frequencies. In that study, the tuning func-
tions were Fourier transformed assuming a center-sur-
round phase spectrum, fit to a Difference of Gaussian
(DoG) model and the median parameters of those cen-
ter-surround neurons were published for various cell
types and positions. Since linear transforms do not alter
the vector length, we can use these data to calculate the
vector length as a function of cell size. Absolute sensitiv-
ity data was collected across a number of animals and
for both M- and P-cells.

In our study of the Croner and Kaplan (1995) data, we
used their experimentally determined parameters for the
DoG function describing the cells’ receptive fields (see
Eq. (1)). We calculated the vector length (L2-norm) of the
DoG functions for P-cells in the study. P-cells are the dom-
inant class found in the primate retina, and they have high
spatial acuity compared to M-cells.
2 The L2 norm of a vector R is given by
ffiffiffiffiffiffiffiffiffiffiffiffiP

kR2
k

q
, where Rk denotes the

kth component of R. Note that the vector length of R will be the same in

any orthonormal basis and it is therefore useful as a unitless, relative

measure of sensitivity.
2.2. Results

We plotted our vector length sensitivity values as a func-
tion of the log (weighted) mean spatial frequency of each
cell (i.e., the weighted mean value of the spatial frequency
tuning curve of each cell3), shown in Fig. 2A. Parameters
for the 84 total P-cells of different sizes represent the medi-
an value within bins corresponding roughly to cells of the
same eccentricity on the retina. There are five such median
values for the parameters that describe the receptive field
function. The results of our analysis of the Croner and
Kaplan data suggest that vector length is indeed increasing
as a function of frequency.

What does this vector length sensitivity curve tell us
about ganglion cell responses to natural scenes? With a
power spectrum that falls as 1/f 2 (amplitude falls as 1/f),
the response function should be approximately flat, indi-
cating that the response from cells of different sizes to nat-
ural scenes will be approximately uniform. Fig. 2B shows
the response of each neuron to a natural scene, computed
by first multiplying each neuron’s tuning curve with a 1/f
amplitude spectrum and then taking the L2 norm of that
product. This linear model suggests that P-cells perform a
significant degree of response equalization.

Although we are ignoring the temporal aspects of the
neural response and making the assumption that the sys-
tem is linear, these results do imply that P cells have sensi-
tivity that is well-matched to the power spectra of natural
scenes. If these results hold for all P cells, then the predic-
tion we make is that neurons of different sizes distributed
across the retina will provide a roughly equal response.4

Uniform responses across frequency implies that the cells
are maximizing the use of the range of firing rates over
which the cell responds, given the regular statistics of the
environment.

We note that the data show no clear high-frequency cut-
off but at this time, we cannot say whether the sensitivity
continues to increase out to the highest spatial frequencies
to which the neurons respond. It should also be noted that
the vector length sensitivity makes a direct prediction
regarding how the neurons will respond to noise. Without
knowledge of how sensitivity was affected by mean lumi-
nance in the Croner and Kaplan (1995) study, we cannot
say any more about the noise-reduction properties of pri-
mate ganglion cells in this study.

3. Study 2—decorrelation and sparseness in model ganglion

cells

We stress that the response equalization hypothesis
provides an account of the overall sensitivity of different
3 Qualitatively similar results were obtained using the peak frequency
value.

4 M-cell data in the Croner and Kaplan study were insufficient for us to
draw conclusions about patterns of vector length sensitivity at different
spatial frequencies.



