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Glossary

kurtosis The fourth statistical moment of a
distribution; measures the degree to
which a distribution is peaked and
heavy-tailed; a Gaussian has a kurtosis
of 0.

natural scene An image of the natural world.
sparse code A method of representing information

that shows a low activity ratio; a code
for which most coding units are inactive
most of the time.

3.14.1 Introduction: Optimality in
Biological Systems

For any biological system, an account of why the
system is structured as it is requires consideration of
a number of interacting forces including the uses
(or goals) of the system, the environment in which
the system must function, and the constraints that
history and biology put on the design (see The
Origin of Neocortex: Lessons from Comparative
Embryology, The Evolution of Neuron Classes in
the Neocortex of Mammals, Organization of a
Miniature Neocortex – What Shrew Brains Suggest
about Mammalian Evolution). It might seem rea-
sonable to assume that the constraints of evolution
and development play a large role in determining the
design of any neural system. However, a range of
recent studies have argued that neural systems have
found highly efficient solutions for representing
environmental information. These studies have
explored topics from retinal coding (Sterling,
2004) to the computations provided on the semicir-
cular canals with respect to head rotations (Squires,
2004) to the optimal cortical layout that minimizes
neural wiring (Van Essen, 1997; see Neural Wiring
Optimization). In all these studies, there remain
intriguing questions regarding how close these
solutions are to optimal, and how evolution and
development lead to this optimality.

In this article, however, we focus on a general
aspect of sensory representation called sparse coding.
We argue that there is widespread evidence of such
coding in neural systems across a variety of species.
We look briefly at the question of what is meant by
sparse coding and then ask why sensory systems
would profit from performing such coding. We
argue that the natural environment is inherently
sparse and codes that take advantage of this structure
can be both metabolically efficient and useful for
learning. However, the constraints involved in pro-
ducing a highly sparse code can be severe: if
representing each object and pose requires a different
set of neurons, the system would need a very large
number of neurons indeed. We believe that many
vertebrates have developed a strategy of combining
high sparseness with invariance, a strategy that over-
comes the combinatorial explosion of a highly sparse
code. In this chapter, we address the extent to which
sparseness is an optimal coding solution for natural
data, and the additional processing strategies that
may have shaped cortical evolution in vertebrates.

3.14.2 Defining Sparse Coding

Sparse coding generally refers to a representation
where a small number of neurons are active, with
the majority of the neurons inactive or showing low
activity (e.g., Field, 1987, 1994; Rolls and Tovee,
1995). In his influential single neuron doctrine,
Barlow (1972) suggested sparseness as one of the
principles important to sensory representation.
However, sparse coding in its extreme form results
in a representation sometimes called a grandmother
cell code. In such a code, each object in the world
(e.g., your grandmother) is represented by a single
cell. One might argue that a large brain with tens of
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billions of neurons can certainly handle a few
hundred thousand object-level neurons. And there
are many studies showing that neurons exist that
can be highly selective to faces and other objects
(e.g., Kendrick and Baldwin, 1987; Quiroga, et al.
2005). However, those promoting the usefulness of
sparse representations are not proposing that the ulti-
mate goal is to have one neuron for every object – and
certainly not for a particular view of every object. We
believe that sparseness helps learning and prediction
even at early stages of sensory processing, like those
found in V1. But too much specificity or sparseness
can actually make learning harder. We will explore
this question later in the article.

Two lines of evidence support the notion that
sparse representations are common in neural
systems: the first comes from physiology, the second
from computational and theoretical research. In
each case, the evidence requires a definition of spar-
seness. There have been several definitions of
sparseness and a number of ideas regarding what
sparse codes actually represent.

Sparseness can be defined over a population of
neurons at a given point in time (population sparse-
ness) or it can be measured for a single neuron over
some window of time; the latter is called temporal
or lifetime sparseness (Willmore and Tolhurst,
2001) and it is sometimes referred to as nonpara-
metric selectivity (Lehky et al., 2005). For a given
distribution of responses, we obtain a histogram of
activity. One might think that the simplest defini-
tion of the sparseness of this distribution is to simply
measure the proportion of active neurons, or how
often a neuron is active. However, the histogram of
activities is usually defined over a window of time
and is therefore not binary. In response to any popu-
lation of stimuli (e.g., natural scenes), one typically
obtains a distribution of activities (a distribution of
spike probability), so the measures of sparseness
refer to the relative shape of the distribution.

