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What makes two images look similar? Here we test the hypothesis that perceived
similarity of artwork is related to basic image statistics to which the early visual
system is attuned. In two experiments, we employ multidimensional scaling (MDS)
analysis of paired-image similarity ratings from observers for paintings. Two sets of
images, classified as ‘‘landscapes’’ and ‘‘portraits/still-life’’, are tested separately.
For the landscapes, we find that one of the first two MDS scales of similarity is
strongly correlated with a basic greyscale image statistic, whereas the other
dimension can be accounted for by a semantic variable (representation of people).
For portrait/still-life, the first two MDS scales of similarity are most highly
correlated with semantic variables. Linear combinations of statistical and non-
statistical features achieve improved predictive values for the first two MDS scales
for both sets. The statistics that play the largest role in shaping similarity
judgements in our tests are the activity fraction measure of sparseness and the
log-log slope of the spatial frequency amplitude spectrum. We discuss these results
in the context of scene perception and in terms of efficient coding of statistical
regularities in scenes.
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How are natural scenes discriminated by human observers? It has long been

known that humans can make simple discriminations of scenes very quickly

(Potter & Levy, 1969; see Henderson & Hollingworth, 1999, for a review)

and recent studies have suggested that an efficient visual system could collect

basic statistics early in processing in order to ‘‘diagnose’’ context or scene

type (Oliva & Schyns, 2000; Oliva & Torralba, 2001; Torralba & Oliva,

2003). If there are statistical features that can be used to predict perceptual

judgements, is it the case that these quantities are themselves involved in the

neural coding of such perceptions, or are they correlates of some other

quantity of interest to the visual system? With this paper, we intend to spur

quantitative investigation into these questions using visual art. We offer

preliminary findings that do not fully resolve these questions, but do shed

light on the relationship between visual perception and basic image statistics.

In particular, we test two collections of paintings to determine whether

statistics relevant to efficient visual system processing are related to

perceptual judgements of those images.

Visual art comprises a rich laboratory in which to evaluate links between

efficient visual processing and basic image statistics (Graham & Field, 2007).

Paintings are a special class of images, both because of their expressive and

aesthetic qualities, but also because of their relationship to natural scenes. As

a group, paintings have been found to exhibit predictable statistical proper-

ties, including power law fall-off in spatial frequency amplitude spectra

(Graham & Field, 2007, 2008a; Redies, Hasenstein, & Denzler, 2007) and

nonlinear tone reproduction curves (Graham & Field, 2007, 2008a, 2008b).

The regularity of statistics in art and the relationships between regularities in

art and those in natural scenes suggests an influence of early visual coding

strategies in the production of art. In particular, it has been suggested that

the notion that visual systems are efficiently matched to the regular statistics

of natural scenes biases production of art towards those images that can be

efficiently processed, i.e., towards images that contain natural scene-like

regularities (Graham & Field, 2008b).

Other statistics are also shared by art and by natural scenes. For example,

both classes of images (including abstract art) produce high statistical

sparseness in a population of modelled neurons (Graham & Field, 2007).1

The visual system, as well as many other brain areas, has been shown to

respond in a statistically sparse manner in response to the natural

environment (see Graham & Field, 2006; Olshausen & Field, 2004). With

regard to art, the median statistical sparseness of modelled ganglion cell

1 Sparseness is a statistic measured over responses to a given stimulus set. A code in which

each unit fires at a low rate for most or all stimuli would have a low statistical sparseness,

whereas a code where a handful of units fire at high rates for each stimulus would have high

statistical sparseness.
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responses to natural scenes is found to be similar to that for a large, diverse

collection of artwork (Graham & Field, 2007).

Given these relationships between neural coding and certain image

statistics, could such statistics play a role in basic perceptual judgements?

For natural scenes, the answer could be yes. Torralba and Oliva (2003) have

demonstrated that two-dimensionl spatial frequency amplitude spectra

contribute to predictions of scale and content categorization for natural

scenes, and they have proposed that rapid processing of scenes depend at

least in part on the analysis of such statistics. Following on earlier findings

regarding colour statistics (e.g., Swain & Ballard, 1991), a study of image

search algorithms based on behavioural data (Neumann & Gegenfurtner,

2006) showed that a simple method based on similarity of pixel colour

statistics alone performed well above chance in predicting judgements of

perceptual similarity for a large collection of photographs. Moreover,

combinations of colour statistics, luminance statistics, and amplitude

spectrum statistics had even higher performance. Rogowitz, Frese, Smith,

Bouman, and Kalin (1998) found that perceptual similarity data and a

model of similarity based on colour statistics resulted in qualitatively similar

mappings of similarity for a large collection of photographs. Also, the

perception of glossiness has been shown to be highly correlated with pixel

intensity skewness (Motoyoshi, Nishidam, Sharan, & Adelson, 2007).