Fig. 1. A comparison of an increasing vector length model of contrast sensitivity, whose vector length increases with spatial frequency (left column), and a
constant vector length model (right column), which shows equal vector length across frequencies. The tuning curves of four hypothetical retinal neurons
are shown (from top to bottom) as functions of spatial frequency and log spatial frequency; as 1D receptive field profiles; and in terms of the log of their
1D vector length. In the increasing vector length model (IVL), the peak of each spatial frequency tuning curve is nearly the same, and thus neurons
sensitive to high spatial frequencies integrate over proportionally more of the frequency spectrum. This model will show increasing vector length with
increasing spatial frequency. The constant vector length model (CVL), on the other hand, predicts decreasing peaks in amplitude for increasing spatial
frequencies and approximately equal vector length sensitivities across frequency. A full linear model of the contrast sensitivity function using the vector
length metric is being developed (Field & Chandler, in preparation). For clarity in this figure, the vector lengths correspond to the 1D receptive field
profiles shown. The 2D model discussed in the text is a straightforward extension of the 1D model shown in this figure. In both 1D and 2D, the vector
length is given by its L2 norm. The 2D model used in this paper predicts that vector length increases proportional to spatial frequency (volume under the
power spectrum increases in proportion to frequency); in the 1D model, vector length increases as the square root of spatial frequency.
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neurons but has no implications regarding the spatial cor-
relations between neighboring neurons. As was noted,
there is significant evidence that there exist significant cor-
relations between neighboring neurons suggesting that the
convolved spectra and/or the spacing is insufficient for pro-
ducing decorrelated responses.
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Fig. 2. (A) Plot of the vector length sensitivity of cells from data by Croner and Kaplan (1995). Each data point in the vector length plot (dots) represents
a cell whose receptive field is modeled with the DoG parameters reported by Croner and Kaplan (1995). Vector length sensitivity (unitless) is
monotonically increasing proportional to frequency. The x-coordinate of the vector length plot is in units of log mean spatial frequency (cyc/deg) for each
cell (see text for definition). (B) Plot of the response magnitude for ganglion cells to a distribution with a spatial frequency power spectrum that falls as
1/f 2. This 1/f 2 ‘‘input’’ represents a typical natural scene. Sensitivity is given by vector length (A). Responses show a generally flat shape across spatial
frequency. Dotted line in (A) represents a slope of 1 on the log-log plot.

D.J. Graham et al. / Vision Research 46 (2006) 2901–2913 2905
In this study, we wish to make a further point. We argue
that both the decorrelation hypothesis and the response
equalization hypothesis are dependent on the spectra of
the neurons’ tuning curves and are not directly dependent
on the phase spectra of the neurons. We argue that the cen-
ter-surround organization, which depends on the phase
spectra, is not directly addressed by either approach.

We focus on the question of what function is provided by
localized center-surround receptive fields like those of reti-
nal ganglion cells. To explain the oriented receptive fields
of neurons in primary visual cortex, it has been argued that
the visual system produces a sparse solution that reduces
dependencies beyond the second-order correlations (Field,
1987, 1994). Neural networks that attempt to minimize
these dependencies among the population of neurons have
been found to produce localized, bandpass, oriented recep-
tive fields much like those of simple cells found in V1 (e.g.,
Bell & Sejnowski, 1997; Olshausen & Field, 1996). There-
fore, if the goal of early coding were to produce an efficient
or independent solution, we might expect to see a wavelet-
like transform similar to V1 in the retina. A wavelet-like
transform does not require more neurons than a center-sur-
round system does to achieve a complete representation, so
the argument cannot be that more neurons are needed.

Here, we investigate the relations among center-surround
organization, decorrelation and sparseness in model retinal
neurons. The simulation in the following section has two
goals: first, it will be used to demonstrate that the decorrela-
tion hypothesis is insufficient to predict center-surround
receptive field design. Second, the simulation demonstrates
that the ganglion cell produces a more sparse response than
other solutions that decorrelate to the same extent.

3.1. Methods

For this study, images from van Hateren’s database (van
Hateren & van der Schaaf, 1998) were randomly selected.
Images were then discarded if they did not conform to
two criteria: They were required to be devoid of human-
created forms and of significant blur. The restriction on
blur is the more crucial one: if the camera moved when
the shutter was open, the resulting images were blurry,
which introduces uncertainties into the data. After our
selection process, we arrived at a set of 137 stimuli that
shows a range of scenes at different scales (images used
are listed at http://tinyurl.com/68mbb). The mean power
spectrum of the images was fit by the function y = 1/f n

where n = 2.6. This value of n reflects the fact that the imag-
es used are a biased data set within the van Hateren and van
der Schaaf (1998) database. However, the relatively uniform
ganglion cell response function described in the calculation
above is qualitatively the same for n = 2.0 and for n = 2.6,
and the calculations below are not dependent on this fact.
Most images in our dataset show grass or forest scenes, some
have bodies of water and none has any large vistas. Calibrat-
ed images such as these are photometric maps of scenes
wherein pixel values correspond linearly to luminance.