Two definitions of sparseness are widespread. The
first – the Treves–Rolls measure (eqn [1]) – is more
appropriate for measuring the sparseness over time
for real spiking neurons (Rolls and Tovee, 1995). The
second definition uses kurtosis (the fourth statistical
moment of a distribution) as its metric (eqn [2]) and it
is more useful for modeled neurons and computa-
tional studies, where a comparison of different
codes and transforms is necessary (Field, 1994):
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These measures are applied to histograms of
responses over a population of neurons or for a given
neuron over time. With the Treves–Rolls measure, the
sparseness approaches zero as the neuron is either off
or highly on (for a given time window). With the
kurtosis measure, large values occur when a response
distribution deviates maximally from the Gaussian
state by being sharply peaked and heavy-tailed.
Highly kurtotic behavior produces a relatively high
probability of either a small or large response, and a
relatively low probability of a mid-level response.
Both measures can be sensitive to outliers.

3.14.3 Physiological Evidence for
Sparse Coding

Much of the discussion in recent years regarding
sparse coding has come from the computational and
theoretical literature, but there is considerable phy-
siological evidence for sparse representations in most
biological systems. For a neuron with a full response
and refractory time of 5ms, the maximal firing rate
would be 200Hz. A system that is providing a max-
imal information rate would fire at approximately
half the time, i.e., at 100Hz. Although neurons may
reach such rates, neurons do not maintain these rates
for more than brief periods. We do not know of any
neural systems that maintain such high firing rates
for extended periods.

Such a high firing rate would require considerable
energy resources, so much so that Attwell and
Laughlin (2001) argue that the limited biochemical
energy available for producing action potentials
must limit the average firing rates of neurons to
less than 1Hz. Further, Lennie (2003) estimates
that the limited resources imply that at any given
time, only 1/50th of any population of cortical neu-
rons can afford to show high firing rates. Therefore,
for biochemical reasons alone, we should expect a
considerable degree of both lifetime and population
sparseness. Olshausen and Field (2005) further
argue that even in areas that have been well studied –
areas like V1 – these low average firing rates imply
that a significant number of neurons will have such
low firing rates as to be missed entirely by the
typical search strategies.

As noted by Olshausen and Field (2004), there
are a number of studies suggesting that many
neural systems utilize highly sparse codes.
DeWeese et al. (2003), recording from auditory
neurons in the rat, have demonstrated that neu-
rons in A1 can reliably produce a single spike in
response to a sound. Evidence from olfactory sys-
tems in insects (Perez-Orive et al., 2002;
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Theunissen, 2003), somatosensory neurons in rat
(Brecht and Sakmann, 2002), and recordings from
rat hippocampus (Thompson and Best, 1989) all
demonstrate highly sparse responses. Prefrontal
cortex shows similar sparseness in behaving rhesus
monkeys (Abeles et al., 1990). As the authors of
the latter study say, most areas of association cor-
tex are ‘‘not carrying out any computations for the
majority of the time.’’

Motor neuron representations are often described
as a population code, where it is proposed that the
accuracy of a movement is guided by the degree of
activity of a relatively large population of neurons
(see Georgopoulos, 1986). Here too, we find
evidence of sparse responses. Some motor neurons
in layer 6 of rabbit motor cortex will produce just one
spike during some movements (Beloozerova et al.,
2003). And stimulation of a single neuron in the rat
is sufficient to deflect a whisker (Brecht et al., 2004).

With respect to sparse coding, the most widely
studied sensory system is the visual system. Much of
this work, which we discuss below, has been moti-
vated by information theoretic issues. The area also
contains a wealth of experimental data. In infero-
temporal (IT) cortex, a wide range of studies
supports the notion that neurons are selective to
high-level object dimensions, and to features such
as faces and hands. Such neurons are believed to
show some degree of invariance over position, size,
pose, brightness, etc. Nevertheless, unless we are to
assume that such objects fall within the neuron’s
receptive field at least half of their waking life, we
should expect these neurons to show a high degree
of sparseness. Indeed, Baddeley et al. (1997) found
that cells in IT show sparse responses to natural
stimuli, to a similar degree as do cells in V1.