Together, these studies suggest that for basic perceptual judgements of

scenes, simple statistics may capture much of the information necessary for

making those judgements.

However, it remains unclear if the visual system specifically makes use of

these statistics, or if these statistics are merely correlated with some other

measure employed by the visual system to make such judgements. Though

we suspect that both kinds of processes may be at work, this paper has a

narrower focus. Here we consider if paintings, a subclass of natural images

with special import for human viewers, can elicit perceptual judgements that

are predictable using basic image statistics. Though there are surely a great

many factors that influence such judgements, this may be a less daunting

challenge than one might imagine. Despite the wide range of art styles,

paintings require a number of statistical restrictions not found with natural

scenes. For example, the maximum dynamic range of luminances for

paintings is only a fraction of what is possible for natural scenes. It has

been demonstrated that artists must employ some form of a nonlinear

luminance compression scheme in order to depict the world, which can be

modelled to a first approximation as a log-like nonlinearity2 (Graham &

Field, 2008a).

2 This nonlinearity has also been proposed as a model of photoreceptor luminance response.
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Moreover, image statistics have been shown to provide useful data for

distinguishing high-level cognitive properties of art, including style. Lyu,

Rockmore, and Farid (2004) used wavelet-transform statistics to separate

authentic drawings of Pieter Bruegel the Elder from those of Bruegel’s

imitators. Statistics derived from box-counting data (related to the power

spectrum) have been used to authenticate paintings thought to be by Jackson

Pollock (Taylor et al., 2007), though some of these conclusions have been put

in doubt for art historical (Landau & Cernuschi, 2007) and technical

(Graham & Field, 2007; Jones-Smith & Mathur, 2006) reasons. Stylometric

analysis on sets of works of different provenance (i.e., place of origin) show

consistent pixel distribution statistics for Eastern and Western Hemisphere

works (Graham & Field, 2008a). Together, this work suggests that low-level

statistics may be useful for understanding high-level properties of art.

However, we are not aware of any attempts to connect perceived similarity of

art with image statistics.

In the current study, we map the similarity space of two sets of paintings

(20 images each), which were selected from a group of images previously

judged by observers to fall into classes labelled ‘‘landscape’’ and ‘‘portrait/

still-life’’. We apply multidimensional scaling (MDS) analysis and attempt to

ascribe units*either semantic or statistical*to the perceptual dimensions

that account for the largest portion of the data variance. Because the two

classes of images tested were intended to represent different perceptual

features (large vs. small implied depth of field for landscapes and portrait/

still-life, respectively) and different semantic features (portrait/still-life often

includes people, landscape often does not), statistical measures and semantic

classifiers would be expected to contribute in corresponding proportions for

the two image sets.

METHODS

The idea of measuring the similarity space for a set of stimuli has a long

tradition in psychology (Kruskal, 1964; Shepard, 1962). Here we used a

paired-image rating task for all pairs of images to measure perceptual

similarity. Multidimensional scaling analysis can display the matrix of

similarities in a Euclidean space while preserving as best as possible the

absolute distances (measured as dissimilarities) among data points. We

calculated a classical MDS solution, which is equivalent to principal

components analysis, as well as nonclassical MDS. Our nonclassical MDS

solution was calculated over Kruskal sum-squared stress of inter-point

distances (Kruskal & Wish, 1978).
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Stimuli

Observers (N�6) divided a large set (140 images) of digitized paintings from

a major university collection (Herbert F. Johnson Museum of Art, Cornell

University, Ithaca, NY, USA; see Graham & Field, 2007, for description of

database) into general content categories using a three-alternative forced

choice paradigm (choices were ‘‘landscape,’’ ‘‘portrait/still-life’’, or ‘‘ab-

stract’’). From the groups of images whose set membership was agreed upon

by the majority of the observers, 20 paintings each from the landscape and
portrait/still-life sets were selected. The selected paintings were chosen such

that at least 20% of the images in a set would contain one or more of the

following: Bodies of water (landscapes), humans (landscapes), women

(portraits), still life without humans (portraits). In both sets, at least 20%

of the images had pre-twentieth-century production dates, and at least 20%

were of Eastern hemisphere provenance. Binary semantic variables were

constructed for each of these semantic classes based on metadata provided

by the museum (see Table 1).