We used a difference-of-Gaussians (DoG) model of ret-
inal ganglion cell receptive fields as the basis of our filter
kernels (see Fig. 3). The DoG model is a simplified model
that ignores many aspects of ganglion cell function. The
radially symmetric DoG function R(x, y) is described by

Rðx; yÞ ¼ C1

1

pr2
1

e�ðx
2þy2Þ=r2

1 � C2

1

pr2
2

e�ðx
2þy2Þ=r2

2 ; ð1Þ

where C1 and C2 are constants that determine the height of
the center and surround Gaussians, respectively, and r1 and
r2 are the variances of the center and surround, respectively
(Rodieck, 1965). In our study, r1/r2 = 6.0 and C = 20 and
filter kernels were created in a frame of 64 · 64 pixels then
centered and zero-padded to make them 1024 · 1024 pixels
(the size of the stimuli). Convolutions were performed with
phase-aligned DoG filters and with DoG filters whose Fou-
rier frequency components had been phase-randomized

http://tinyurl.com/68mbb


Fig. 3. Simulation of receptive field filtering of natural scene image. The original linear image (image number 6) was filtered with a phase-aligned difference
of Gaussians (DoG) filter and with a locally phase-randomized filter (see text for definitions). The spectra of the two filters (shown on log-log coordinates)
are identical. Note that in the output images some image structure is retained in the phase-randomized-filtered image as a result of the localized nature of
the phase-randomized filters. We would not expect this to be the case if the filters were the same size as the image. (Filters are 64 · 64 pixels before zero-
padding and phase-randomization is done before zero-padding; images are 1024 · 1024 pixels, though the images shown above are 1024 · 1536). The
phase-spectrum of the natural scene image was not manipulated before filtering.
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(that is, they were given a norm-preserving, random rotation
in the imaginary plane of phase space) before zero-padding.
The term ‘‘phase-aligned’’ is used throughout to indicate
that the frequency components of the filter are aligned at
zero phase before zero-padding. The term ‘‘phase-random-
ized’’ is used throughout to indicate that Fourier frequency
phases were randomized before zero-padding.

By necessity, the power spectra of the phase-aligned and
the phase-randomized filters are identical.5 Six phase-ran-
domized filters were each convolved with the image set,
and we took the mean of these trials as our phase-random-
ized power spectrum. The 64 pixels at the edges of the
images were cropped before spectral analysis in order to
remove edge effects (this was necessary for both types of fil-
ters because we did not use periodic boundary conditions).
5 The convolved power spectra are also identical when the image and the
filter kernel are the same size, as we found in a separate trial. But in our
experiment, because the images are larger than the filters, zero padding is
necessary, which leads to differences in the convolved power spectra at low
frequencies. However, the mean power spectrum for the set of images
convolved with phase-randomized filters falls within one standard deviation
of the mean power spectrum of images convolved with phase-aligned filters.
3.2. Results

The first result should really be considered a mathemat-
ical necessity rather than an experimental finding. By ran-
domizing the phase spectrum of the filter, we change the
phase spectrum of the convolved image, but such random-
ization can have no effect on the resulting amplitude spec-
trum. The amplitude spectrum of the convolved image is
simply the product of the amplitude spectrum of the image
and the amplitude spectrum of the filter. The phase spec-
trum plays no role.