Much of the most interesting work tying together
the statistics of natural signals and physiology
comes from work on the responses of V1 neurons.
Vinje and Gallant (2000, 2002) found that V1 neu-
ron responses in macaque become more and more
sparse as the size of a natural stimulus is increased
beyond the classical receptive field. Stimulation in
the classical receptive field also produced sparse-
ness, which could reflect the rather arbitrary
nature of the classical/nonclassical delineation.
Moreover, stimulation in the nonclassical receptive
field showed the following results:

1. increased sparseness for individual neurons during
repeated presentations (lifetime sparseness);

2. increased sparseness across the population of
neurons tested (population sparseness); and

3. decreased correlation in neighboring neurons,
thereby whitening the response.
The results presented here provide examples of
the sparse behavior of neurons in primate visual
cortex under naturalistic conditions. Although we
cannot argue that a sparse coding strategy is ubiqui-
tous in the cortex, these results do support the
implication that sparse coding is widespread in the
nervous systems of the mammals tested. We also
find evidence of sparse coding across a variety of
nonmammalian species. In addition to the creatures
mentioned above, the selectivity of sensory neurons
has been supported by studies in amphibians (e.g.,
Ewert, 1980), turtles (Ammermüller et al., 1995),
and insects (e.g., Strausfeld and Lee, 1991; Lehrer
and Srinivasan, 1992; Perez-Orive et al., 2002).

Any form of selectivity implies that neurons
will show a degree of sparseness in the natural
environment, since selectivity by definition means
neurons respond only to a portion of the possible
environmental stimuli. Answering the question of
why sensory systems show highly selective
responses will require innovative ways of think-
ing about sparseness. In the next section, we
consider an information theoretic approach to
sparse coding and we compare this to an
approach that argues for sparse coding as a result
of the metabolic constraints on neural firing. We
argue that both approaches will likely be needed
to explain all aspects of sparse coding in neural
systems.

3.14.4 Two Views of Sparse Coding

3.14.4.1 Maximizing Information Transfer

Consider a neuron, or population of neurons, that
has a mean firing rate and some distribution around
that mean. With a limit on the range of possible
firing rates, the maximum information transfer
occurs when all states of the channel are used with
equal frequency: a flat distribution of firing rates.
If the bound on a distribution is instead the variance
of the responses (rather than the range of responses),
the distribution with the greatest information
rate (greatest entropy) is a Gaussian. The visual
system appears to follow neither of these models.
A sparse code means that neural firing rates
will show a highly peaked, non-Gaussian distribu-
tion, i.e., one that does not produce maximum
information transfer. Moreover, as sparseness
increases, the information rate drops. Why might
this be a good idea?

In general, we argue that the information rate of
the system should match the information rate of the
input. Natural stimuli are not random. As far as the
visual system is concerned, natural scenes are not



Figure 1 Results of a neural network that searches for a

sparse code using filters to describe 12�12 pixel image patches

drawn from a collection of natural scenes (Olshausen and Field,

1996). The collection of filters shown represents the 256 tem-

plates that the network found for describing each patch. When

any given natural scene patch is multiplied by this family of

filters, one finds that most of the responses are near zero and

a small set of filters produces large responses (those matched to

the image structure). The templates have been shown to provide

a good first-order account of the responses of cortical V1 simple

cells, suggesting that such simple cells are optimized to provide a

sparse code for natural scenes. Adapted from Olshausen, B. A.

and Field, D. J. 1996. Emergence of simple cell receptive field

properties by learning a sparse code for natural images. Nature

381, 607–609.
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arrays of random points of light. Rather, they are
constrained by strong correlations between neigh-
boring regions, and image discontinuities are
usually defined by edges. This predictability implies
that a high information rate is simply unnecessary.
By taking advantage of the redundant properties of
images, sensory codes can get away with sending
less information and using fewer spikes.

For example, consider a collection of 5�5 pixel
images that each contain one block letter of the
alphabet. If we looked at the histogram of any
given pixel, we might discover that the pixel was
on roughly half the time. However, if we were to
represent these letters with templates that respond
uniquely to each letter, each template would
respond just 1/26th of the time. This letter code is
more sparse – and more efficient – relative to a pixel
code. Although no information is lost, the letter
code would produce the lowest information rate.

Moreover, a representation that was letter based
would provide a more efficient means of learning
about the associations between letters. If the asso-
ciations were between individual pixels, a relatively
complex set of statistical relationships would be
required to describe the co-occurrences of letters
(e.g., between the Q and U). Sparseness can assist
in learning since each unit is providing a relatively
complete representation of the local structure (Field,
1994).