Statistical measures

Images were converted from RGB to YIQ colour space and we performed
statistical analysis on the Y (luminance) channel data. We tested a host of

statistical measures of the images against the MDS scales derived from mean

similarity ratings. These included the first four statistical moments of image

pixel intensity histograms (mean, variance, skewness, kurtosis); the slope of

the spatial frequency amplitude spectra averaged over orientation and

plotted on log-log axes; statistical moments of modelled retinal (differ-

ence-of-Gaussians, DoG; see, e.g., Graham, Chandler, & Field, 2006) and

cortical (Gabor wavelet; see e.g., Jones & Palmer, 1987) responses to the
images; a pixel sparseness measure S, the ‘‘activity fraction’’,
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(see also Rolls & Tovee, 1995); as well as the same measures of log-

transformed images. The activity fraction S over n pixels each with intensity

ri has a range of 0 to 1. This measure is typically used to gauge the sparseness

of neural population responses. Small values of S (near zero) correspond to

a highly sparse, heavy-tailed distribution of intensities, where only a few
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TABLE 1
Metadata for paintings used in experiment

Image

Number Artist Title

Date

(CE) Water Humans

East/West

(E�1)

LANDSCAPES

1 Zhao Thousands of Mountains Invite Hermit Scholars 1604 0 0 1

2 Mistuyoshi Eight Views of Nara Unknown 1 0 1

3 Hopper Monhegan Landscape 1916�1919 1 0 0

4 Smith Long Island Sound 19th C. 1 0 0

5 Mahoney Sunday Afternoon 1932 0 1 0

6 Rosa Landscape with Philosophers 16th C. 0 0 0

7 Daubigny Les Champs au Mois de Juin 1874 0 0 0

8 Post Brazilian Landscape 1665 1 0 0

9 Bierstadt Swiss Mountain Scene 1859 1 0 0

10 O’Keefe Red Hills, Blue Sky 1937 0 0 0

11 Benton The Artist’s Show, Washington Square, New York 1946 0 1 0

12 Childe Rocks and Sea, Isle of Shoals 1912 1 0 0

13 Constable Netley Abbey 18th�19th C. 0 0 0

14 Kensett The Rocks at Newport, Rhode Island 1862 1 0 0

15 Guler School The Devi Attacks a Demon Army C. 1800�1820 0 1 1

16 Guler School King Suratha and Samadhi 18th C. 0 1 1

17 Pahari Style Krishna and the Milk Maids late 18th C. 1 1 1

18 Unident. (India) Lady Implores Krishna to go to Radha C. 1700�1715 1 1 1

19 Wood Untitled Moutainscape 1928 0 0 0

20 Dove Landscape at Cagnes 1909 0 0 0
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TABLE 1 (Continued)

Image

Number Artist Title

Date

(CE) Water Humans

East/West

(E�1)

PORTRAITS

1 Lucioni Tocata in Green 1973 0 0 1

2 Baishi Portrait of Lin Daiyu early 20th C. 1 1 0

3 Asantey Black Cowboys 1972�1974 0 1 1

4 Droungas Nike 1982 0 1 1

5 Lewis Portrait of Lord Carlow (Portrait of a Smiling Gentleman) 1939 0 1 1

6 Bouguereau Madonna and Child with Saint John 1882 1 1 1

7 Dix Liegende auf Leopardenfell 1927 1 1 1

8 Unident. (Japan) Amida Raigo 1185�1392 0 1 0

9 Bouguereau The Goose Girl 1891 1 1 1

10 Henri Portrait of Carl Sprinchom 1910 0 1 1

11 Kuniyoshi Charade 1948 1 1 0

12 Unident. (Europe) An Ecclesiastic 16th C. 0 1 1

13 Bailly Vanitas C. 1650 0 0 1

14 Hogarth Portrait of Dainel Lock F.S.A. 1762 0 1 1

15 Spaendonck Still life with Flowers 1793 0 0 1

16 Unident. (India) Portrait of a Nobleman late 18th C 0 1 0

17 Unident. (India) Portrait of (or by) Sultanu 1813 0 1 0

18 Unident. (India) The Horse Jagjeth early 19th C. 0 1 0

19 Cassatt Small Profile (Head of a Girl) c. 1874 1 1 1

20 Kulicke Untitled (Pear) 1964 0 0 1

1�presence of semantic features, 0�absence.
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pixels have high intensities and the rest show very low intensity. Extreme

values of S for our images are shown in Figure 1.

Perceptual testing

Participants in the perceptual testing were undergraduate students from

Manhattan College. There were a total of 24 participants for the landscape

test and 19 for the portrait/still-life test. Participants were naı̈ve to the

purpose of the experiment. A pretest survey of art experience (in terms of art

classes taken) showed a variety of levels of exposure, though most had taken

one or zero art classes.