Since the autocorrelation function is the Fourier trans-
form of the power spectrum, the phase spectrum also plays
no role in determining the correlations. Phase-randomized
filters achieve the same flattening in the 0.3–3 cycles/deg
range and the same high-frequency noise attenuation as
do center-surround filters. But the phase-randomized filters
do not resemble ganglion cell receptive fields (see Fig. 3).
For filters with a given power spectrum, each alignment
of phases preserves the same amount of information in
any convolution with an image.

We must therefore conclude that the center-surround
structure does not follow from the constraint that the sys-
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tem simply decorrelates. As with the response equalization
hypothesis, there are a wide variety of solutions that
achieve equivalent decorrelation, and the center-surround
organization is just one example. We must therefore look
to other constraints.

3.2.1. Sparseness

We measured the sparseness of our convolved images
using kurtosis as our metric and found that the ratio of
the sparseness of the center-surround-filtered images com-
pared to that of images convolved with phase-randomized
filters is on average 3.5 ± 0.40 (mean ±95% confidence lim-
its). That is, the mean sparseness of center-surround filtered
images is greater than the mean sparseness of phase-ran-
domized-filtered images by a factor of 3.5 ± 0.40 see
Fig. 4. This value refers to the mean difference in population

sparseness, defined as the sparseness across the population
of neurons for a given static image. To gauge lifetime

sparseness—that is, the sparseness of a neuron’s response
through its lifetime as opposed to the sparseness across
the population—we compiled a total histogram for all
images after filtering with phase-aligned and with phase-
randomized filters. In this case, the center-surround filtered
images had a sparseness that was 1.4· greater than that of
images convolved with phase-randomized filters. As a con-
trol, the same convolutions with the two sets of filters were
performed on Gaussian white noise and on white noise
whose power spectrum was given by 1/f 2, both of which
gave a kurtosis of 0 for all convolutions.

3.2.2. Compressive non-linearities in the retina

In keeping with the proposal of Srinivasan et al. (1982),
we convolved the same sets of filters with log-transformed
images. The rationale for taking a log of the image before fil-
tering is based on physiological studies of frogs by Norman
and Werblin (1974), who showed that photoreceptor sensi-
Fig. 4. Mean ratio across images of population sparseness for DoG convolut
(left bar) and for log-transformed images (right bar). For both types of images
bars indicate 95% confidence limits. The mean sparseness ratio is the mean o
image convolutions, in both the linear and log-transformed cases.
tivity, when adaptation over time is taken into account, goes
roughly as the log of intensity (see also Naka & Rushton,
1966; Baylor, Nunn, & Schnapf, 1987). Moreover, as Field
(1987) pointed out, a log transform would recast intensity
differences as ratios, a property that could be advantageous
for the cell since intensity ratios express contrast.

We applied a log non-linearity to the images from the
previous study then convolved each with the same sets of
filters. Sparseness for the phase-aligned DoG filters was
higher than the sparseness for the phase-randomized filters
in this case by a factor of 1.9 ± 0.17 see Fig. 4. We report
the log case in order to show that sparseness is higher for
the DoG filters than for the phase-randomized filters when
a model of the cone non-linearity is included. Lifetime
response sparseness for log-transformed images was found
to be 1.5· greater for the center-surround filtered images
than for those filtered with phase-randomized filters.

We note that the DoG filter and the phase-randomized
filter are indistinguishable based solely on the mean
response (the first statistical moment) because both filters
were designed to have a mean of zero. Nor could they be
distinguished based on variance (second moment): Because
the filters have the same power spectrum, they will have the
same variance. Differences in the skew (third moment) of
the filtered images showed no clear pattern, whereas differ-
ences in kurtosis (fourth moment) did, as described above.

4. Discussion

This paper investigates several hypotheses regarding
why the retina processes information as it does. One preju-
dice in the past has been to assume that because the retina
is one of the earliest major processing units, it ‘‘is not
expected to have knowledge beyond the simplest aspects
of natural scenes’’ (Atick & Redlich, 1992). This has led
many to assume that we have a relatively complete under-
ions compared to phase-randomized filter convolutions, for linear images
, DoG convolutions on average show greater sparseness per image. Error

f the ratio of the sparseness for each pair of DoG and phase-randomized
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standing of why the early visual system uses a center-sur-
round receptive field. We argue that claims that the early
visual system simply ‘‘whitens’’ or decorrelates the input
are insufficient. To account for the center-surround organi-
zation, we believe that a set of at least three constraints is
required.