Of course, the natural world does not consist of
letters. Natural scenes are highly structured and can
be modeled to a first approximation as a sparse
collection of local features (e.g., edges). Early work
by one of us (Field, 1987, 1994) showed that if the
receptive fields of V1 neurons are modeled as a
collection of linear templates, then the responses of
those neurons to natural scenes are highly sparse.
Furthermore, when the parameters of the modeled
neurons were altered from those of V1 neurons, the
sparseness dropped, suggesting that the parameters
were near to optimal given the constraint of having
a linear array of model neurons.

A stronger test of this hypothesis was developed
by Olshausen and Field (1996), who trained a
neural network to find the most sparse representa-
tion for a population of image patches drawn from
natural scenes. The network was trained to develop
a set of filters that would maximize sparseness and
losslessness in its representation of natural scenes.
Given these two criteria, the network settled on a set
of filters with considerable similarity to simple cell
receptive fields in V1 (Figure 1).

This basic sparse coding algorithm is quite similar
to techniques that search for independent solutions
by minimizing response entropy (that is, by
searching for non-Gaussian response histograms).
The family of these techniques has been called inde-
pendent components analysis or ICA (Bell and
Sejnowski, 1997). The name ICA is a bit unfortu-
nate since the solutions are almost never
independent, given natural input. But the approach
has been applied to a wide range of problems and it
has been employed to account for a variety of
properties in early visual neurons, including spatio-
temporal tuning (e.g., van Hateren and Ruderman,
1998) and spatiochromatic properties (e.g., Hoyer
and Hyvarinen, 2000), and generalization of the
approach has been used to model some nonlinear
properties of neurons (Hyvarinen and Hoyer, 2000).
In early vision, Graham et al. (2005) show evidence
that sparseness is likely a factor contributing to the
utility of center-surround receptive field organiza-
tion, along with decorrelation and response gain.
Furthermore, sparse codes of natural sounds have
been shown to produce temporal response profiles
with properties similar to those of early auditory
neurons (Lewicki, 2002).
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This entire line of work suggests that sparseness in
neural firing is primarily a result of efficiently
matching the neuron’s response properties with the
sparse statistical structure of the environment.
There remain a number of questions as to how a
biological system might achieve this efficient repre-
sentation. Although the particular method used by
Olshausen and Field (1996) may not be biologically
plausible, it is argued that learning algorithms exist
that could train a system to achieve a sparse code.
The advantage of learning such a code is that the
properties of individual neurons need not be prede-
termined or coded in the genome of the organism.
Rather, what is required is that the system evolve
only a general sparse coding strategy. Given appro-
priate input, a learning algorithm would serve to
produce the proper neural response properties and
it would help to tile the neurons in a way that allows
the correct spacing as a function of the different
parameters of selectivity (e.g., position, scale, orien-
tation). Although there is little evidence of such a
learning algorithm in insects and animals with rela-
tively simple brains, the evolution of a sparse
learning algorithm may be widespread in larger
brains. However, the argument is not that the sys-
tem must necessarily learn from the natural world.
Rather, one intriguing possibility is that the system
learns from the patterned structure of the sponta-
neous activity in the developing organism (e.g.,
Wong, 1999).

It is not yet clear whether the patterns of sponta-
neous activity are sufficient for generating the
receptive field properties found in the newborn.
However, such an approach would provide a rela-
tively simple means for producing a large number of
neurons with efficient tuning. The learning
algorithm also has the advantage that it can accom-
modate a large variation in cell number. If any
evolutionary mutation or developmental change
results in a larger (or smaller) brain, the learning
algorithm should be capable of adapting to the
system and adjusting the tiling appropriately.

Could all neurons in higher areas from V1 to IT
simply be exhibiting sparse coding as a means of
efficiently representing the natural world? This
may be possible. A number of investigators are
exploring ways to extend these ideas of efficient
coding to higher levels. It is clear that these more
complex representations require a form of nonlinear
coding that makes the tests of efficiency consider-
ably more difficult, though attempts to model
nonlinear behavior of neurons with such efficient
coding approaches have met with some success (e.g.,
Schwartz and Simoncelli, 2001; Wiskott and
Sejnowsi, 2002).
However, there is a penalty that applies to learn-
ing if the system is too sparse. An extremely sparse
code (one in which neurons are highly selective for
specific objects in specific poses, lighting, etc.)
would have neurons that fired quite rarely. In
order to effectively learn about the world, any
system must keep track of the relative probability
of co-occurrences. No matter how a neural system
keeps track of these co-occurrences, if they occur
too rarely it would be impossible to determine
whether any feature is statistically related to any
other feature. We cannot learn about how ‘faces’
behave in particular situations if we have a neuron
for every unique face. It is important that the system
be invariant at some level so that we can collapse
across instances of the category. Most presentations
of objects or events will occur just once or not at all
during development if the object is defined too
precisely.