Image pairs were presented at roughly 0.5 m on 17-inch computer

displays surrounded by a neutral grey background. Both images in each

pair were scaled to roughly the same horizontal size and randomly placed

on the left- or right-hand side. Images were displayed such that they were

centred vertically and their horizontal centres were equidistant from the

centre of the screen. Participants input integer ratings from 1 (�‘‘not

similar’’) to 9 (� ‘‘very similar’’) on a computer keyboard for each pair.

The test was self-paced and participants were permitted to change their

response if desired before proceeding to the next trial. Anchoring and

ordering effects were controlled by randomizing the order of the pairs for

each participant.

Figure 1. Extreme values of the activity fraction for images tested in this paper. Note that a low

value of the activity fraction indicates that most pixels are not active (i.e., black) and only a few are

very active pixels (light tones), as in the image on the left. A high value indicates that most pixels are

active at a mid-level intensity, as in the image on the right. Left: Nike by Achilles Droungas, Gift of

Mr. and Mrs. Stelios St. Joannou. Right: Eight Views of Nara by Tosa Mitsuyoshi, George and Mary

Rockwell Collection. Images courtesy of the Herbert F. Johnson Museum of Art, Cornell University.

To view this figure in colour, please see the online issue of the Journal.
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RESULTS

We performed classical and nonclassical MDS on the mean similarity data

across participants (after reversing the similarity index to generate dissim-

ilarities). Generally speaking, classical and nonclassical MDS scalings

produced essentially the same solutions (except for some axis inversions),

and correlations of axes with statistics (described later) were similar for both

solutions. The first three dimensions in the classical MDS (CMDS) solution

for rating means averaged across participants accounted for approximately

20%, 14%, and 11% of the data variance, respectively, for both image sets.

Scales 1 and 2 for the two image sets are plotted in Figure 2.

Assigning units to MDS scales

As expected, both semantic and statistical measures were found to be

strongly correlated with the first or second dimensions of the CMDS

solutions. In particular, for landscapes the first dimension was strongly

correlated with inclusion of humans in the image foreground (Spearman’s

r�.79, pB.0001), whereas the second dimension was strongly correlated

with the activity fraction (Pearson’s r�.79, pB.0001). It should be noted

that the amplitude spectrum slope of the images was nearly as correlated

with the second dimension of CMDS as was the activity fraction (Pearson’s

r�.77, pB.0001). The third scale had nearly the same correlation strength

for both the absence of water in the image (Spearman’s r�.44, pB.05) and

for the DoG filtered images’ intensity histogram skewness (Pearson’s r�.56,

pB.05).
For portraits, the first dimension of the CMDS solution was strongly

correlated with the provenance of the work, i.e., whether it was produced

in the eastern or western hemisphere (Spearman’s r�.79, pB.0001),

whereas the second dimension was strongly correlated with the presence of

people in the image (Spearman’s r�.61, pB.005). However, the activity

fraction was also strongly correlated with the first CMDS scale (Pearson’s

r�.67, pB.005). No significant correlations could be found for the third

CMDS scale for portraits.

Linear regressions of the first two dimensions of the CMDS solutions

with the proposed scales are shown in Figure 3. The percentage of variability

(R2) explained by linear regression of CMDS scales and statistical measures

or semantic classifiers is shown in the frame of the figures.

We found that combinations of statistical measures and/or semantic

variables produced stronger correlations compared to measures considered

separately (Figure 4). In particular, for landscapes, the sum of the activity

fraction and the amplitude spectrum slope for each image had a correlation
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Figure 2. (A) Landscape paintings are plotted in a plane according to their value along the first two

classical MDS dimensions. MDS was computed over mean dissimilarity (i.e., perceptual distance)

ratings of 24 participants. (B) Portrait/still-life paintings are plotted in a plane according to their value

along the first two classical MDS dimensions. MDS was computed over mean dissimilarity (i.e.,

perceptual distance) ratings of 19 participants. All images courtesy of the Herbert F. Johnson Museum

of Art, Cornell University. To view this figure in colour, please see the online issue of the Journal.
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of .84 (pB.0001) with the second CMDS scale. For portraits, the correlation

of the first CMDS scale with the sum of the provenance variable and the

activity fraction was .91 (pB.0001).

DISCUSSION

We have shown that basic image statistics describing spatial structure and

intensity distributions of artwork can play an important role in predicting

the judgement of similarity, at least for images perceived as landscapes.