Although evidence for full decorrelation among retinal
neurons is lacking, we accept that decorrelation represents
one of the constraints on the shape of the spatial frequency
tuning curves and the relative spacing of cells. However, a
decorrelation constraint does not account for the relative
gain of different receptive field sizes, nor does it account
for their center-surround organization. Moreover, the dec-
orrelation hypothesis requires appropriate retinal sampling
in order for its predictions to be valid.

Atick and Redlich (1992) make an important point
about noise. Because the noise spectrum (e.g., photon
noise) is thought to be flat and not declining in the same
way as the signal (Pelli, 1981), decorrelation of a 1/f spec-
trum in the high-frequency regime would serve to amplify
unwanted noise. This argument is consistent with findings
that ganglion cells lose their inhibitory surrounds at low
luminance and become low-pass filters. As Atick and Red-
lich (1992) point out, low-pass filtering increases the signal-
to-noise ratio because signal power becomes small at high
frequency whereas noise power is constant across frequen-
cy. We accept this proposition but also wish to extend the
argument. We believe that a full understanding of the
underlying noise and vector length sensitivity can account
for spatial sensitivity at threshold.

Using the vector length sensitivity measure, we find that
sensitivity increases through at least 10 cycles/deg for P-
cells in macaques. This result (as shown in Fig. 2) suggests
that neurons with different sizes of receptive fields, from the
fovea to the periphery, will respond about equally to a nat-
ural scene and maximize the use of the dynamic range
available. In a previous study on psychophysical contrast
matching it was proposed that this vector length sensitivity
increases out to as much as 20 cycles/deg in humans (Brady
& Field, 1995).

The vector-length approach to sensitivity may seem to
conflict with the standard contrast sensitivity function
(CSF) which implies that sensitivity peaks around 4
cycles/deg. However, we argue that there is no conflict. A
full account of this argument is provided by Field and
Chandler (in preparation). However, a brief comment
should be made here.

4.1. Contrast sensitivity and vector length

The contrast sensitivity function measures the psycho-
physical threshold at which humans (or any species) are
able to detect contrast at a given spatial frequency. The
CSF is fundamentally a signal-to-noise measure. If we pre-
sume that the noise that limits visual sensitivity is flat, then
the vector length sensitivity is a direct measure of the noise
magnitude in the system (Field & Brady, 1997). Further-
more, if we assume that the peak response to gratings is flat
out to a range of 20 cycles/deg, and that the linear band-
width increases with frequency (as shown in the left column
of Fig. 1), then each neuron will have a constant response
magnitude for its optimal grating but it will have a
response to noise that increases with increasing frequency.
The result is that the system will show a signal to noise level
(i.e., the CSF) that decreases with increasing frequency,
even though the vector length is increasing with increasing
frequency. We propose that the 4 cycles/deg peak of the
psychophysical contrast sensitivity function is the point
at which the signal-to-noise ratio is maximized. The posi-
tive slope observed at low spatial frequencies could corre-
spond to a regime that is coded by the lowest spatial
frequency channel used by the visual system.

The results we show in Fig. 2 for P-cells are consistent
with this general model. This simple linear model predicts
the following:

1. Overall response sensitivity of neurons increases with
increasing frequency (out to some limit—in the range
of 20 cycles/deg in humans).