From the perspective of learning, then, a code that
is too sparse becomes intractable even if there were
enough neurons to accommodate it. Consequently,
a system must also build invariance into the code in
order to develop and function efficiently. With high-
level objects such as faces, this learning constraint
would require that the face-selective neurons be
invariant to dimensions along which the face varies
in different settings (lighting, pose, size, etc.). Thus,
both invariance and selectivity are necessary for
achieving an efficient, sparse representation of
sparse natural input. Indeed, this invariance is a
known property of visual neurons. As neurons are
found to be more selective, we find greater degrees
of invariance. The complex cells in V1 show selec-
tivity to scale (spatial frequency), and orientation,
and they show small amounts of invariance to posi-
tion. Higher-level neurons in IT and medial
temporal cortex may show much higher selectivity
to faces, hands, etc. However, they also show much
greater invariance to lighting, pose, and size (Rolls,
2000). In one study of human medial temporal
cortex (Quiroga et al., 2005), neurons were found
that were selective to particular actresses (Jennifer
Aniston) while invariant to pose, lighting, and
position in the image.

We therefore argue that although the evolution of
large brains may allow a larger number of highly
selective neurons, the constraints of learning require
that the selectivity go hand in hand with a greater
degree of invariance. Although there have been a
number of proposals regarding how invariance is
achieved in the mammalian systems (Olshausen
et al., 1993), no firm answer has emerged. We
know that some of the simpler visual systems, such
as those of Drosophila, do not show such invariance
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(Dill et al., 1993). However, it remains unclear how
such invariance has evolved, and what we might
expect from systems that show only partial
invariance.

3.14.4.2 Metabolic Constraints

We conclude our discussion by returning to the issue
of metabolic constraints. Could we argue that pri-
mary evolutionary pressure driving toward sparse
coding is one related to the metabolic costs of neural
firing? As noted earlier, both Attwell and Laughlin
(2001) and Lennie (2003) argue that there are not
enough resources to achieve anything but a low-
activity system. Moreover, when we find sparse
activity in frontal cortex (Abeles et al., 1990), it is
more difficult to argue that the sparse activity must
arise because it is mapping the sparse structure of
the world. Even at early levels, if sparseness were
metabolically desirable, there are a number of ways
of achieving sparseness without matching the struc-
ture of the world. Any one of a wide variety of
positively accelerating nonlinearities would do.
Simply giving the neurons a very high threshold
would achieve a sparse code, but the system would
lose information. We argue that the form of sparse
coding found in sensory systems is useful because
such codes maintain the information in the environ-
ment, but do so more efficiently. We argue that the
evolutionary pressure to move the system toward a
sparse code comes from the representational power
of sparse codes.

However, we do accept that metabolic constraints
are quite important. It has been demonstrated that
at the earliest levels of the visual system, ganglion
cells (Berry et al., 1997) and lateral geniculate
nucleus cells (Reinagel and Reid, 2000) show sparse
(non-Gaussian) responses to temporal noise. A lin-
ear code, no matter how efficiently it was designed,
would not show such sparse activity, so we must
assume that the sparseness is at least in part due to
the nonlinearities in the system and not due to the
match between the receptive fields and the sparse
structure of the input. Since the results show sparse
responses in nonsensory areas, we must accept that
metabolic constraints may also be playing a signifi-
cant role.

3.14.5 Conclusions

We are therefore left with a bit of a puzzle. We
know that higher levels of the visual system show
considerable sparseness: neurons fire at rates far
below their maximal rate. However, we cannot con-
clude that sparseness is only a result of an efficient
mapping of the sparse structure of the world.
Metabolic efficiency must also be considered, inde-
pendent of the statistical structure of the world. In
addressing the question of why a system is sparse,
we must accept that widespread sparseness in cortex
is due to several factors. Many of us believe that the
metabolic constraints are secondary, however, and
that artificial visual systems will someday incorpo-
rate much of the coding we find in neural systems.
The constraints of evolution, metabolism, anatomy,
and development all play a role in determining why
the nervous system is designed the way it is. But one
should not presume that these constraints force the
system toward some nonoptimal solution. At pre-
sent, the evidence suggests that the nervous system
has evolved a highly efficient learning algorithm for
discovering and representing the structure in the
world. And the sparse responses of neurons are an
integral component of that efficient representation.
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