Although semantic variables appear to be the dominant dimensions that

observers use to determine similarity, one of two major axes of similarity

ratings for landscapes is well predicted by intensity statistics. We also find

that combinations of semantic classifiers and/or statistical measures can

generate an even stronger correlation for both painting sets.

Perception and regular statistics in paintings

Though viewing context is an important factor, paintings may be especially

amenable to simple, objective similarity prediction algorithms because they

are a distinct class of images. Indeed, they are distinct because they share

many statistics with natural scenes, which separates them statistically from

Figure 3. (A) Regressions for landscapes. (B) Regressions for portraits. To view this figure in colour,

please see the online issue of the Journal.
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random images, and they are also distinct because their production requires

restrictions that are not imposed on natural scenes. Though artists are often

free to create whatever image appeals to them, they seem generally inclined

to create perceptible works. A perceptible work will possess many of the

same statistical characteristics as are found in natural scenes, since the visual

system is thought to be well adapted to the processing of natural scene

statistics (see e.g., Field, 1987). As has been previously shown, this means

artwork across the centuries generally possesses 1/f-shaped spatial frequency

amplitude spectra (Graham & Field, 2008b), as well as other statistical

regularities, since these regularities match or efficiently transform regula-

rities in natural scenes.3 Moreover, some of these same regularities are found

Figure 4. (A) Regression for combination of statistics (landscapes). (B) Regression for combination

of statistical and semantic variables (portraits). To view this figure in colour, please see the online issue

of the Journal.

3 Other authors suggest the regularity of the amplitude spectrum is due to an innate

preference for fractal-like scaling (Redies, 2007).

570 GRAHAM ET AL.



to vary systematically with diagnostic content in natural scenes, as discussed

earlier. Therefore, by exhibiting many of the regularities of natural scenes,

art would appear to be similarly categorizable using statistics.

Statistical limitations to which paintings, but not scenes, are confined
further restrict the statistical space occupied by paintings. Though samples

of the mean amplitude spectrum slopes of art and natural scenes are found

to be significantly different, a more crucial distinction between natural

scenes and art involves luminant intensities, which are restricted to a far

small dynamic range for art (Graham & Field, 2007, 2008a, 2008b). This

perhaps explains why the activity fraction, a global measure of intensity

characteristics, proved to be most useful in gauging perceived similarity for

paintings.
No colour information was used in these experiments. As noted, other

groups have shown that colour statistics can play an important role in

similarity judgements of natural scenes. Our goal in the present study was to

determine the contribution of spatial statistics and luminant intensity

statistics only.

Note that while the amplitude spectrum slope and activity fraction were

significantly correlated with each other in both sets of images (for

landscapes, Pearson’s r�.60, pB.005; for portraits, Pearson’s r�.47,
pB.05), the strength of the correlation was less than that between each

statistic and the corresponding MDS scale. The same correlation strengths

(and p-values) between spectrum slope and activity fraction held within the

larger sets of images from which the 20 portrait/still-life and 20 landscape

images were selected.

We note that our analysis implies that some nonlinear transformation of

the images is desirable (calculation of both the amplitude spectrum slope

and the activity fraction involves nonlinear operations). If similarity
relationships are determined by images’ relative distance along a nonlinear

manifold within an orthonormal perceptual space, such structure would not

be uncovered using Euclidean distances among untransformed images. In

that case, techniques like local linear embedding (LLE) or other schemes

could help identify the nonlinear manifold (e.g., Tenenbaum, de Silva, &

Langford, 2000).

In summary, we find that basic image statistics predict a considerable

portion of the variance in similarity judgements of representational art. It
remains unclear whether the brain uses this information to encode

perceptual qualities of scenes. In principle, such statistics could be collected

by the early visual system, which would assist rapid discrimination based on

context. The relevant image statistics are ones that have previously been

implicated in shaping strategies for efficient coding of natural scenes.

Because art images as a group comprise a statistically and perceptually

circumscribed subset of the larger class of natural images, we suggest that
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they are especially useful for the study of relationships between perceptual

judgements and basic statistics relevant to early vision.

CONCLUSION

If art is an efficient way to communicate visual qualities, it would seem a

natural tool for the study of many levels of visual processing. Our results
suggest that basic statistics could influence perceptual and cognitive

responses: Statistical properties appear to be good predictors of human

judgements of the similarity of pairs of artworks, at least for landscape

painting. An efficient visual system could make a quick and reasonable guess

as to the relationship of a given image to others (i.e., the context of the

image) by extracting these basic statistics early in the visual stream. This may

hold for natural scenes as well as art.
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