2. Response equalization. The response to natural scenes
(1/f 2 power spectrum) is roughly flat.

3. The contrast sensitivity function will fall at frequencies
above and below the peak of the lowest channel.

As noted by Field and Brady (1997), this model also
provides an account of why white noise appears to be dom-
inated by high frequencies rather than structure at 4 cycles/
deg. Unlike natural scenes or gratings, the model predicts
that the response to noise peaks at the highest frequency
channel (the neurons with the greatest vector length). If
the CSF represented an accurate account of suprathreshold
sensitivity, then one would expect that white noise would
appear dominated by structure at 4 cycles/deg. A full
account of how neural sensitivity relates to the CSF would
also need to incorporate the role of the optics and the role
of early non-linearities (Field and Chandler, in prepara-
tion). However, we wish to emphasize here that the CSF
is not incompatible with this simple linear model where
integrated sensitivity (vector length) is increasing.

4.2. Further constraints

Our results suggest that both the decorrelation con-
straint and the response equalization constraint remain
insufficient to predict the center-surround receptive field
organization of ganglion cells. In response to natural
scenes, we find that the center-surround organization of
DoG filters produces a sparse response compared to
phase-randomized filters. Since these two classes of filter
achieve equal degrees of decorrelation and response equal-
ization, we must consider that an additional constraint is
required to account for the center-surround shape. Our
simulation suggests that sparseness may be a factor. How-
ever, two points must be noted. First, if the only goal was
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to represent the input with maximal sparseness, then the
center-surround solution is not the optimal solution. Sec-
ond, the sparseness may be partly a function of the highly
localized nature of the center-surround profiles. As shown
by Olshausen and Field (1996), a neural network that opti-
mizes for sparseness and losslessness will settle on a set of
oriented, bandpass filters similar to cortical simple cell
receptive fields. If the only additional constraint were
sparseness, we would expect to see an oriented wavelet
code, which is not the case in the primate retina.

Recent physiological recordings in the primate retina
(Berry, Warland, & Meister, 1997) and LGN (Reinagel &
Reid, 2000) suggest that random flickering and white noise
stimuli can both produce sparse responses in these cells’
outputs. This implies some degree of non-linearity. We
would expect sparseness to be lower for white noise than
for natural scenes. But to our knowledge, no one has
directly compared the sparseness of responses to natural
scenes with the sparseness of responses to white noise.

Our findings apply to cells with receptive fields that are
well-described by a DoG model (center-surround). Studies
of ganglion cell sensitivity that use spike-triggered averages
produced for white noise movies (white noise analysis)
show that there could be additional microstructure in cen-
ter-surround receptive fields that is not described by the
DoG model (Brown, He, & Masland, 2000).

The fact that significant non-linearities exist in retinal
processing (see Benardete & Kaplan, 1997a; Benardete &
Kaplan, 1997b; Kaplan & Benardete, 2001; Shapley & Vic-
tor, 1979, 1981; Victor, 1987) could imply that these early
non-linearities are good building blocks for the types of
non-linearities found in the cortical code (end-stopping,
cross-orientation inhibition, etc.). Retinal non-linearities
could produce a code that is useful for the kinds of calcu-
lations performed in cortex. We have constrained ourselves
to a linear model of ganglion cell spatial properties. How-
ever, we assume that non-linearities in the early visual sys-
tem, including temporal and adaptive properties (Hosoya,
Baccus, & Meister, 2005), may play an important role in
ganglion cell tuning.

The answer to the question of why center-surround orga-
nization is highly conserved for receptive fields across species
likely requires a broader theory that incorporates noise
reduction, non-linearities, adaptation, and other temporal
properties. Dong, among others, (Dong & Atick, 1995a,
1995b; Dong, 2001) has emphasized spatiotemporal decorre-
lation as an important goal of ganglion cells and of LGN.
Linsker (1989) proposed an unsupervised learning algorithm
that was optimized with respect to mutual information
(equivalently, decorrelation)—this system could produce
topographic maps, lateral interactions and Hebb-like modi-
fication, though not center-surround receptive fields.

4.3. Localization

It is possible that a center-surround arrangement
requires a minimum of dendritic wiring given its task. Such
arguments have been considered in the context of cortex
(e.g., Mitchison, 1991), though such arguments do not
address receptive field organization specifically. In our sim-
ulation, one effect of phase-randomization was to increase
the radial spread of the receptive fields in space, which
results in a less sparse response (see Fig. 3).

Vincent and Baddeley (2003), using a set of simula-
tions, argue that the center-surround operator serves
to optimize synaptic efficiency. Presumably, minimizing
the dendritic spread will serve to both minimize the
total wiring needed in the retina and the number of
synapses required to represent the input. From this line
of argument, center-surround organization acts to opti-
mize the localization of the receptive field for a given
frequency tuning curve. That is, given some constraints
on the tuning curve—for example, that it is required
to be unimodal—center-surround organization achieves
optimal localization (see Table 1).

One possible test of the minimum wiring hypothesis in
ganglion cells would involve a neural network architecture
that is designed to search for receptive fields that decorre-
late and/or sparsify with a minimum of connectivity. We
believe that both sparseness/independence and size/efficien-
cy constraints are inter-related. Both serve useful goals.
Although we believe that the size constraint may be the
more important factor, the additional sparseness/indepen-
dence should not be ignored. Given that current models
are insufficient, the many factors that we believe could
influence the goals of retinal processing are summarized
in Table 1.

4.4. Conclusion

The fact that retinal structure and organization are
remarkably well-conserved across mammalian species
could imply that this organization is a very efficient first
step in coding the natural world given the constraints of
retinal neurophysiology. Moreover, to the extent that reti-
nal processing is an optimally efficient first step for coding
natural scenes, artificial visual systems may benefit from
adopting a retina-like strategy as a first step as well. Such
a strategy may prove useful as an initial stage in the extrac-
tion of features from many classes of natural images. Fur-
thermore, the same types of constraints that contribute to
center-surround organization in retinal ganglion cells
(sparseness, response equalization, localization, minimal
wiring, and other factors) may well explain the center-
surround receptive fields in other sensory modalities (such
as the tactile system) and the lateral inhibition found in the
auditory system.

We conclude that a minimum of three constraints must
be considered to account for the known linear properties—
decorrelation, response equalization, and size/sparseness.
Although we accept that decorrelation plays a role, the evi-
dence does not support the hypothesis that the retina suc-
cessfully decorrelates. Our work with P-cells from the
primate study of Croner and Kaplan (1995) suggests that



Table 1
Theories of efficient retinal coding

Goal Explanation Can this account for center-surround RFs?

Compression (lossy) • To meet the reduced capacity of the optic nerve,
attenuation of high spatial frequencies in periphery
provides an efficient means of reducing bandwidth
between photoreceptors and ganglion cells. The highest
frequencies have the lowest signal-to-noise ratio given a
1/f environment and flat noise

• A wide variety of transforms can achieve high-frequency attenuation

• Noise is reduced in regime where noise and signal power
approach equivalence

• Insufficient constraint to account for center-surround receptive fields

Decorrelation • Cells with tuning functions that rise with frequency can
reduce pairwise correlations when the cells are spaced
appropriately. The known tuning functions should
therefore help reduce this form of statistical redundancy

• Many transforms can achieve decorrelation. Even if the tuning curve was optimal
for decorrelation, many possible transforms can have the same tuning curves

• Visual system maintains significant correlations between neighboring neurons, and
these correlations may be important in development

• Insufficient constraint to account for center-surround RFs

Response equalization • Allows neurons of all sizes to produce the same average
response to natural scenes with 1/f spectra. Predicts
response magnitude of macaque P cells

• A variety of transforms can sphere 1/f-distributed data

• Insufficient on its own to account for center-surround receptive fields or shape of
tuning curves

Sparseness • Center-surround RFs are more sparse than phase-
randomized RFs

• Wavelet-like/oriented receptive fields can provide greater sparseness than center-
surround receptive fields

Minimal size/wiring • Could achieve most sparse solution and reduce total
dendritic field needed

• A minimal wiring constraint on its own cannot produce an extended receptive field

• Restricts phases towards an aligned center-surround
organization

Decorrelation + response
equalization + minimal size

• The combination of all three constraints may be
sufficient to describe the basic sensitivity and center-
surround organization

• Further consideration is needed to account for known non-linearities and
temporal properties

It should be emphasized that this analysis largely ignores the importance of non-linearities in retinal processing.
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the sensitivity across neurons of different sizes serves to
produce equalized responses in the presence of natural
scenes. A full account certainly must consider the temporal
aspects of tuning, and other classes of retinal ganglion cell.
However, our results argue that constraints on dendritic
wiring and sparseness must also be considered. An account
of the retina’s linear functional goals would consider all of
these factors and perhaps others. We emphasize that our
approach has not considered the range of non-linearities
found across different classes of retinal neurons. How
many more constraints will be required to provide a full
account of retinal processing remains to be seen.
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Appendix A. Theory

It can be helpful to think of the two hypotheses of reti-
nal coding—decorrelation and response equalization—in
terms of vector spaces. First consider the case of two-di-
mensional Gaussian data with a strong correlation between
two orthogonal vectors (Fig. 5A), for example, two pixels.
One method for generating a decorrelated representation is
to perform principal components analysis (PCA) on the
input data. This method produces an orthogonal vector
space whose axes are aligned with the directions along
which Gaussian data have the highest variance. The vectors
ecorrelation sphered space
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generated by PCA will be uncorrelated but their response
variance will not be equal.

The principal component vectors can be normalized or
‘‘sphered’’ as shown in Fig. 5B such that the variance along
each of the basis vectors is normalized. This normaliza-
tion—also called response equalization—allows all vectors
(or neurons) to respond with the same average magnitude
to the family of inputs. This combination of PCA and
response equalization is sometimes referred to as ‘‘spher-
ing’’ or ‘‘whitening.’’ However, both terms can be mislead-
ing. Sphering is not part of PCA, but for the example
shown in Fig. 5B, sphering produces a representation
whose variance is normalized with respect to the basis vec-
tors (that is, response equalized), thus creating a univariate
Gaussian distribution. It should be noted that this process
creates a sphere only when one is given Gaussian data. If
the data are not Gaussian (as shown in Fig. 5D), the spher-
ing will result in both decorrelation and response equaliza-
tion, but there will remain higher-order statistical
dependencies.

Fig. 5C demonstrates another way to achieve sphering.
By choosing the right set of non-orthogonal axes, one
can achieve both decorrelation and response equalization
for these data. In the sphered space shown on the right
of Figs. 5B and C, the two transforms are simply rotations
of one another. In Fig. 5C, the gain of the two neurons is
the same but the response is effectively sphered. It is there-
fore theoretically possible to sphere data without a gain
change.

However, ganglion cells with different size receptive
fields will not see the same stimulus strength. Because of
the 1/f 2 power spectrum, the neurons tuned to higher spa-
tial frequencies (smaller receptive fields) will see less signal
strength. As we will argue, in order to achieve equalization
in response to natural scenes the neurons with smaller
receptive fields must increase their gain. The response
equalization hypothesis suggests that the relative gain of
neurons tuned to different frequencies is designed to equal-
ize the response of neurons of different sizes. The hypothe-
sis makes no assumptions about the amount of
decorrelation achieved by retinal processing. Consider a
case where the causes of the data are non-orthogonal and
let us assume that the number of causes is over-complete
(i.e., there are more causes of the data than there are
dimensions in the representation), as in Fig. 5D. There
exists no linear transform of these data that will result in
independent responses. We might choose to align our vec-
tors with the causes of the data as shown in Fig. 5D. If the
causes are not orthogonal, the vector outputs will be corre-
lated. But regardless of the correlations, it may be desirable
to perform response equalization: for these data, the differ-
ent causes have unequal variance so vectors of the same
length aligned with these causes will therefore have unequal
outputs. However, if the vector lengths are adjusted to
counter this difference in variance, response equalization
is possible (even though the correlations will remain) as
shown in the figure.
We are therefore left with the possibility of achieving
decorrelation with or without response equalization—and
of achieving response equalization with or without
decorrelation.
Appendix B. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/
j.visres.2006.03.008.
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